

Lecture Notes in Computer Science 5366
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Maria Garcia de la Banda Enrico Pontelli (Eds.)

Logic Programming

24th International Conference, ICLP 2008
Udine, Italy, December 9-13 2008
Proceedings

13

Volume Editors

Maria Garcia de la Banda
Monash University
Clayton School of Information Technology
Clayton, VIC 3800, Australia
E-mail: Maria.GarciadelaBanda@infotech.monash.edu.au

Enrico Pontelli
New Mexico State University
Department of Computer Science
Las Cruces, NM 88003, USA
E-mail: epontell@cs.nmsu.edu

Library of Congress Control Number: 2008940424

CR Subject Classification (1998): D.1.6, I.2.3, D.3, F.3, F.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-89981-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89981-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12581351 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 24th International Conference on
Logic Programming (ICLP 2008). The conference took place in Udine, Italy
during December 9–13, 2008. The conference focuses on the foundations, devel-
opments, and applications in the area of logic programming. The ICLP series
of conferences is aimed at providing a technical forum for presenting and dis-
seminating innovative research results in the field of logic programming. The
conference features technical presentations, tutorials, invited speakers, and a
number of co-located events, including:

– The First Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP 2008)

– The Annual Meeting of the ISO/IEC JTC1/SC22/WG17 working group on
the standardization of Prolog

– The Third International Workshop on Applications of Logic Programming
to (Semantic) Web and Web Services (ALPSWS’08)

– The 18th Workshop on Logic-based Methods in Programming Environments
(WLPE 2008)

– The 8th Colloquium on Implementation of Constraint Logic Programming
Systems (CICLOPS 2008)

– The 15th RCRA Workshop on Experimental Evaluation of Algorithms for
Solving Problems with Combinatorial Explosion

ICLP 2008 also featured two special events. The first was the 4th ICLP
Doctoral Student Consortium, an event specifically organized to encourage par-
ticipation and interaction between doctoral students working in the area of logic
programming. The second event was a special session celebrating 20 years of
Stable Model Semantics. The session featured two guests of honor – Michael
Gelfond and Vladimir Lifschitz, original creators of the Stable Model Semantics
– two invited speakers (David Pearce and Nicola Leone) and six position pre-
sentations (by Chitta Baral, Marc Denecker, Thomas Eiter, Victor W. Marek,
Ilkka Niemelä, and Torsten Schaub).

The ICLP program included four tutorials—Carla Piazza and Alberto Policriti
(Systems Biology), Tom Schrijvers (Constraint Handling Rules), Peter
O’Hearn (Separation Logic), and Angelo Montanari (Temporal Logics). The pro-
gram also included two invited presentations, by Vı́tor Santos Costa (Life of a
Logic Programming System) and by Pedro Domingos. An additional highlight of
the program was a session aimed at uniting and inspiring the Prolog community,
organized by Tom Schrijvers and Bart Demoen.

The technical program was composed of 37 full papers and 26 short papers.
The acceptance rate was 3.16 for full papers (117 submissions) and 2.31 for
short papers (60 submissions). The submissions originated from 31 countries

VI Preface

(Australia, Austria, Belgium, Brazil, Canada, Chile, China, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Indonesia, Ireland, Israel, Italy,
Japan, South Korea, The Netherlands, Poland, Portugal, Singapore, Spain, Swe-
den, Switzerland, UK, Ukraine, USA, and Vietnam).

As in previous years, the Program Committee selected the best paper and the
best student paper. The Best Paper Award went to Michael Fink for his paper
“Equivalences in Answer-Set Programming by Countermodels in the Logic of
Here-and-There,” while the Best Student Paper Award went to Shay B. Cohen,
Robert J. Simmons, and Noah A. Smith for their paper “Dynamic Programming
Algorithms as Products of Weighted Logic Programs.”

ICLP 2008 was organized by the Association for Logic Programming (ALP),
in collaboration with the Organizing Committees of the co-located events, the
Dipartimento di Matematica e Informatica of the Università degli Studi di Udine,
the Department of Computer Science at New Mexico State University, and the
Clayton School of IT at Monash University. The event received generous sponsor-
ships from the Association for Logic Programming, New Mexico State University,
the National Science Foundation, National ICT Australia, the Università degli
Studi di Udine, the Gruppo Nazionale per il Calcolo Scientifico, the Swedish
Institute of Computer Science, Agemont, MIUR Project FIRB RBNE03B8KK,
Kodak, and the municipality of Udine. The organization would also like to ac-
knowledge the support of the Gruppo Ricercatori e Utenti di Logic Programming
(GULP).

Many people contributed to the success of the conference, to whom we would
like to extend our sincere gratitude. The General Chair, Agostino Dovier, es-
tablished an outstanding Organizing Committee and worked hard to ensure a
successful event, providing leadership in all aspects of the organization process.
The members of the Program Committee provided invaluable help in the process
of selecting papers and developing the conference program. The numerous ref-
erees invested countless hours in reading submissions and providing professional
reviews. Andrea Formisano and Miros�law Truszczyński organized a fantastic
special session to celebrate the 20 Years of Stable Model Semantics. Son Cao
Tran (the Workshop Chair) and Tom Schrijvers and David S. Warren (Doctoral
Consortium Chairs), and Bart Demoen (Prolog Programming Contest Chair)
contributed to the addition of exciting and well-organized events to the pro-
gram. The organization benefited from the hard work of Marcello Balduccini
and Alessandro Dal Palú (Publicity Chairs), Raffaele Cipriano (Web Master),
and the local organizing team: Alberto Casagrande, Elisabetta De Maria, Luca
Di Gaspero, and Carla Piazza.

Last but not least, we wish to extend our heartfelt thanks to all the authors
who submitted their excellent research contributions to the conference.

December 2008 Maria Garcia de la Banda
Enrico Pontelli

Organization

ICLP 2008 was organized by the Association for Logic Programming, in collab-
oration with the Dipartimento di Matematica e Informatica (Università degli
Studi di Udine), the Department of Computer Science (New Mexico State Uni-
versity), and the Clayton School of IT (Monash University).

Organizing Committee

General Chair Agostino Dovier (Università di Udine)
Program Co-chairs Maria Garcia de la Banda (Monash University)

Enrico Pontelli (New Mexico State University)
Workshop Chair Tran Cao Son (New Mexico State University)
Doctoral Consortium Tom Schrijvers (K.U.Leuven)

David S. Warren (SUNY Stony Brook)
20 Years of Stable Models Andrea Formisano (Università di Perugia)

Miros�law Truszczyński (University of
Kentucky)

Programming Competition Bart Demoen (K.U.Leuven)
Publicity Marcello Balduccini (Kodak Research Labs)

Alessandro Dal Palù (Università di Parma)
Web Master Raffaele Cipriano (Università di Udine)
Local Organization Alberto Casagrande (Università di Udine)

Elisabetta De Maria (Università di Udine)
Luca Di Gaspero (Università di Udine)
Carla Piazza (Università di Udine)

Program Committee

Salvador Abreu Universidade de Évora, Portugal
Sergio Antoy Portland State University, USA
Pedro Barahona Universidade Nova de Lisboa, Portugal
Chitta Baral Arizona State University, USA
Gerhard Brewka University of Leipzig, Germany
Manuel Carro Universidad Politecnica de Madrid, Spain
Michael Codish Ben-Gurion University of the Negev, Israel
Alessandro Dal Palù Università di Parma, Italy
Bart Demoen K.U.Leuven, Belgium
Agostino Dovier Università di Udine, Italy
John Gallagher Roskilde University, Denmark
Michael Gelfond Texas Tech University, USA
Carmen Gervet Boston University, USA
Gopal Gupta University of Texas at Dallas, USA

VIII Organization

Manuel V. Hermenegildo Universidad Politecnica de Madrid, Spain
Andy King University of Kent, UK
Michael Maher National ICT, Australia
Juan José Moreno-Navarro Universidad Politecnica de Madrid, Spain
Alberto Pettorossi Università di Roma Tor Vergata, Italy
Brigitte Pientka McGill University, Canada
Gianfranco Rossi Università di Parma, Italy
Fariba Sadri Imperial College, UK
Vı́tor Santos Costa Universidade do Porto, Portugal
Tran Cao Son New Mexico State University, USA
Paolo Torroni Università di Bologna, Italy
Frank D. Valencia École Polytechnique de Paris, France
Mark Wallace Monash University, Australia

Referees

José Alferes
Edward M. Alférez

Salinas
Maŕıa Alpuente
Jesús Aranda
Francisco Azevedo
Matteo Baldoni
Marcello Balduccini
Mutsunori Banbara
Ajay Bansal
Federico Bergenti
Piero Bonatti
Lucas Bordeaux
Luca Bortolussi
Martin Brain
Bernd Brassel
Annamaria Bria
Krysia Broda
William E. Byrd
Pedro Cabalar
Rui Camacho
Amadeo Casas
Martine Ceberio
Federico Chesani
Pablo Chico de Guzmán
Sandeep Chintabathina
Henning Christiansen
Raffaele Cipriano
Marco Comini

Marco Correia
Stefania Costantini
Jim Cunningham
Olivier Danvy
Fabien De Marchi
Danny De Schreye
Marc Denecker
Enrico Denti
Nachum Dershowitz
Luca Di Gaspero
Alessandra Di Pierro
Daniel Diaz
Carmel Domshlak
Gregory J. Duck
Inês Dutra
Thomas Eiter
Michael Elhadad
Islam Elkabani
Esra Erdem
Wolfgang Faber
Claudia Faggian
Moreno Falaschi
Claudio Fernandes
Maribel Fernandez
Paolo Ferraris
Michel Ferreira
Fabio Fioravanti
Sebastian Fischer
Nuno Fonseca

Andrea Formisano
Lars-Ake Fredlund
Hans Fugal
Emilio J. Gallego-Arias
Alejandro Javier Garcia
Marco Gavanelli
Martin Gebser
Samir Genaim
Laura Giordano
Matthew Giuca
Hai-Feng Guo
Vineet Gupta
Michael Hanus
James Harland
Olivier Hermant
Ángel Herranz
Christopher Hogger
Jacob Howe
Giovambattista Ianni
Dragan Ivanovic
Matt Jadud
Tomi Janhunen
Gerda Janssens
Jesús Almendros
Srividya Kona
George Katsirelos
Vladik Kreinovich
Herbert Kuchen
Michael Leuschel

Organization IX

Vladimir Lifschitz
James Lipton
Francesca

Alessandra Lisi
Chongbing Liu
Francisco López-Fraguas
Lunjin Lu
Gergerly Lukacsy
Toni Mancini
Maarten Mariën
Julio Mariño
Guillem Marpons
Viviana Mascardi
Peter McBrien
Paola Mello
Yunsong Meng
Fred Mesnard
Laurent Michel
Richard Min
Angelo Montanari
Ricardo Morales
José Morales
Jorge Navas
Pascal Nicolas
Vitor Nogueira
Peter Novak
Carlos Olarte
Eugenio Omodeo
David Pearce
Vasco Pedro
Olivier Perriquet
Jean-Marc Petit
Tu Phan

Giulio Piancastelli
Carla Piazza
Inna Pivkina
Axel Polleres
António Porto
Maurizio Proietti
Gabriele Puppis
Iván Pérez
Frank Raiser
C.R. Ramakrishnan
Francesco Ricca
Fabrizio Riguzzi
Nikos Rizopoulos
Ricardo Rocha
Riccardo Rosati
Salvatore Ruggieri
Emad Saad
Kostis Sagonas
Diptikalyan Saha
Chiaki Sakama
Pedro Salgueiro
Vı́tor Santos Costa
Andrew Santosa
Francesco Scarcello
Peter Schachte
Torsten Schaub
Peter Schneider-Kamp
Tom Schrijvers
Hirohisa Seki
Valerio Senni
Christian Servin
Fernando Silva
Axel Simon

Jon Sneyers
Sebastian Spiegler
Fausto Spoto
Peter J. Stuckey
Martin Sulzmann
Terrance Swift
Péter Szeredi
Paul Tarau
Arianna Tocchio
Yana Todorova
Hans Tompits
Irena Trajkovska
Miros�law Truszczyński
Hudson Turner
Christian Urban
Peter Van Weert
Vasco T. Vasconcelos
Joost Vennekens
Andrew Verden
Dirk Vermeir
Toby Walsh
Kewen Wang
David S. Warren
Richard Watson
Gregory Wheeler
Jan Wielemaker
Herbert Wiklicky
Sebastian Will
Stefan Woltran
Yan Zhang
Yuanlin Zhang
Neng-Fa Zhou
Zsolt Zombori

Table of Contents

Invited Talk

The Life of a Logic Programming System . 1
Vı́tor Santos Costa

Special Session

Uniting the Prolog Community . 7
Tom Schrijvers and Bart Demoen

Invited Tutorials

Constraint Handling Rules: A Tutorial for (Prolog) Programmers 9
Tom Schrijvers

Back to Interval Temporal Logics (Extended Abstract) 11
Angelo Montanari

Systems Biology: Models and Logics . 14
Carla Piazza and Alberto Policriti

Separation Logic Tutorial . 15
Peter O’Hearn

20 Years of Stable Models Semantics Celebration

Invited Presentations

Authorization and Obligation Policies in Dynamic Systems 22
Michael Gelfond and Jorge Lobo

Twelve Definitions of a Stable Model . 37
Vladimir Lifschitz

Sixty Years of Stable Models . 52
David Pearce

The DLV Project: A Tour from Theory and Research to Applications
and Market . 53

Nicola Leone and Wolfgang Faber

XII Table of Contents

Invited Position Presentations

Using Answer Set Programming for Knowledge Representation and
Reasoning: Future Directions . 69

Chitta Baral

Building a Knowledge Base System for an Integration of Logic
Programming and Classical Logic . 71

Marc Denecker and Joost Vennekens

SMS and ASP: Hype or TST? . 77
Thomas Eiter

Quo Vadis Answer Set Programming? Past, Present, and Future 83
V.W. Marek

Answer Set Programming without Unstratified Negation 88
Ilkka Niemelä

Here’s the Beef: Answer Set Programming ! . 93
Torsten Schaub

Best Paper Awardees

Equivalences in Answer-Set Programming by Countermodels in the
Logic of Here-and-There . 99

Michael Fink

Dynamic Programming Algorithms as Products of Weighted Logic
Programs . 114

Shay B. Cohen, Robert J. Simmons, and Noah A. Smith

Regular Papers

Applications I

Detecting Inconsistencies in Large Biological Networks with Answer
Set Programming . 130

Martin Gebser, Torsten Schaub, Sven Thiele, Björn Usadel, and
Philippe Veber

A Logic Programming Approach to Home Monitoring for Risk
Prevention in Assisted Living . 145

Alessandra Mileo, Davide Merico, and Roberto Bisiani

Automatic Composition of Melodic and Harmonic Music by Answer
Set Programming . 160

Georg Boenn, Martin Brain, Marina De Vos, and John ffitch

Table of Contents XIII

Algorithms, Systems, and Implementations I

On the Efficient Execution of ProbLog Programs . 175
Angelika Kimmig, Vı́tor Santos Costa, Ricardo Rocha,
Bart Demoen, and Luc De Raedt

Engineering an Incremental ASP Solver . 190
Martin Gebser, Roland Kaminski, Benjamin Kaufmann,
Max Ostrowski, Torsten Schaub and Sven Thiele

Concurrent and Local Evaluation of Normal Programs 206
Rui Marques and Terrance Swift

Semantics and Foundations I
On the Continuity of Gelfond-Lifschitz Operator and Other
Applications of Proof-Theory in ASP . 223

V.W. Marek and J.B. Remmel

αleanTAP : A Declarative Theorem Prover for First-Order Classical
Logic . 238

Joseph P. Near, William E. Byrd, and Daniel P. Friedman

Towards Ludics Programming: Interactive Proof Search 253
Alexis Saurin

Declarative Semantics for Active Integrity Constraints 269
Luciano Caroprese and Miros�law Truszczyński

Analysis and Transformations
A Folding Algorithm for Eliminating Existential Variables from
Constraint Logic Programs . 284

Valerio Senni, Alberto Pettorossi, and Maurizio Proietti

Negative Ternary Set-Sharing . 301
Eric Trias, Jorge Navas, Elena S. Ackley, Stephanie Forrest, and
M. Hermenegildo

Termination of Narrowing Using Dependency Pairs 317
Maŕıa Alpuente, Santiago Escobar, and José Iborra

Dynamic Analysis of Bounds Versus Domain Propagation 332
Christian Schulte and Peter J. Stuckey

Semantics and Foundations II

Lparse Programs Revisited: Semantics and Representation of
Aggregates . 347

Guohua Liu and Jia-Huai You

XIV Table of Contents

Compiling Fuzzy Answer Set Programs to Fuzzy Propositional
Theories . 362

Jeroen Janssen, Stijn Heymans, Dirk Vermeir, and Martine De Cock

Abstract Answer Set Solvers . 377
Yuliya Lierler

Semantics and Foundations III

Partial Functions and Equality in Answer Set Programming 392
Pedro Cabalar

Computable Functions in ASP: Theory and Implementation 407
Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and
Nicola Leone

Composing Normal Programs with Function Symbols 425
Sabrina Baselice and Piero A. Bonatti

Applications II

Verification from Declarative Specifications Using Logic
Programming . 440

Marco Montali, Paolo Torroni, Marco Alberti, Federico Chesani,
Marco Gavanelli, Evelina Lamma, and Paola Mello

Prolog Based Description Logic Reasoning . 455
Gergely Lukácsy, Péter Szeredi, and Balázs Kádár

Resource Management Policy Handling Multiple Use-Cases in MPSoC
Platforms Using Constraint Programming . 470

Luca Benini, Davide Bertozzi, and Michela Milano

CHRs and Extensions

Optimization of CHR Propagation Rules . 485
Peter Van Weert

Termination Analysis of CHR Revisited . 501
Paolo Pilozzi and Danny De Schreye

Transactions in Constraint Handling Rules . 516
Tom Schrijvers and Martin Sulzmann

Cadmium: An Implementation of ACD Term Rewriting 531
Gregory J. Duck, Leslie De Koninck, and Peter J. Stuckey

Table of Contents XV

Semantics and Foundations IV

Quantified Equilibrium Logic and Foundations for Answer Set
Programs . 546

David Pearce and Agust́ın Valverde

Elimination of Disjunction and Negation in Answer-Set Programs
under Hyperequivalence . 561

Jörg Pührer, Hans Tompits, and Stefan Woltran

Relativized Hyperequivalence of Logic Programs for Modular
Programming . 576

Miros�law Truszczyński and Stefan Woltran

Program Correspondence under the Answer-Set Semantics: The
Non-ground Case . 591

Johannes Oetsch and Hans Tompits

Algorithms, Systems, and Implementations II

Efficient Algorithms for Functional Constraints . 606
Yuanlin Zhang, Roland H.C. Yap, Chendong Li, and
Satyanarayana Marisetti

Two WAM Implementations of Action Rules . 621
Bart Demoen and Phuong-Lan Nguyen

Constraint-Level Advice for Shaving . 636
Radoslaw Szymanek and Christophe Lecoutre

A High-Level Implementation of Non-deterministic, Unrestricted,
Independent And-Parallelism . 651

Amadeo Casas, Manuel Carro, and Manuel V. Hermenegildo

Short Papers

Semantics and Foundations

Inference with Logic Programs with Annotated Disjunctions under the
Well Founded Semantics . 667

Fabrizio Riguzzi

Safe Formulas in the General Theory of Stable Models (Preliminary
Report) . 672

Joohyung Lee, Vladimir Lifschitz, and Ravi Palla

Non-determinism and Probabilities in Timed Concurrent Constraint
Programming . 677

Jorge A. Pérez and Camilo Rueda

XVI Table of Contents

Stochastic Behavior and Explicit Discrete Time in Concurrent
Constraint Programming . 682

Jesús Aranda, Jorge A. Pérez, Camilo Rueda, and Frank D. Valencia

TopLog: ILP Using a Logic Program Declarative Bias 687
Stephen H. Muggleton, José Carlos Almeida Santos, and
Alireza Tamaddoni-Nezhad

Implementations and Systems
Towards Typed Prolog . 693

Tom Schrijvers, Vı́tor Santos Costa, Jan Wielemaker, and
Bart Demoen

Environment Reuse in the WAM . 698
Bart Demoen and Phuong-Lan Nguyen

Logic Engines as Interactors . 703
Paul Tarau

Global Storing Mechanisms for Tabled Evaluation . 708
Jorge Costa and Ricardo Rocha

Thread-Based Competitive Or-Parallelism . 713
Paulo Moura, Ricardo Rocha, and Sara C. Madeira

Answer Set Programming and Extensions
A Logic Language with Stable Model Semantics for Social
Reasoning . 718

Francesco Buccafurri, Gianluca Caminiti, and Rosario Laurendi

ASPViz: Declarative Visualisation and Animation Using Answer Set
Programming . 724

Owen Cliffe, Marina De Vos, Martin Brain, and Julian Padget

Removing Redundancy from Answer Set Programs 729
Tomi Janhunen

ASPARTIX: Implementing Argumentation Frameworks Using
Answer-Set Programming . 734

Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran

An Implementation of Extended P-Log Using XASP 739
Han The Anh, Carroline D.P. Kencana Ramli, and
Carlos Viegas Damásio

Constraints, Optimizations, and Applications

Compiling and Executing Declarative Modeling Languages to Gecode . . . 744
Raffaele Cipriano, Agostino Dovier, and Jacopo Mauro

Table of Contents XVII

Telecommunications Feature Subscription as a Partial Order Constraint
Problem . 749

Michael Codish, Vitaly Lagoon, and Peter J. Stuckey

A Constraint Logic Programming Approach to Automated Testing 754
Hakim Belhaouari and Frédéric Peschanski

Turing-Complete Subclasses of CHR . 759
Jon Sneyers

A Soft Approach to Multi-objective Optimization . 764
Stefano Bistarelli, Fabio Gadducci, Javier Larrosa, and Emma Rollon

Applications

A Multi-theory Logic Language for the World Wide Web 769
Giulio Piancastelli and Andrea Omicini

A Case Study in Engineering SQL Constraint Database Systems
(Extended Abstract) . 774

Sebastien Siva, James J. Lu, and Hantao Zhang

Policy-Driven Negotiations and Explanations: Exploiting
Logic-Programming for Trust Management, Privacy & Security 779

Piero A. Bonatti, Juri L. De Coi, Daniel Olmedilla, and Luigi Sauro

Analysis, Transformations, and Implementations

An Algorithm for Sophisticated Code Matching in Logic Programs 785
Wim Vanhoof and François Degrave

Trace Analysis for Predicting the Effectiveness of Partial Evaluation 790
Germán Vidal

A Sketch of a Complete Scheme for Tabled Execution Based on
Program Transformation . 795

Pablo Chico de Guzmán, Manuel Carro, and
Manuel V. Hermenegildo

Doctoral Consortium Presentations

Probabilistic and Concurrent Models for Security . 801
Romain Beauxis

On the Hybridization of Constraint Programming and Local Search
Techniques: Models and Software Tools . 803

Raffaele Cipriano

XVIII Table of Contents

Development of an Automatic Testing Environment for Mercury 805
François Degrave

Resolving CSP with Naming Games . 807
Giorgio Gosti

Biosequence Analysis in PRISM . 809
Ole Torp Lassen

Bi-dimensional Domains for the Non-overlapping Rectangles
Constraint . 811

Fabio Parisini

Extracting and Reasoning about Web Data . 813
Giovanni Pirrotta

Managing Quality of Service with Soft Constraints 815
Francesco Santini

TopLog: ILP Using a Logic Program Declarative Bias 818
José Carlos Almeida Santos

Generalising Constraint Solving over Finite Domains 820
Markus Triska

Detection of Security Vulnerabilities Using Guided Model Checking 822
Aliaksei Tsitovich

Author Index . 825

The Life of a Logic Programming System

Vı́tor Santos Costa

DCC-FCUP & CRACS
University of Porto, Portugal

vsc@dcc.fc.up.pt

1 Introduction

Logic Programming and the Prolog language have a major role in Computing.
Prolog, and its derived languages, have been widely used in a impressive variety
of application domains. Thus, a bit of the history of Logic Programming reflects
in the history of systems such as Dec-10 Prolog [32], M-Prolog [15], C-Prolog [19],
Quintus Prolog [20], SICStus Prolog [6], BIM-Prolog [17], ECLiPSe [1], BinPro-
log [30], SWI-Prolog [34], CIAO [14], and B-Prolog [35], to mention but a few.
I briefly present the evolution of one such system, YAP, and present a personal
perspective on the challenges ahead for YAP (and for Logic Programming).

2 A Little Bit of History

The early eighties saw great advancements in Prolog and logic programming.
One of the most exciting developments was David H. D. Warren’s new abstract
interpreter (eventually called the Warren Abstract Machine or WAM [33]) which
become the foundation of Quintus Prolog [20]. Quintus motivated many Prolog
systems, including YAP which was started by Luis Damas and colleagues in 1984
at the University of Porto. At the time, Luis Damas had just returned from the
University of Edinburgh, where he had completed his PhD on type systems. He
was also interested in logic programming and, while at Edinburgh, had designed
one of the first Prolog interpreters, written in the IMP programming language
for the EMAS operating system (which would become the basis for the famous
C-Prolog interpreter [19]). Together with Miguel Filgueiras, who also had experi-
ence in Prolog implementation [12], he started work on a new Prolog interpreter
with special backtracking that was soon abandoned as it proved too inefficient.
Lus Damas then went on with the development of another one based on the
WAM. The goal was to design a compact, very fast system emulator, written in
assembly. To do so, Luis Damas wrote the a compiler in C and an emulator in
68000 assembly code. I joined this effort in 1985.

Arguably, one of the strengths of YAP derives from Luis Damas’ experience in
Edinburgh: the internal data-types were well defined from the start and always
facilitated development. YAP adopted many of the contributions originally pro-
posed for the WAM: it used a depth-first design to visit terms, and it was one
the first Prologs to do indexing on sub-terms [24]. YAP also provided a very fast

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 1–6, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 V. Santos Costa

development environment, due to its fast compiler. The combination of compila-
tion and execution speed attracted a strong user community, mainly in Artificial
Intelligence (Moniz Pereira’s group supported the first YAP port, to the VAX
architecture). A major user was the European Union Eurotra project [2] for
which YAP developed sparse functors : one of the first attempts at using named
fields of structures in Prolog. A version of YAP that supports sparse functors
was still in use in Denmark just a few years ago.

The second chapter in YAP’s history started on the mid nineties. Activity in
YAP had slowed down. One problem was that the system had become very com-
plex, mainly due to the need to support several different computer architectures
in assembly (at the time: 68k, VAX, MIPS, SPARC, HP-RISC, Intel). Unfortu-
nately, a first attempt at using a C interpreter resulted in a much slower system
than with the assembly emulator. On the other hand, the user community was
not only alive but growing, as Rui Camacho had taken YAP to the Turing In-
stitute Machine Learning (ILP) Group, where it was eventually adopted by ILP
systems such as P-Progol, later Aleph [29], and IndLog [5]. Second, researchers
such as me and Fernando Silva, had returned to Porto and were interested in
Parallel Logic Programming. While SICStus Prolog would have been an ideal
platform, it was a closed source system (later, an early version of SICStus Pro-
log was used for Ciao Prolog [14]). YAP therefore became a vehicle of research
first in parallelism [13] and later in tabling [22]. A new, fast C-based emulator
was written toward this purpose [25] and brought YAP back to the rank of the
fastest Prolog systems [11].

Interest in YAP grew during the late nineties, leading to the third chapter in
YAP’s story. Feedback from the user community had shown that fundamental
issues with YAP’s usability were not being properly addressed. As hardware
scaled up and users had more data to process, it became clear that there was
a scalability problem: Prolog programs perform well for small applications, but
often just die or perform unbearably slowly as application size grows. Effort
has therefore been done to rethink the basics, step by step. The first step was
rewriting the garbage collection [7]. But the main developments so far have been
in indexing: it had become clear to the author that the WAM’s approach to
indexing simply does not work for the kind of data one is expected to process
today. Just-In-Time indexing [26] tries to address the problem with the least
effort possible, the Prolog way!

3 Challenges

Prolog is a well-known language. It is widely used, and it is a remarkably powerful
tool. The core of Prolog has been very stable throughout the years, both in terms
of language design and in terms of implementation. Yet, there have been several
developments, many within the Logic Programming community, and many more
outside. Addressing these developments and the needs of a world very different
from when Prolog was created, presents both difficulties and opportunities. Some
(though not all) questions from a personal perspective are as follows:

The Life of a Logic Programming System 3

1. Hardware evolved from a VAX 11/750 or an Apple-II with a 6502 at 1MHz
with 48KB of memory to a 2-core CPU running at 2.5GHz with 4GB of
memory. Thus, we can now fit in main memory databases that are 5 of 6
orders of magnitude larger than when Prolog was invented, and run them
in our 4 orders of magnitude faster CPU. Can we afford to rely on the old
WAM design even today?

2. Programming Languages have changed: we now have object-oriented lan-
guages, functional languages, scripting languages, domain-specific languages.
What can Prolog learn from these languages?

3. Logic Programming has changed: there has been tremendous progress (per-
sonal favorites are the work on tabling and the impressive progress in nega-
tion). How best to feed that progress back to a system such as YAP?

4. The WWW: Prolog and logic programming have not been able to take a
place in the foundations of the Web. Should they?

5. Knowledge Representation: Prolog inherits from First Order Logic. The last
few years have made it clear that quite often one wants to integrate a logic
representation with uncertain data. Is it doable? How best to do so?

Compiler Implementation Technology. Implementation Technology in Prolog
needs to be rethought. On the low level, Just-In-Time technology is a natural
match to Prolog and it has shown to work well, but we have just scratched the
surface [28]. Progress in compilers, such as GCC, may make compilation affordable
again. At a higher level, more program rewriting at compilation-time should be
done. Determinacy detection is well known [9] and should be available. Simple
techniques, such as query reordering, can change program performance hugely
for database queries. They should be easily available.

A step further: code expansion for recursive procedures is less of a problem,
so why not rethink old ideas such as Krall’s VAM [16], and Beer’s uninitialised
variables [3,31]? Moreover, years of experience with CIAO should provide a good
basis for rethinking global analysis [4].

Last, but not least, Prolog implementation is not just about pure Horn clauses.
We need to rethink global structures and side-effects. In the author’s opinion,
this will be critical for the success of parallel Prolog. We also need to provide
better tools to help users improving performance.

Language Technology. At this point in time, there is no dominant language nor
framework. But, arguably, some lessons can be taken:

– Libraries and Data-Structures : languages need to provide useful, reusable
code;

– Interfacing: it should be easy to communicate with other languages, and
especially with domain languages, such as SQL for databases, and R for
statistics.

– Typing: it is not clear whether static typing is needed, but it is clear that it
is useful, and that it is popular in the research community.

4 V. Santos Costa

A personal belief is that progress in this area requires collaboration between
different Prolog systems, namely so that it will be easy to reuse libraries and
code. YAP and SWI-Prolog are working together in this direction.

Logic Programming Technology. Experience has shown that it is hard to move
results from Logic Programming research to Prolog systems. One illustrative
example is XSB Prolog [23]: on the one hand, the XSB system has been a vehicle
for progress in logic programming, supporting the tabling of definite and normal
programs. On the other hand, progress in XSB has not been widely adopted.
After more 10 years, even tabling of definite programs is not widely available in
other Prolog systems.

The main reason for that is complexity: it is just very hard to implement some
of the novel ideas proposed in logic programming. Old work suggests that logic
programming itself may help in this direction [8]. Making it easy to change and
control Prolog execution in a flexible way is a fundamental challenge for Prolog.

The WWW. It has become very important to be able to reason and manipulate
data in the web. Surprisingly, one can see relatively little contribution from the
Logic Programming Community. It is unclear why this is so, as Prolog should
have a major role to play, at least in the semantic web. Query answering of
decidable description logics such as subsets of OWL can be performed with
tabled logic programs [18]. Initial results offer hope that YapTab is competitive
with specialised systems.

Uncertainty. The last few years have seen much interest in what is often called
Statistical Relational Learning (SRL). Several languages designed for this pur-
pose build directly upon Prolog. PRISM [27] is one of the most popular examples:
progress in PRISM has stimulated progress in the underlying Prolog system, B-
Prolog. Problog [10] is an exciting recent development, and supporting Problog
has already lead to progress in YAP.

If SRL languages that rely on Prolog are a challenge to Prolog, SRL languages
that do not rely on Prolog are also a very interesting, if different, challenge.
Markov Logic Networks (MLNs) [21] are a good example: they use bottom-
inference and incremental query evaluation. The future will tell how much Prolog
and Logic Programming can contribute to and benefit from from these systems.

4 Conclusions

I presented a personal perspective on the history, and challenges of Logic Pro-
gramming, based on personal experience both as an implementor, and as an
user. There are a number of challenges to Prolog. In fact, one would like to make
“Prolog” faster, more attractive to the CS Community and, above all, more use-
ful. To do so, much work has to be done, and change has to occur. I believe this
is clearly seen by the community.

I would like to thank all the YAP collaborators and users that make this
project possible and worthwhile. They are to many to mention here, but I would

The Life of a Logic Programming System 5

like to remember in this talk Ricardo Lopes, whose contribution was so unfor-
tunately cut short. We will always remember you!

References

1. Aggoun, A., Chan, D., Dufresne, P., Falvey, E., Grant, H., Herold, A., Macartney,
G., Meier, M., Miller, D., Mudambi, S., Perez, B., van Rossum, E., Schimpf, J.,
Tsahageas, P.A., de Villeneuve, D.H.: ECLiPSe 3.5 User Manual. ECRC (December
1995)

2. Arnold, D.J., Krauwer, S., Rosner, M., des Tombe, L., Varile, G.B.: The < c, a >, t
framework in eurotra: a theoretically committed notation for mt. In: Proceedings
of the 11th conference on Computational linguistics, Morristown, NJ, USA, pp.
297–303. Association for Computational Linguistics (1986)

3. Beer, J.: Concepts, Design, and Performance Analysis of a Parallel Prolog Machine.
LNCS, vol. 404. Springer, Heidelberg (1989)

4. Bueno, F., Banda, M.G.d.l., Hermenegildo, M.V.: Effectiveness of Abstract Inter-
pretation in Automatic Parallelization: A Case Study in Logic Programming. In:
ACM TOPLAS (1998)

5. Camacho, R.: Learning stage transition rules with Indlog. In: Proceedings of
the 4th International Workshop on Inductive Logic Programming GMD-Studien,
Gesellschaft für Mathematik und Datenverarbeitung MBH, vol. 237, pp. 273–290
(1994)

6. Carlsson, M., Widen, J.: SICStus Prolog User’s Manual. Technical report, Swedish
Institute of Computer Science, SICS Research Report R88007B (1988)

7. Castro, L.F., Santos Costa, V.: Understanding Memory Management in Prolog
Systems. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 11–26. Springer,
Heidelberg (2001)

8. Chen, W., Warren, D.S.: Query evaluation under the well-founded semantics. In:
Proc. of 12th PODS, pp. 168–179 (1993)

9. Dawson, S., Ramakrishnan, C.R., Ramakrishnan, I.V., Sagonas, K.F., Skiena, S.,
Swift, T., Warren, D.S.: Unification factoring for efficient execution of logic pro-
grams. In: POPL 1995, pp. 247–258. ACM Press, New York (1995)

10. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discovery. In: Veloso, M. (ed.) IJCAI, pp. 2462–2467 (2007)

11. Demoen, B., Nguyen, P.-L.: So Many WAM Variations, So Little Time. In:
Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber,
M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS, vol. 1861, pp.
1240–1254. Springer, Heidelberg (2000)

12. Filgueiras, M.: A prolog interpreter working with infinite terms. In: Implementa-
tions of Prolog, Campbell, pp. 250–258 (1984)

13. Gupta, G., Pontelli, E., Ali, K., Carlsson, M., Hermenegildo, M.: Parallel Execution
of Prolog Programs: A Survey. ACM Transactions on Programming Languages and
Systems 23(4), 1–131 (2001)

14. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Morales, J.F., Puebla, G.:
An overview of the ciao multiparadigm language and program development envi-
ronment and its design philosophy. In: Degano, P., De Nicola, R., Meseguer, J.
(eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 209–237. Springer,
Heidelberg (2008)

6 V. Santos Costa

15. Koves, P., Szeredi, P.: Getting the Most Out of Structure-Sharing. SZKI. In: Col-
lection of Papers on Logic Programming (November 1993)

16. Krall, A.: The vienna abstract machine. The Journal of Logic Programming 1-3
(October 1996)

17. Mariën, A.: Improving the Compilation of Prolog in the Framework of the Warren
Abstract Machine. PhD thesis, Katholiek Universiteit Leuven (September 1993)

18. Motik, B., Sattler, U., Studer, R.: Query answering for owl-dl with rules. In: McIl-
raith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298,
pp. 549–563. Springer, Heidelberg (2004)

19. Pereira, F.: C-Prolog 1.5 User Manual. SRI International, Menlo Park (1987)
20. Quintus Prolog User’s Guide and Reference Manual—Version 6 (April 1986)
21. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–

136 (2006)
22. Rocha, R., Silva, F., Costa, V.S.: On Applying Or-Parallelism and Tabling to Logic

Programs. Theory and Practice of Logic Programming Systems 5(1-2), 161–205
(2005)

23. Sagonas, K.F., Swift, T., Warren, D.S., Freire, J., Rao, P.: The XSB programmer’s
manual. Technical report, State University of New York at Stony Brook (1997),
http://xsb.sourceforge.net/

24. Santos Costa, V.: Implementação de Prolog. Provas de aptidão pedagógica e ca-
pacidade cient́ıfica, Universidade do Porto (December 1988)

25. Santos Costa, V.: Optimising bytecode emulation for prolog. In: Nadathur, G. (ed.)
PPDP 1999. LNCS, vol. 1702, pp. 261–267. Springer, Heidelberg (1999)

26. Santos Costa, V., Sagonas, K., Lopes, R.: Demand-driven indexing of prolog
clauses. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 305–
409. Springer, Heidelberg (2007)

27. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15, 391–454 (2001)

28. Silva, A.F.d., Santos Costa, V.: Design, implementation, and evaluation of an dy-
namic compilation framework for the yap system. In: Dahl, V., Niemelä, I. (eds.)
ICLP 2007. LNCS, vol. 4670, Springer, Heidelberg (2007)

29. Srinivasan, A.: The Aleph Manual (2001)
30. Tarau, P.: BinProlog 4.00 User Guide. Technical Report 95-1, Département

d’Informatique, Université de Moncton (February 1995),
http://clement.info.umoncton.ca

31. van Roy, P.: Aquarius Prolog. IEEE Computer (1992)
32. Warren, D.H.D.: Applied Logic—Its Use and Implementation as a Programming

Tool. PhD thesis, Edinburgh University, Available as Technical Note 290, SRI
International (1977)

33. Warren, D.H.D.: An Abstract Prolog Instruction Set. Technical Note 309, SRI
International (1983)

34. Wielemaker, J.: SWI-Prolog 5.1: Reference Manual. SWI, University of Amster-
dam, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands (1997-2003)

35. Zhou, N.-F., Takagi, T., Kazuo, U.: A Matching Tree Oriented Abstract Machine
for Prolog. In: Warren, D.H.D., Szeredi, P. (eds.) Proceedings of the Seventh Inter-
national Conference on Logic Programming, pp. 158–173. MIT Press, Cambridge
(1990)

http://xsb.sourceforge.net/
http://clement.info.umoncton.ca

Uniting the Prolog Community

Tom Schrijvers� and Bart Demoen

Department of Computer Science, K.U.Leuven, Belgium

In his article A Wake-Up Call for the Logic Programming Community, published
in the December 2007 issue of the ALP Newsletter, the first author raised con-
cerns about the viability of the Prolog programming language in the near future.
The article had a pessimistic undertone, but expressed the hope that the cur-
rent evolution can be reversed by uniting the Prolog community. Now, almost a
year later, it is time for more optimistic news and we are happy that the ALP
—through the ICLP 2008 program chairs—has given us the opportunity to re-
iterate the arguments, present the recent positive developments and involve the
whole community.

The concerns raised in the ALP Newsletter have been known for years, but it
takes repeated raising of voices to make the community more aware of the issues:
one big problem is that the Prolog community has been too fragmented. This is
true at several levels: at the system side one notes that there are too many incom-
patible Prolog systems around, their structure and libraries are different, their
implementation technology is very diverse, and their aims are difficult to recon-
cile (research or industrial deployment). In short: unity lacks, there is too little
community feeling. Instead, competition rules, and it is no healthy competition.

At the user base we see a wide range, from enthusiastic beginning Prolog
programmers who need basic books and tutorials, students who are forced to
learn Prolog for their courses, and professionals making money because they
master the most intricate aspects of Prolog programming. Despite some thriving
system specific user mailing lists, there is a lack of community feeling. The silence
on comp.lang.prolog is a witness for that.

And there is the ISO problem: while the expectations were high that a stan-
dard would increase the acceptance of Prolog in wider circles, and that it would
become effectively more easy to run the same Prolog program under several
engines, the reality is different. Despite many (also recent) efforts, the ISO com-
mittee seems unable to make substantial progress on the core standard, let alone
to impose the modules standard.

As for applications . . . each system’s maintainer has a few private success
stories, but who remembers The Prolog 1000 Database? Don’t we want it back?

Some of these issues can be solved only by (re-)uniting the community at all
levels, for others more drastic actions are needed. But let us describe what has
happened already, and why this rekindles our faith in a prosperous future for
Prolog.

� Tom Schrijvers is a post-doctoral researcher of the Fund for Scientific Research -
Flanders.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 7–8, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

8 T. Schrijvers and B. Demoen

About a year ago, Jan Wielemaker and Vitor Santos Costa - the main drives
behind SWI-Prolog and Yap - started talking concretely about letting their sys-
tems evolve towards each other. One important issue was the library structure
and its contents. Jan and Vitor had been stealing each other’s code already, but
more was needed. Since then, real progress on the libraries has been made, and
how this was achieved gradually is reported on in the event at ICLP 2008. Quite
importantly is here also that the operator import/(re-)export facilities were syn-
chronized. Other issues are being talked about and will be resolved, sometimes
on a per-need basis: both systems support threads and it would be nice if they
adhered to a common standard. Maybe ISO could play a role here, but it should
be quick! Both systems have a different C-interface: Yap already can emulate
the SWI-Prolog C-interface, but more commonality is the plan. The module
system is another hot potato: neither of the systems is inclined to implement
ISO part II on Modules, but the current differences between them hinder other
common functionality related to libraries and term expansion. SWI-Prolog has
(once more) plans to incorporate tabling. And very recently, the first (big) steps
were set towards a common (optional) type system (see somewhere else in these
proceedings).

The importance of this collaboration is less in what has been achieved until
now, than in the fact that it shows the will and commitment to defragment the
Prolog systems landscape, and to unite two popular systems. Such collaboration
enhances the enthusiasm of implementors, contributors and users alike. From
now on, a library contributed to Yap, is useful to the user community of two
Prolog systems, not one. From now on, the application written for SWI-Prolog
will run on Yap, and while developing it might have been easier in the former,
running it might be faster in the latter: the application writer really benefits
from the larger compatibility.

Sure, we are being carried away a bit here, but that is the result of being
involved in joining forces: optimism!

The ALP Newsletter article mentioned earlier set a challenge to the Prolog
systems. The challenge was for two Prolog systems to team up and start collab-
orating on mutual compatibility and shared libraries. That challenge has been
met: the two cooperating systems present themselves at ICLP 2008.

The other challenge is to the Prolog community as a whole: let’s work together
on a more collaborative Prolog programming environment and actively support
the effort. There are many ways to do so: by conducting research on these systems
and citing them, by contributing library code and improving documentation, by
teaching our students to use these systems and giving them assignments for
writing libraries and tools. And very importantly, more Prolog systems must
enter the collaboration: they are very welcome! That is the way to make our
community grow, to attract new people and raise business interest.

Acknowledgements. The first author is grateful for all the positive feedback from
the community on his ALP Newsletter article.

Constraint Handling Rules
A Tutorial for (Prolog) Programmers

Tom Schrijvers�

Department of Computer Science, K.U.Leuven, Belgium

Abstract. Constraint Handling Rules (CHR) [2,5] is a high-level pro-
gramming language based on multi-headed, committed-choice, guarded
multiset rewrite rules. Originally designed in 1991 by Frühwirth for the
particular purpose of adding user-defined constraint solvers to a host-
language, CHR has matured over the last decade to a powerful and
elegant general-purpose language with a wide spectrum of application
domains.

Different semantics have been proposed for the language, based on
various logics (first-order logic, linear logic, . . .). These logics, in com-
bination with rewriting techniques, have been used to study program
properties such as soundness and completeness, confluence, termination,
. . .While that line of work treats CHR as a calculus, this tutorial teaches
CHR as a proper programming language.

As a programming language, CHR seems simple enough: The pro-
grammer specifies a number of rewrite rules, and the CHR engine ap-
plies these rules exhaustively to an initial (multi-)set of constraints. Yet,
this simplicity hides great power: e.g., the power to quickly prototype
new constraint solvers, the power to implement Prolog’s co-routining
predicates freeze/2 and when/2 in a single CHR rule each, and the
power to subsume Guarded Horn Clauses while still not exploiting CHR’s
full potential. Moreover, CHR is the only declarative language known in
which every algorithm can be implemented with optimal space and time
complexity [4].

Unfortunately, few Prolog programmers are aware of the CHR lan-
guage or that it is available in their Prolog system. These programmers
are unable to tap into CHR’s power, so they have to go to great length
to accomplish even simple tasks. Or they simply give up. This tutorial
shows how to use CHR for solving their problems quickly and elegantly.
Simple examples teach interactively how to write and reason about CHR
programs, and what problems one can solve effectively with CHR.

This tutorial starts with ground CHR, the three types of rules, and the
refined semantics [1] which is based on the notion of the active constraint
and its occurrences. Other topics covered are triggering of rules, the
propagation history, the use of data structures and the host language,
declarations and impure features, and the common pitfalls of CHR.

This tutorial intends to make the attendants aware of CHR’s strengths
as a programming language, and teaches them when and how to apply

� Tom Schrijvers is a post-doctoral researcher of the Fund for Scientific Research -
Flanders.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 9–10, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

10 T. Schrijvers

CHR for small to medium sized problems. The full set of tutorial slides
is available at http://www.cs.kuleuven.be/∼dtai/projects/CHR/.

About the Speaker. Tom Schrijvers is a post-doctoral researcher at the
K.U.Leuven in Belgium, who has defended his Ph.D. thesis on Analyses,
Optimizations and Extensions of Constraint Handling Rules in 2005 [3].
His CHR implementation, the K.U.Leuven CHR system, is the most ad-
vanced in its kind and is in wide-spread use in many Prolog systems. Tom
uses CHR on a daily basis, for implementing his compiler, for supporting
his type checking and test generation research, or simply for gaining an
edge in the Prolog Programming Contest.

References

1. Duck, G.J., Stuckey, P.J., Garćıa de la Banda, M., Holzbaur, C.: The refined opera-
tional semantics of Constraint Handling Rules. In: Demoen, B., Lifschitz, V. (eds.)
ICLP 2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)

2. Frühwirth, T.: Theory and practice of Constraint Handling Rules. J. Logic Pro-
gramming, Special Issue on Constraint Logic Programming 37(1-3), 95–138 (1998)

3. Schrijvers, T.: Analyses, optimizations and extensions of Constraint Handling Rules.
PhD thesis, K.U. Leuven, Belgium (June 2005)

4. Sneyers, J., Schrijvers, T., Demoen, B.: The computational power and complexity
of Constraint Handling Rules. In: ACM TOPLAS (accepted, 2008)

5. Sneyers, J., Van Weert, P., Schrijvers, T., De Koninck, L.: As time goes by: Con-
straint Handling Rules – A survey of CHR research between 1998 and 2007. Journal
of Theory and Practice of Logic Programming (submitted, 2008)

http://www.cs.kuleuven.be/~dtai/projects/CHR/

Back to Interval Temporal Logics
(Extended Abstract)

Angelo Montanari

Department of Mathematics and Computer Science,
University of Udine, Udine, Italy
angelo.montanari@dimi.uniud.it

Interval-based temporal reasoning naturally arises in a variety of fields, including
artificial intelligence (temporal knowledge representation, systems for temporal
planning and maintenance, qualitative reasoning, theories of events), theoretical
computer science (specification and design of hardware components, concurrent
real-time processes), temporal databases (event modeling, temporal aggrega-
tion), and computational linguistics (analysis of progressive tenses, semantics
and processing of natural languages) [10].

Despite the relevance of interval-based temporal reasoning, however, interval
temporal logics are far less studied and popular than point-based ones for their
higher conceptual and computational complexity. The main reason is probably
that undecidability is a common feature of most systems of propositional interval
logics, including Halpern and Shoham’s Modal Logic of Time Intervals HS [11],
Venema’s CDT logic [15], Moszkowski’s Propositional Interval Temporal Logic
PITL [13], and this does not come as a surprise, since formulas of these logics
translate to binary relations over the underlying ordering and the validity and
satisfiability problems translate into dyadic second-order logic.

The case of HS is paradigmatic. Such a twenty years old logic can be viewed
as the logic Allen’s relations [1] since its operators allow one to express each
one of the thirteen basic temporal relations that may hold between any pair
of intervals (on a linear ordering). In [11], Halpern and Shoham show that HS
is undecidable under very weak assumptions on the class of interval structures
over which it is interpreted. They prove that validity in HS over the classes
of all linear models, all discrete linear models, and all dense linear models is
undecidable. They also prove that validity in HS over any of the orderings of the
natural numbers, integers, or reals is even not recursively axiomatizable.

For a long time, results of this nature have discouraged attempts for practical
applications and further research on interval temporal logics. The search for a
way out was basically confined to the identification of severe syntactic and/or
semantic restrictions to impose to the logic to obtain decidable fragments. As
an example, in [13] Moszkowski shows that PITL decidability can be recovered
by constraining atomic propositions to be point-wise and defining truth at an
interval as truth at its initial point (locality) . However, in all these cases interval
temporal logics are actually reducible to point-based ones, thus loosing their
peculiarities.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 11–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

12 A. Montanari

A renewed interest for interval temporal logics has been recently stimulated
by the discovery of expressive decidable fragments of HS. Propositional interval
logics of temporal neighborhood as well as propositional interval logics of the
subinterval relation are meaningful fragments of HS, that allow one to express
fairly natural relations between intervals, which turn out to be decidable when
interpreted over various classes of interval temporal structures.

The aim of this tutorial is to provide an overview of problems, techniques,
and results in the area of interval temporal logics, with a special emphasis on
(un)decidability results and tableau-based decision procedures.

We shall start with a short introduction to the variety of interval logics that
can be obtained by making different choices for the set of modal operators,
and the interval relations associated with them, and the class of ordered struc-
tures in which they are interpreted [10]. Then, we shall focus our attention
on expressiveness issues [5,14]. First, we shall briefly discuss the relationships
between interval-based and point-based temporal logics. Then, we shall recall
some basic expressive completeness results for interval temporal logics. Finally,
we shall summarize what is known about the classification of the fragments of
HS with respect to their expressiveness (bisimulation games between interval
structures come into play here), which is far from being complete. Next, we
shall survey known positive and negative results about decidability of interval
temporal logics, briefly presenting the main techniques so far exploited in both
directions (reductions from tiling problems are extensively used in the undecid-
ability proofs) [11,12,13,15]. In particular, we shall describe the work that has
been done to identify the boundaries between decidability and undecidability
of HS fragments [6,7]. The last (and most detailed) part of the tutorial will
be devoted to the presentation of tableau-based decision procedures for neigh-
borhood logics and logics of the subinterval relation [2,3,4,8,9]. We shall start
with an intuitive account of the reasons why operators of interval temporal
logics are in many respects more difficult to deal with than those of point-
based ones. Then, we shall describe the distinctive features of various tableau
systems for such logics and we shall describe their behavior on some simple
examples.

We shall conclude the tutorial by outlining some open issues belonging to the
research agenda for interval temporal logics. Even though propositional interval
temporal logics have recently been studied more actively, they are still rather
under-explored in several respects: a complete analysis of expressiveness is still
lacking, the exploration of the possibility of extending language and semantics of
(qualitative) interval temporal logics with explicit reference to lengths of inter-
vals has been just started, significant results can be expected from the search for
new decidable fragments of HS and the work on the design and development of
efficient decision procedures, devising (efficient) model-checking algorithms for
interval temporal logics is a completely unexplored research direction, applica-
tions of interval temporal logic tools in various domains, including bioinformat-
ics, planning systems, and temporal databases, look very promising.

Back to Interval Temporal Logics 13

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau-based decision proce-
dure for the logic of proper subinterval structures over dense orderings. In: Areces,
C., Demri, S. (eds.) Proc. of the 5th Int. Workshop on Methods for Modalities
(M4M), pp. 335–351 (2007)

3. Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau Systems for Logics of
Subinterval Structures over Dense Orderings. In: Olivetti, N. (ed.) TABLEAUX
2007. LNCS, vol. 4548, pp. 73–89. Springer, Heidelberg (2007)

4. Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau-based decision proce-
dures for the logics of subinterval structures over dense orderings. Journal of Logic
and Computation (to appear, 2008)

5. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: On Decidability and Ex-
pressiveness of Propositional Interval Neighborhood Logics. In: Artemov, S.N.,
Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 84–99. Springer, Heidelberg
(2007)

6. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval
neighborhood logics: Expressiveness, decidability, and undecidable extensions. An-
nals of Pure and Applied Logic (to appear, 2008)

7. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Decid-
able and undecidable fragments of halpern and shoham’s interval temporal logic:
Towards a complete classification. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
LPAR 2008. LNCS, vol. 5330, pp. 590–604. Springer, Heidelberg (2008)

8. Bresolin, D., Montanari, A., Sala, P.: An optimal tableau-based decision algorithm
for Propositional Neighborhood Logic. In: Thomas, W., Weil, P. (eds.) STACS
2007. LNCS, vol. 4393, pp. 549–560. Springer, Heidelberg (2007)

9. Bresolin, D., Montanari, A., Sciavicco, G.: An optimal decision procedure for Right
Propositional Neighborhood Logic. Journal of Automated Reasoning 38(1-3), 173–
199 (2007)

10. Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics
and duration calculi. Journal of Applied Non-Classical Logics 14(1-2), 9–54 (2004)

11. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. Journal
of the ACM 38(4), 935–962 (1991)

12. Hodkinson, I., Montanari, A., Sciavicco, G.: Non-finite axiomatizability and unde-
cidbility of interval temporal logics with C, D, and T. In: Kaminski, M., Martini, S.
(eds.) Proc. of the 17th Annual Conference of the EACSL (CSL). LNCS, vol. 5213,
pp. 308–322. Springer, Heidelberg (2008)

13. Moszkowski, B.: Reasoning about digital circuits. Tech. rep. stan-cs-83-970, Dept.
of Computer Science, Stanford University, Stanford, CA (1983)

14. Venema, Y.: Expressiveness and completeness of an interval tense logic. Notre
Dame Journal of Formal Logic 31(4), 529–547 (1990)

15. Venema, Y.: A modal logic for chopping intervals. Journal of Logic and Computa-
tion 1(4), 453–476 (1991)

Systems Biology: Models and Logics�

C. Piazza1 and A. Policriti1,2

1 Dept. of Math. and Computer Science, University of Udine, Udine, Italy
2 Institute of Applied Genomics, Udine, Italy

{piazza,policriti}@dimi.uniud.it

Abstract. The field of systems biology focuses on creating a finely de-
tailed picture of biological mechanisms. Recently, the need has arisen for
more and more sophisticated and mathematically well founded compu-
tational tools, capable of analyzing those models that are and will be
at the core of Systems Biology. The challenge consists in faithfully im-
plementing such computational models in software packages exploiting
the potential trade-offs among usability, accuracy, and scalability when
dealing with large amounts of data. The aim of this presentation is that
of introducing some emerging problems and proposed solutions in this
context.

In particular, after an introductory first part, in the second part we
will focus on the use of Hybrid Systems in Systems Biology. Hybrid sys-
tems are dynamical systems presenting both discrete and continuous evo-
lution, originally proposed to study embedded systems, where a discrete
control acts on a continuously changing environment. The presence of
both discrete and continuous dynamics makes this formalism appealing
also for modeling biological systems. However, the situation in this case
is subtler, basically because there is no “natural” separation of discrete
and continuous components. It comes as no surprise, therefore, that Hy-
brid Systems have been used in Systems Biology in rather various ways.
Some approaches, like the description of biological switches, concentrate
on the use of model-checking routines. Other applications, like the switch-
ing between continuous and discrete/stochastic simulation, focus on the
exploitation of the interplay between discreteness and continuity in order
to reduce the computational burden of numerical simulation, yet main-
taining an acceptable precision. We will survey some of the main uses of
Hybrid Automata in Systems Biology, through a series of cases studies
that we deem interesting and paradigmatic, discussing both actual and
foreseeable, logical and implementation issues.

� This work is partially supported by PRIN ”BISCA” 2006011235 and FIRB ”LIBI”
RBLA039M7M.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, p. 14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Separation Logic Tutorial

Peter O’Hearn�

Queen Mary, Univ. of London

Separation logic is an extension of Hoare’s logic for reasoning about programs
that manipulate pointers. It is based on the separating conjunction P ∗Q, which
asserts that P and Q hold for separate portions of computer memory.

This tutorial on separation logic has three parts.

1. Basics. Concentrating on highlights from the early work [1,2,3,4].
2. Model Theory. The model theory of separation logic evolved from the general

resource models of bunched logic [5,6,7], and includes an account of program
dynamics in terms of their interaction with resource [8,9].

3. Proof Theory. I will describe those aspects of the proof theory, particularly
new entailment questions (frame and anti-frame inference [10,11]), which are
important for applications in mechanized program verification.

1 Basics

The Separating Conjunction. I introduce the separating conjunction by example.
Consider the following memory structure.

x|->y * y|-> x

x y

x=10

y=42
42

10 42

10

We read the formula at the top of this figure as “x points to y, and separately
y points to x”. Going down the middle of the diagram is a line which represents
a heap partitioning: a separating conjunction asks for a partitioning that divides
memory into parts satisfying its two conjuncts.

At the bottom of the figure we have given an example of a concrete memory
description that corresponds to the diagram. There, x and y have values 10 and
� I gratefully acknowledge the support of an EPSRC Advanced Fellowship and a Royal

Society Wolfson Research Merit Award.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 15–21, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 P. O’Hearn

42 (in the “environment”, or “register bank”), and 10 and 42 are themselves
locations with the indicated contents (in the “heap”, or even “RAM”). It should
be clear how the picture corresponds to the concrete structure. It is simplest to
think in terms of the picture semantics of separation logic, but if confusion arises
as to what diagrams mean you can always drop down to the RAM level.

The indicated separating conjunction above is true of the pictured memory
because the parts satisfy the conjuncts. That is, the components

y|-> x

x y

x=10

y=42

42

10

x|->y

x y

x=10

y=42 42

10

And

Separately

are separate sub-states that satisfy the relevant conjuncts.
It can be confusing to see a diagram like the one on the left where “x points

to y and yet to nowhere”. This is disambiguated in the RAM description below
the diagram. In the more concrete description x and y denote values (10 and
42), x’s value is an allocated memory address which contains y’s value, but y’s
value is not allocated. Notice also that, in comparison to the first diagram, the
separating conjunction splits the heap/RAM, but it does not split the association
of variables to values: heap cells, but not variable associations, are deleted from
the original situation to obtain the sub-states.

When reasoning about programs that manipulate data structures, one nor-
mally wants to use inductively-defined predicates that describe such structures.
Here is a definition for a predicate that describes binary trees:

tree(E) ⇐⇒ if E = nil then emp
else ∃x, y. (E �→l:x, r: y) ∗ tree(x) ∗ tree(y)

In this definition we have used a record notation (E �→l:x, r: y) for a “points-to
predicate” that describes a single1 record E that contains x in its l field and y in
its r field. nil can be taken to be any non-addressible number2. The separating
conjunction between this assertion and the two recursive instances of tree ensures
that there are no cycles, and the separating conjunction between the two subtrees
ensures that we have a tree and not a dag. The emp predicate in the base case
1 It denotes a singleton heap , a heaplet wth only one cell.
2 You can map these notions to the RAM model, or just imagine a record model.

Separation Logic Tutorial 17

of the inductive definition describes the empty heap (or portion of heap). A
consequence of this is that when tree(E) holds there are no extra cells, not in
the tree, in a state satisfying the predicate. This is a key specification pattern
often employed in separation logic proofs: we use assertions that describe only
as much state as is needed, and nothing else.

At this point you might think that I have described an exotic-looking formal-
ism for writing assertions about heaps and you might wonder: why bother? In
fact, the mere ability to describe heaps is not at all important in and of itself, and
in this separation logic adds nothing significant to traditional predicate logic. It
is only when we consider the interaction between assertions and operations for
mutating memory that the point of the formalism begins to come out.

In-place Reasoning. I am going to try something that might seem eccentric: I
am going to give you a program proof, without telling you the inference rules it
uses. I am hoping that you will find the reasoning steps I show to be intuitively
understandable, prior to becoming embroiled in too many formalities. Whether
I succeed in my aim is, of course, for you to judge.

Consider the following procedure for disposing the elements in a tree.
procedure DispTree(p)
local i, j;
if p �=nil then

i = p�l ; j:= p�r; DispTree(i); DispTree(j); free(p)

This is the expected procedure that walks a tree, recursively disposing left and
right subtrees and then the root pointer. It uses a representation of tree nodes
with left, right and data fields, and the empty tree is represented by nil.

The specification of DispTree is just

{tree(p)} DispTree(p) {emp}

which says that if you have a tree at the beginning then you end up with the
empty heap at the end. The crucial part of the proof, in the if branch, is:

{p �→[l:x, r: y] ∗ tree(x) ∗ tree(y)}
i := p�l; j := p�r;

{p �→[l: i, r: j] ∗ tree(i) ∗ tree(j)}
DispTree(i);

{p �→[l: i, r: j] ∗ tree(j)}
DispTree(j);

{p �→[l: i, r: j]}
free p

{emp}
After we enter the conditional statement we know that p �=nil, so that (according
to the inductive definition) p points to left and right subtrees occupying separate
storage. Then the roots of the two subtrees are loaded into i and j. The first
recursive call operates in-place on the left subtree, removing it, the second call
removes the right subtree, and the final instruction frees the root pointer p. This
verification uses the procedure specification as a recursive assumption.

18 P. O’Hearn

I am leading to a more general suggestion: try thinking about reasoning in
separation logic as if you are an interpreter. The formulae are like states, symbolic
states. Execute the procedure forwards, updating formulae in the usual way you
do when thinking about in-place update of memory. In-place reasoning works
not only for disposal, but for heap mutation and allocation as well [1,2].

One thing at work in the “proof” above is a rule

{P} C {Q}
{R ∗ P} C {R ∗Q}

Frame Rule

that lets us tack on additional assertions “for free”, as it were. For instance, in the
second recursive call the frame axiom R selected is p �→[l: i, r: j] and {P}C {Q}
is a substitution instance of the procedure spec: this captures that the recursive
call does not alter the root pointer. Generally, the frame rule that lets us use
“small specifications” that only talk about the cells that a program touches [3].

Perspective. The essential points that I have tried to illustrate are the following.

(i) The separating conjunction fits together with inductive definitions in a way
that supports natural descriptions of mutable data structures [1].

(ii) Axiomatizations of pointer operations support in-place reasoning, where a
portion of a formula is updated in place when passing from precondition to
postcondition, mirroring the operational locality of heap update [1,2].

(iii) Frame axioms, which state what does not change, can be avoided when
writing specifications [2,3].

These points together enable specifications and proofs for pointer programs that
are dramatically simpler than was possible previously, in many (not all) cases
approaching the simplicity associated with proofs of pure functional programs.

2 Model Theory and Proof Theory

Above I have concentrated on the basics of separation logic, emphasizing that
to “think like an interpreter” is a good approximation to program proving. The
model-theoretic underpinnings of this point of view rest on a number of theo-
rems about the semantics of imperative programs, and their interaction with the
semantics of Hoare triples [8,9].

The most significant developments in proof theory have stemmed from an
inference procedure of Berdine and Calcagno in their work on the Smallfoot
tool [12]. Special versions of their inference rules have been used to enable loop-
invariant discovery in abstract interpreters [13,14], which have been extended to
ever-more-expressive abstract domains (e.g., [15,16,17,18,19]).

A pivotal development has been identification of the notion of frame inference,
which gives a way to find the “leftover” portions of heap needed to automatically
apply the frame rule in program proofs. Technically, this is done by solving an
extension to the usual entailment question

A � B ∗ ?frame

Separation Logic Tutorial 19

where the task is, given A and B, to find a formula ?frame which makes the
entailment valid. This extended entailment capability is used at procedure call
sites, where A is an assertion at the call site and B a precondition from a proce-
dure’s specification. Frame inference was first solved by Berdine and Calcagno by
using information from failed proofs of the standard entailment question A � B
(related ideas were developed in [20]). It is used in several automatic verification
and analysis tools based on separation logic [21,16,22,23,24].

More recently, there has been work on an, in a sense, inverse problem

A ∗ ?anti-frame � B

where the task is to find a description of the missing or needed portion of heap
?anti-frame that makes the entailment valid. This is a separation-logic cousin
of the classic abductive inference question. It has been used in [11] to synthe-
size preconditions of procedures, by attempting to infer descriptions of just the
portions of heap that they need to run without producing a memory fault. The
joint abduction/frame inference question, termed “bi-abduction” in [11], forms
the basis of a compositional program analysis, where Hoare triples for a proce-
dure are generated without knowing the procedure’s calling context.

I have concentrated on the basics of separation logic, on its semantics, and on
proof theory as it is relevant to automatic proof tools and abstract interpreters.
There have been significant developments in several other directions.

– Iteractive proof, where the semantics of the logic is embedded in a higher-
order logic (e.g., [25,26,27]).

– Web data structures, using non-symmetric separation (context with hole)[28].
– Object-oriented programing, where the logic is used to address longstanding

aliasing problems (e.g., [29,24]).
– Concurrency, where the logic is used to control sharing of memory between

concurrent threads (starting with [30,31]).

Space prevents more comprehensive references here: The reader may consult the
page www.dcs.qmul.ac.uk/∼ohearn/localreasoning.html for further pointers.

References

1. Reynolds, J.C.: Intuitionistic reasoning about shared mutable data structure. In:
Millennial Perspectives in Computer Science. Proceedings of the 1999 Oxford–
Microsoft Symposium in Honour of Sir Tony Hoare, Palgrave, pp. 303–321 (2000)

2. Isthiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures.
In: 28th POPL, pp. 36–49 (2001)

3. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142,
pp. 1–19. Springer, Heidelberg (2001)

4. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
17th LICS, pp. 55–74 (2002)

5. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bulletin of Symbolic
Logic 5(2), 215–244 (1999)

20 P. O’Hearn

6. Pym, D.J.: The Semantics and Proof Theory of the Logic of Bunched Implications.
Applied Logic Series. Kluwer Academic Publishers, Dordrecht (2002)

7. Pym, D., O’Hearn, P., Yang, H.: Possible worlds and resources: the semantics of
BI. Theoretical Computer Science 315(1), 257–305 (2004)

8. Yang, H., O’Hearn, P.: A semantic basis for local reasoning. In: Nielsen, M., Eng-
berg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 402–416. Springer, Heidelberg
(2002)

9. Calcagno, C., O’Hearn, P., Yang, H.: Local action and abstract separation logic.
In: 22nd LICS, pp. 366–378 (2007)

10. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780. Springer, Heidelberg (2005)

11. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis.
Imperial College DOC Tech. Report 2008/12

12. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Automatic modular assertion
checking with separation logic. In: 4th FMCO, pp. 115–137 (2006)

13. Distefano, D., O’Hearn, P., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006)

14. Magill, S., Nanevski, A., Clarke, E., Lee, P.: Inferring invariants in Separation
Logic for imperative list-processing programs. In: 3rd SPACE Workshop (2006)

15. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.: Automatic termination proofs
for programs with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

16. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In:
PLDI 2007 (2007)

17. Guo, B., Vachharajani, N., August, D.: Shape analysis with inductive recursion
synthesis. In: PLDI (2007)

18. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang,
H.: Shape analysis of composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590. Springer, Heidelberg (2007)

19. Magill, S., Tsai, M.-S., Lee, P., Tsay, Y.-K.: THOR: A tool for reasoning about
shape and arithmetic. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123.
Springer, Heidelberg (2008)

20. Rinetzky, N., Bauer, J., Reps, T., Sagiv, M., Wilhelm, R.: A semantics for proce-
dure local heaps and its abstractions. In: 32nd POPL, pp. 296–309 (2005)

21. Gotsman, A., Berdine, J., Cook, B.: Interprocedural shape analysis with sepa-
rated heap abstractions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 240–260.
Springer, Heidelberg (2006)

22. Nguyen, H.H., Chin, W.-N.: Enhancing program verification with lemmas. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123. Springer, Heidelberg (2008)

23. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123. Springer, Heidelberg (2008)

24. Distefano, D., Parkinson, M.: jStar: Towards Practical Verification for Java. In:
OOPSLA (2008)

25. Marti, N., Affeldt, R., Yonezawa, A.: Verification of the heap manager of an oper-
ating system using separation logic. In: 3rd SPACE Workshop (2006)

26. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: 34th POPL,
pp. 97–108 (2007)

Separation Logic Tutorial 21

27. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424. Springer, Hei-
delberg (2007)

28. Gardner, P., Smith, G., Wheelhouse, M., Zarfaty, U.: Local Hoare reasoning about
DOM. In: 27th PODS, pp. 261–270 (2008)

29. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: 32nd POPL, pp.
59–70 (2005)

30. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer
Science (Reynolds Festschrift) 375(1-3), 271–307 (2007)

31. Brookes, S.D.: A semantics of concurrent separation logic. Theoretical Computer
Science (Reynolds Festschrift) 375(1-3), 227–270 (2007)

Authorization and Obligation Policies in
Dynamic Systems

Michael Gelfond1 and Jorge Lobo2

1 Texas Tech University
mgelfond@cs.ttu.edu

2 IBM T. J. Watson Research Center
jlobo@us.ibm.com

Abstract. The paper defines a language for specifying authorization
and obligation policies of an intelligent agent acting in a changing envi-
ronment and presents several ASP based algorithms for checking compli-
ance of an event with a policy specified in this language. The language
allows representation of defeasible policies and is based on theory of ac-
tion and change.

1 Introduction

The goal of this paper is to provide a simple language for specifying authorization
and obligation policies of an intelligent agent acting in a changing environment.
We refer to a pair consisting of an agent and its environment as a dynamic
system. We limit our attention to dynamic systems which can be reasonably well
represented by transition diagrams whose nodes correspond to possible physical
states of the environment and arcs are labeled by actions. A transition 〈σ, a, σ′〉
belongs to such a transition diagram T iff σ′ may be a state resulting from the
execution of action a in state σ. If action a is deterministic and executable in
σ then there exists exactly one such σ′. The system’s diagram T contains all
physically possible trajectories of the system. By an agent’s policy we mean a
description, P , of a subset of trajectories of T deemed to be preferable by the
system’s designer. We often refer to such trajectories as compliant with P .

We start with describing authorization policy of an agentA of a dynamic system
〈A, T 〉 – a set of conditions under which an agent’s action is or is not permitted.
Note that the agent’s use of the authorization policy can differ from application
to application. Some authorization policies can be strict – no unauthorized action
can be performed by an agent. In other cases an autonomous agent can opt for
performing an unauthorized action. In this case the agent may be forced to pay a
penalty, be commended for the initiative or loose his job for insubordination. In
all these cases though it is important to be able to determine when an action is
authorized and when it is not. Of course the agent can do this only on the basis of
his general knowledge of the world, the system’s current state, and its own abilities,
and goals. The algorithms for checking compliance of agent’s actions to his policies
can be used by the agent for deciding what actions to perform as well as by an
outside observers evaluating the agent’s behaviour. Similar observations are true

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 22–36, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Authorization and Obligation Policies in Dynamic Systems 23

for obligation policy – a set of conditions defining the actions the agent is obligated
to perform or to abstain from performing in a given state.

In section 2 we describe the syntax and semantics of a language APL for
specifying authorization policies of dynamic systems. We also discuss several
methods for checking compliance of authorization policies using the methods of
Answer Set Programming [1]. Section 3 expands APL with obligation policies.

2 Authorization Policy

In this section we define the syntax and semantics of the language APL for
describing authorization policies in a dynamic system 〈A, T 〉, and describe how
checking compliance of actions and trajectories of the system can be reduced
to computing answer sets of logic programs under the answer set semantics [2].
As expected, particular reductions will depend on the knowledge available to
the reasoner checking the compliance. One of our main goals is simplicity of the
language and a high level of elaboration tolerance of its policies. This of course
should be balanced by the expressiveness of the language and the ability to check
compliance in a reasonable amount of time.

2.1 Syntax

Let us consider a dynamic system described by an agent, A, and a transition
diagram T over some fixed signature Σ with sorts:

– fluent – functions whose values can change as a result of actions;
– action – by actions we mean elementary actions ;
– domain dependent sorts representing elements of a particular domain.

We use (possibly indexed) letters f and e to denote elements of first two sorts.
Possibly indexed letter a denotes compound actions – sets of (simultaneously ex-
ecuted) elementary actions. The corresponding capital letters denote variables
ranging over the corresponding sorts. The set of elementary actions will be di-
vided into the set of agent’s actions and the set of exogenous actions. The former
are actions executed by the agent A of the dynamic system. The latter are ac-
tions performed by other agents viewed as part of A’s environment or by nature.
Expressions of the form f = y where f is a fluent and y is a possible value of f
will be called fluent atom. Expressions of the form e = true and e = false will be
referred to as action atoms. A Σ-atom is a fluent or action atom of Σ. Σ-atoms
l = true and l = false will be often written as l and ¬l respectively.

Recall that a state of T consists of an assignment of values to all the fluents
of Σ. If 〈σ, a, σ′〉 is a transition of T then the pair 〈σ, a〉 will often be referred
to as an event.

Now we are ready to define the languageAPL(Σ) for specifying authorization
policy of an agent whose environment is described by T .

The signature of APL(Σ) is obtained from Σ by adding a new predicate
symbol permitted(e), a collection of terms, d1, . . . , dn used to denote default
authorization rules of APL(Σ), and the relation prefer(d1, d2).

24 M. Gelfond and J. Lobo

Definition 1. [Authorization Policy]
Authorization policy statements are expressions of the form

permitted(e) if cond (1)

¬permitted(e) if cond (2)

d : normally permitted(e) if cond (3)

d : normally ¬permitted(a) if cond (4)

prefer(d1, d2) (5)

where by cond we mean a collection of atoms of APL(Σ) not containing atoms
formed by prefer.1 (The last restriction is not necessary but it slightly simplifies
the presentation). If cond is empty we simply omit “if cond” from the sentence.
The first two statements will be referred to as strict policies. The next two will be
called defeasible. Names of defeasible authorization statements are optional and
can be omitted. By authorization policy we mean a collection of authorization
policy statements.

Example 1. [Mission Command]
Consider the following (imaginary) policy requirements for mission authorization
and command [3] :

1. A military officer is not allowed to command a mission he authorized.
2. A colonel is allowed to command a mission he authorized.
3. A military observer can never authorize a mission.

To express this policy we must have some information about transition sys-
tem Tm which serves as a mathematical model of our domain. We assume that
the signature, Σm of Tm, contains two domain dependent sorts, mission and
commander. Possibly indexed variables M and C range over missions and com-
manders respectively; Σm also contains

actions: authorize(C,M) and assume command(C,M);
fluents: authorized(C,M), commands(C,M), colonel(C), and observer(C).
Since the first two authorization policy statements of our example are contra-

dictory we naturally assume them to be defeasible. The first policy statement
will be expressed as2

d1(C,M) : normally ¬permitted(assume command(C,M)) if authorized
(C,M)
The second statement will be expressed as

d2(C,M) : normally permitted(assume command(C,M)) if colonel(C)

1 The full version of the language will include dynamic preferences, i.e. statements
of the form prefer(d1, d2) if cond. Conceptually the extension is not difficult but
require a little more space.

2 Note that the names of defaults contain the default variables.

Authorization and Obligation Policies in Dynamic Systems 25

Since the second defeasible policy is more specific we assume that it is pre-
ferred over the first one and, accordingly, add the sentence

prefer(d2(C,M), d1(C,M))

The last policy statement seems to be strict and will be represented by

¬permitted(authorize(C,M)) if observer(C)

We will denote the resulting policy by Pm.

2.2 Semantics

The semantics of an authorization policy P will determine a mapping P(σ) from
states of T into permissions – sets of statements of the form permitted(e), and
denials – sets of statements of the form ¬permitted(e).

To give the intuitively correct definition of P(σ) we should be able to refer to
valid consequences of defaults expressed by defeasible rules of our authorization
policy. This can be done by interpreting policies, states and events in terms
of logic programs under the answer set semantics – a non-monotonic logical
formalism well suited for reasoning with defaults. To this end we first translate
authorisation statements of APL into their logic programming counterparts. The
translation, lp, is defined as follows:

– lp(f = y) =def val(f, y);
– lp(permitted(e)) =def permitted(e).
– lp(¬permitted(e)) =def ¬permitted(e).
– If S is a set of atoms then lp(S) =def {lp(at) : at ∈ S}.
– lp of a strict policy statement, SPS, of P is obtained from SPS by simply

replacing “if” by the “←”.
– A defeasible policy statement, DPS, is translated by lp into a standard

Answer Set Prolog default rule:
permitted(e) ← lp(cond),

not ab(d),
not ¬permitted(e).

or
¬permitted(e) ← lp(cond),

not ab(d),
not permitted(e).

– The preference between two defeasible policies, d1 and d2 is translated by lp
into
ab(d2) ← lp(cond1)
where cond1 is the condition of d1.

Finally

Definition 2. [Logic programming counterparts of policies and events]

lp(P) =def {lp(st) : st ∈ P}
lp(P , σ) =def lp(P) ∪ lp(σ)

26 M. Gelfond and J. Lobo

These programs will be used to define important properties of authorization
policies as well as their semantics:

Definition 3. [Consistency of Authorization Policy]
An authorization policy P for 〈A, T 〉 is called consistent if for every state σ of
T logic program lp(P , σ) is consistent, i.e. has an answer set.

Definition 4. [P(σ) for authorization]
Let P be a consistent authorization policy for 〈A, T 〉. Then

– permitted(e) ∈ P(σ) iff a logic program lp(P , σ) entails permitted(e)3.
– ¬permitted(e) ∈ P(σ) iff a logic program lp(P , σ) entails ¬permitted(e).

Definition 5. [Policy Compliance]

– An event 〈σ, a〉 is strongly compliant with authorization policy P if for every
e ∈ a we have that permitted(e) ∈ P(σ).

– An event 〈σ, a〉 is weakly compliant with P if for every e ∈ a we have that
¬permitted(e) �∈ P(σ).

– An event 〈σ, a〉 is not compliant with P if for some e ∈ a we have that
¬permitted(e) ∈ P(σ).

– A path 〈σ0, a0, σ1, ..., σn−1, an−1, σn〉 of T is said to be strongly (weakly)
compliant with P if for every 0 ≤ i < n the event 〈σi, ai〉 is strongly (weakly)
compliant with P .

Notice that lp(P , σ) may have answer sets S1 and S2 such that permitted(e) ∈
S1 and permitted(e) �∈ S2. According to our definition permitted(e) is not a
consequence of P , i.e. ambiguity is treated as a complete absence of knowledge.
In some cases (probably most of the time) the system designer may want to avoid
ambiguity and to limit himself to policies satisfying the following condition:

Definition 6. [Categoricity]
An authorization policy P for 〈A, T 〉 is called categorical if for every state σ of
T logic program lp(P , σ) as categorical, i.e. has exactly one answer set.

To illustrate these definitions let us go back to Example 1.

Example 2. [Mission Command Revisited]
Let us populate the domain of Example 1 with a mission, m1 and a commander
c1. One can use standard answer set programming techniques to easily prove that
for any state σ and action e executable in σ the program lp(Pm, σ) is consistent
(and categorical). Hence policy Pm is consistent and unambiguous.

Now let us consider an event 〈σ0, e0〉 where

σ0 = {colonel(c1), authorized(c1,m1),¬commands(c1,m1),¬observer(c1)}
and

e0 = assume command(c1,m1).

The answer set of lp(Pm, σ0) contains permitted(e0) and hence the event is
strongly compliant with Pm. Similarly one can check that an event 〈σ1, e0〉 where
3 A logic program Π entails literal l (Π |= l) if l belongs to every answer set of Π .

Authorization and Obligation Policies in Dynamic Systems 27

σ1 = {¬colonel(c1), authorized(c1,m1),¬commands(c1,m1),¬observer(c1)}

is not compliant with Pm. Finally consider a policy P ′
m obtained from Pm by

removing its first authorization rule. Again one can easily check that the event
〈σ1, e0〉 is weakly (but not strongly) compliant with P ′

m.

2.3 Checking Compliance

In this section we discuss the ways to automatically check compliance of an
agent’s behaviour with consistent authorization policy P of 〈A, T 〉. The algo-
rithms will obviously depend on the type of input information and the goals of
the checker. Let us start with the simplest possible scenario:

Scenario 1: an agent, acting in an environment T , has complete knowledge about
his current state, σ, and contemplates the execution of action e.

The following proposition, which follows immediately from the definition of
compliance and properties of ASP logic programs, reduces the task to checking
consistency of logic programs.

Proposition 1. [Checking compliance of a completely known event]

– Event 〈σ, e〉 is strongly compliant with consistent policy P of T iff a logic
program

lp(P , σ) ∪ {← permitted(e)}
is inconsistent.

– Event 〈σ, e〉 is weakly compliant with P iff a logic program

lp(P , σ) ∪ {← ¬permitted(e)}

is consistent.
– Event 〈σ, e〉 is not compliant with policy P iff a logic program

lp(P , σ) ∪ {← ¬permitted(e)}

is inconsistent.

Now let us look at the slight generalization of this scenario.

Scenario 2: Suppose that the agent’s knowledge about the current state is limited
to the values of some (but not necessarily all) fluents.

Let us denote the collection of such fluent atoms by s, and assume that δ(s)
consists of all states of the system containing s. If an event 〈σ, e〉 is strongly
(weakly) compliant with the agent’s policy for every σ ∈ σ(s) then the execution
of e is obviously authorized (not prohibited); if for every σ ∈ σ(s) the event 〈σ, e〉
is not permitted the agent will be wise not to perform e. Otherwise the agent
does not have enough information to determine compliance of the event. But
how our reasoner can check which of the above conditions (if any) are satisfied?
It is obvious that to be able to do that he needs sufficient knowledge about δ(s).

28 M. Gelfond and J. Lobo

The precise logical form of this knowledge depends on the way we choose to
describe our transition system T . For the purposes of this paper we assume that
such description is given by an action theory, A, in an action language AL [4]
Such action theories provide a concise and convenient way of describing a large
class of discrete dynamic systems. In particular we will need static causal laws
(often referred to as state constraints) of AL – statements of the form

f = y if P (6)

where P is a collection of atoms of signature Σ of T . We say that a (partial)
assignment of values to fluents of Σ satisfies (6) if it contains f = y or does
not contain P . A state of a transition system defined by action theory A is a
complete assignment of values to fluents which satisfies all the static causal laws
of A. Partial assignment satisfying these laws is called a simple knowledge state
of an agent with action theory A.

To compute σ(s) we expand the translation lp of our policy statements into
logic programs to the laws of the form (6): function lp will map (6) into

val(f, y) ← lp(P).

(The translation follows [5].) Let D be the collection of all statements of the
form

val(f, y1) or . . . or val(f, yk)

where f is a fluent, {y1, . . . , yk} is the set of all its possible values, and let SL
be the set of all static causal laws from the action theory A describing T . The
following proposition reduces computing of δ(s) to finding answer sets of logic
programs.

Proposition 2. [States compatible with partial knowledge state s]
Let s be a simple knowledge state of an agent with action theory A. Then
σ ∈ δ(s) iff lp(σ) is an answer set of lp(s) ∪D ∪ lp(SL).

The following proposition provides the means for checking authorization status
of action e given a simple knowledge state s of an agent whose transition diagram
is given by an action theory A.

Proposition 3. [Checking compliance given simple knowledge state]
For any consistent authorization policy P

– Event 〈σ, e〉 is strongly compliant with P for every σ ∈ δ(s) iff program
lp(P , s) ∪D ∪ lp(SL) ∪ {← permitted(e)} is inconsistent.

– If P is categorical then an event 〈σ, e〉 is weakly compliant with P for every
σ ∈ δ(s) iff program lp(P , s) ∪ D ∪ lp(SL) ∪ {← not ¬permitted(e)} is
inconsistent.

– Event 〈σ, e〉 is not compliant with P for every σ ∈ δ(s) iff program lp(P , s)∪
D ∪ lp(SL) ∪ {← ¬permitted(e)} is inconsistent.

Authorization and Obligation Policies in Dynamic Systems 29

– If P is categorical then an event 〈σ, e〉 is not compliant with P for some
σ ∈ δ(s) iff program lp(P , s) ∪ D ∪ lp(SL) ∪ {← not ¬permitted(e)} is
consistent.

Scenario 3: In many cases however the agent’s knowledge base contains neither
current physical nor current simple knowledge state of the system. Instead, as
in the agent architecture from [6], it may maintain history, Hn, of the system’s
activity – the complete or partial description of the initial state σ0 together with
a collection of actions e0, . . . , en−1 performed in the domain up to the current
time-step n4. We discuss how, given this information, the agent can check if he
is permitted to execute a particular action e. First we will reify steps of history
and define a new function, lp(P , I), obtained by adding step I as an additional
(last) parameter to predicates from the definition of function lp. For instance,

lp(f = y, I) =def val(f, y, I),

lp(e, I) =def occurs(e, I),

etc. Similarly, for any history Hn = 〈s, [e0, . . . , en−1]〉
lp(P , Hn) =def lp(P , I) ∪ lp(s, 0) ∪ lp(e0, 0) ∪ . . . ∪ lp(ei−1, I − 1).

By D0 we denote the collection of all statements of the form

val(f, y1, 0) or . . . or val(f, yk, 0)

where f is a fluent and {y1, . . . , yk} is the set of all its possible values.

Finally, let Check1(Hn) and Check2(Hn) be pairs of rules

¬strongly compliant← occurs(E, I), not permitted(E, I)

← not ¬strongly compliant
and

¬weakly compliant← occurs(E, I),¬permitted(E, I)

← not ¬weakly compliant

respectively. Let us recall that a trajectory σ0, e0, . . . , en−1, σn of T is called a
model of history Hn = 〈s, [e0, . . . , en−1]〉 if s ⊆ σ0 [1]. Intuitively such models
are possible past compatible with the agent’s knowledge. Policy compliance of
an agent with history Hn can be checked using the following proposition.

Proposition 4. [Checking compliance given system’s history]]
For any categorical authorization policy P and history Hn of the system

– Every model of Hn is strongly compliant with P iff a program lp(P , Hn) ∪
D ∪ lp(A) ∪ Check1 is inconsistent.

– Every model of Hn is weakly compliant with P iff a program lp(P , Hn) ∪
D ∪ lp(A) ∪ Check2 is inconsistent.

4 In addition history can contain observations of values of particular fluents at any
step 0 ≤ i ≤ n.

30 M. Gelfond and J. Lobo

3 Obligation Policy

Now we are ready to consider obligation policies. As before we assume a fixed
dynamic system described by an agent, A, and a transition diagram T over
signature Σ, and define syntax and semantics of the policy language,AOPL(Σ),
allowing specification of authorization and obligation policies.

3.1 Syntax

The signature of the new language, AOPL(Σ), is obtained from the signature
of APL(Σ) by adding a new predicate symbol obl(E) where E is an elementary
action of A or negation of such an action. Intuitively if obl(e) is true in a state σ
of a dynamic system 〈A, T 〉 then agent A has an obligation of executing e in this
state; if instead obl(¬e) holds in σ then A is obligated to refrain from executing
this action.

Definition 7. [Obligation Policy]
Obligation policy statements of AOPL(Σ) are expressions of the form

obl(happening) if cond (7)

¬obl(happening) if cond (8)

d : normally obl(happening) if cond (9)

d : normally ¬obl(happening) if cond (10)

prefer(d1, d2) (11)

where happening stands for an elementary action of A or its negation and cond
is a collection of atoms of AOPL(Σ) not containing atoms formed by prefer.
The form of obligation rules is very similar to that of authorization rules. Syn-
tactically permissions are replaced by obligations and actions by happenings –
actions or their negations.

Example 3. [Student’s Responsibilities]

Let us consider the following sentence from the list of student’s responsibilities
“Students are expected not to miss classes, to do their homework independently
and to submit it on time”. To represent this information we start with intro-
ducing sorts, student, class, meeting and assignment of the corresponding sig-
nature Σ. Students could be represented by names or social security numbers
and classes by the corresponding course numbers (e.g. cs4101). Meetings and as-
signments will be represented by records m(class, pos int) and a(class, pos int).
For instance, m(cs4101, 3) refers to the third meeting of the class cs4101 while
a(cs4101, 5) refers to the fifth assignment given to students of this class. Signa-
ture Σ will also contain fluents

enrolled(student, class),
due date(meeting, assignment).

Authorization and Obligation Policies in Dynamic Systems 31

For instance Mary may be enrolled in cs4101 (enrolled(Mary, cs4101)) and
the due date for the third assignment in this class may be the seventh class
meeting, due date(m(cs4101, 7), a(cs4101, 3))).

We will also need the following actions

attend(student,meeting),
submit(student, assignment,meeting),
accept unauthorized help(student).

Now we need to think about our understanding of the obligation policy rules
from our example. Are they strict or defeasible? The informal specification does
not say and hence the decision is left to us. One can easily imagine the situation
when the first rule can be canceled for some particular student and/or meeting
by the introduction of some exceptional circumstances. A person can be released
from the first obligation because of illness, family emergencies, etc. Instead of
putting these exceptions in the condition of the first rule we adopt a more elab-
oration tolerant approach and view the rule as defeasible. This leads us to the
following formal rule:

d1(S,C,N) : normally obl(attend(S,m(C,N))) if enrolled(S,C).

In the properly extended signature an exception to this default can be repre-
sented as follows

¬obl(attend(S,M)) if family emergency(S,M).

where family emergency(S,M) holds if student S has family emergency at the
time of meeting M . Similarly for other exceptions. The second rule basically tells
the students not to cheat. Since cheating is never justified we make this a strict
obligation policy rule.

obl(¬accept unauthorized help(S)).

The knowledge base we are building may be extended by possible exceptions
to the third rule. Hence we make it defeasible: Normally a student S should
submit its assignment N1 for class C at the N2’th meeting of class C if S is
enrolled in C and N2 is the deadline for the assignment.

d2(S,C,N1, N2) : normally obl(submit(S, a(C,N1),m(C,N2)) if
enrolled(S,C),
due date(m(C,N2), a(C,N1)). .

As expected preference between defeasible obligation policies will be used
when policies lead to contradictory obligations. For instance a religious obligation
of abstaining from work during important religious holidays can contradict the
obligation of attending classes. Some schools allow such holidays to be a sufficient
excuse for not attending classes, while others do not. In a simplified form the
new obligation can be expressed as

d3(S,M) : normally obl(¬attend(S,M)) if religious holiday(M).

32 M. Gelfond and J. Lobo

where religious holiday(M) holds if some important religious holiday occurs at
the same day as the meeting M . If the designer of our knowledge base believes
that religious obligations overrule secular once he can expand the base by

prefer(d3(S,m(C,N)), d1(S,C,N)).

The opposite preference can be given by a more secularly minded designer.
Of course if no preference is given the user of the base may have two different
contradictory obligations. Such a policy however will be ambiguous and will
allow the user freedom to decide if one or both obligations should be ignored
and accept the corresponding rewards and punishments. As with authorization
policies the designer should attempt to avoid ambiguity and limit himself to
categorical policies.

3.2 Semantics

To define the semantics of AOPL(Σ) we expand the function P(σ) from the
definition of the semantics of authorization policy of APL(Σ). In addition to
permissions and denials the function will now return obligations the agent of a
dynamic system has in a state σ. As expected this can be done by expanding
logical counterpart lp defined above by mapping statements of the form (7) and
(8) to logic programming rules

obl(h) ← lp(cond)

¬obl(h) ← lp(cond).
Statements (9) and (10) will be mapped into rules

obl(h) ← lp(cond).
not ab(d),
not ¬obl(h).

¬obl(h) ← lp(cond).
not ab(d),
not obl(h).

The notions of consistency and categoricity of a policy of a new language
remains unchanged. The function P(σ) is expanded as follows

Definition 8. [P(σ) for obligations]
Let P be a consistent policy for 〈A, T 〉. Then obl(h) ∈ P(σ) iff a logic program
lp(P , σ) entails obl(h).

Let Pa be a policy obtained from P by dropping its obligation rules; Po is
obtained from P by dropping its authorization rules. Obviously P = Pa ∪ Po.
We say that Pa is an authorization policy induced by P . Similarly for Po.

Definition 9. [Policy compliance]
An event 〈σ, a〉 is compliant with obligation policy P if

1. For every obl(e) ∈ P(σ) we have that e ∈ a, and
2. For every obl(¬e) ∈ P(σ) we have that e �∈ a.

Authorization and Obligation Policies in Dynamic Systems 33

An event 〈σ, a〉 is strongly (weakly) compliant with arbitrary policy P from
AOPL(Σ) if it is strongly (weakly) compliant with the authorization policy
induced by P and with the obligation policy induced by P .

Compliance of events with respect to an obligation policy can be checked by
ASP methods similar to those used in Section 2.3. Space limitations preclude
discussing the corresponding details.

4 Related Work

To illustrate the relationship between our work and more traditional methods for
representing and reasoning with policies let us consider Role-based Access Con-
trol (RBAC) – a method used in computer system security for restricting system
access to authorized users. The signature of a typical policy of RBAC contains
object constants for users (called subjects), their roles (e.g. job functions or ti-
tles), operations (e.g. read or write) and resources (e.g. files or disk or databases)
to which these operations can be applied. There are relations plays role(S,R)
– a user S plays a role R, has permission(R,O,D) – every user playing a role
R has the permission to apply operation O to resource D, and R1 ≤ R2 - R1
inherits permissions from R2. There is also an action execute(S,O,D) – user
S executes operation O on resource D. States of the system should satisfy a
constraint
has permission(R1, P) if has permission(R2, P),

R1 ≤ R2.

A typical permission policy has the form:

permitted(execute(S,O,D)) if plays role(S,R),
has permission(R,O,D).

Hence the RBAC approach seems to be a very narrow special case of the
methodology for specifying and reasoning about policies suggested in this pa-
per. Note that S can get access to the system (and therefore change its state)
only if he is granted permission to do so. Normally the user will not be able to
record his actions in the system’s log. This will be done by an administrator with
his own set of policies not expressible in the language of RBAC. Our method
allows natural specification and reasoning with combined, administrative and
access control policies. Authorization policies are typically defined as inputs to
access control systems. Most access control system more or less follow the oper-
ational model behind the XML access control language XACML [7]: given the
current state of a system there is a (some times partial) function encoding the
policy that maps the state and an operation on the system into a decision as to
whether the operation is permitted. Most formal modeling work and analysis of
policies make the simplified assumption that policies depend on a subset of the
state that does not change over time or if it changes the changes are only made
by an administrator of the access control system and they are ignored. For exam-
ple a system implementing Access Control Lists (ACL) fixes a list of subjects for

34 M. Gelfond and J. Lobo

each operation or a set of operations and if the subject requesting permission to
execute the operation is in the list the operation is permitted.5 Only administra-
tors are allowed to make changes to the ACL. In RBAC only administrators can
define new roles and assign permissions to roles. More sophisticated associations
can be made between subjects and permissions if one can express the associa-
tions as predicates over the state. This is what is expressed operationally with a
function in the definition of XACML policies. Still these predicates are on parts
of the state that don’t change over time (i.e., they change only by administrative
changes of the system). There is a large body of work in policy analysis and pol-
icy modeling but mostly in these static situations. Barker [8] uses stratified logic
programs to describe RBAC-like systems. In a series of papers Jojadia and his
co-authors [9,10,11,12] developed the Flexible Authorization Framework (FAF)
using stratified logic programs. FAF is a very sophisticated extension of RBAC
that incorporates positive and negative authorizations as well as methods to ex-
press different conflict resolution policies, all in the context of access control to
relational databases. They handle some state dynamics but it is limited to their
database system model. Stoller et al. [13] use planning techniques to characterize
the complexity and solve problems over administrative operations in RBAC sys-
tems. Kolovski et al. [14] use description logic to formalize and analyze XACML
policies including administrative policies. Halpern and Weissman use a subset of
first order logic to specified policies (without the system) and do analysis [15].
The closest to our work are the models presented in [16] and [17]. [16] is mostly
concerned with obligations. The authors, as we do, present a model for oblig-
ations and authorizations that incorporates the model of a system where the
policies are supposed to be enforced. Although the authors claim that minimal
changes will accommodate a more general model, obligations are expressed as a
condition to obtain authorization to access to a resource. In our case obligations
are separate from authorizations and we can represent mutual dependencies be-
tween obligations and authorizations. Their model is agnostic to how system
transitions and policies are represented. Systems are considered to be a set of
state traces (sequences) and obligations abstract functions constraining that set.
We have shown in the paper that by choosing an action theory described in anA-
like language, we can check system properties using ASP logic programs. Theirs is
a theoretical framework to define obligations, ours is more a specification frame-
work where we would like to facilitate the definition of policies and check system
properties. Craven et al.[17] also model authorizations, obligations and the sys-
tem together. They use the event calculus [18] for system description and ASP
logic programs to represent the policies. Their main goal is to prove properties
of the policies, not of the systems. They use abductive constraint logic program-
ming as proof framework [19]. Finally, [20] provides a model of non-monotonic
authorization based on a paraconsistent variant of extended logic programs ASP
semantics. Despite multiple differences this can be viewed as a precursor of our
work. One fundamental difference between all the work referenced above (except

5 This is call a white list. There is a complementary implementation (black list) in
which only subjects not in the list are permitted to execute the operation.

Authorization and Obligation Policies in Dynamic Systems 35

that in [20]) and ours is the presence of defeasible policies. Policies are assumed
to be strict limiting the modeling of complex scenarios.

5 Conclusion

We presented a simple and general language, AOPL(Σ), for specifying autho-
rization and obligation policies of an intelligent agent acting in a changing envi-
ronment and presented several ASP based algorithms for checking compliance of
an event with a policy specified in this language. The language has the following
distinctive features:

– Our approach allows to represent and reason about both, static and dynamic
domains.

– The ability to represent defeasible policies improves elaboration tolerance of
the policies and flexibility of the agent’s behavior.

– Policy specifications and algorithms can be naturally incorporated into var-
ious software systems including agents with high degree of autonomy, access
control and other security system, etc. They can be used by an agent for
finding authorized sequences of actions to achieve their goals and to fulfill
their obligations, as well as by systems monitoring such a compliance.

– The compliance checking methods are based on theory of action and change
and on answer set programming. This allows the use of general reasoning
techniques and systems (answer set solvers) and simplifies the correctness
proofs of the corresponding algorithms.

in the full version of this paper we will test the expressibility of our language on
the wide variety of policies and refine and expand the ASP based methods for
checking event compliance and other policy related reasoning tasks.

Acknowledgments. We would like to thank Vladimir Lifschitz for drawing our
attention to work by T. Woo and S. Lam.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

2. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of ICLP 1988, pp. 1070–1080 (1988)

3. Bandara, A., Calo, S., Lobo, J., Lupu, E., Russo, A., Sloman, M.: Toward a formal
characterization of policy specification and analysis. In: Electronic Proceedings of
the Annual Conference of ITA, ACITA (2007)

4. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Minker, J.
(ed.) Logic-Based Artificial Intelligence, pp. 257–279. Kluwer Academic, Dordrecht
(2000)

5. Turner, H.: Representing actions in logic programs and default theories: A situation
calculus approach. J. Log. Program. 31(1-3), 245–298 (1997)

36 M. Gelfond and J. Lobo

6. Balduccini, M., Gelfond, M.: The aaa architecture: An overview. In: AAAI Spring
Symposium 2008 on Architectures for Intelligent Theory-Based Agents, AITA 2008
(2008)

7. OASIS Standard: extensible access control markup language (XACML) v2.0 (2005)
8. Barker, S.: Security policy specification in logic. In: Proc. of Int. Conf. on Artificial

Intelligence, pp. 143–148 (June 2000)
9. Jajodia, S., Samarati, P., Subrahmanian, V., Bertino, E.: A unified framework for

enforcing multiple access control policies. In: Proc. of the ACM Int. SIGMOD Conf.
on Management of Data (May 1997)

10. Jajodia, S., Samarati, P., Subrahmanian, V.: A logical language for expressing
authorizations. In: Proc. of the IEEE Symposium on Security and Privacy, p. 31
(1997)

11. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Trans. Database Syst. 26(2), 214–260 (2001)

12. Chen, S., Wijesekera, D., Jajodia, S.: Incorporating dynamic constraints in the
flexible authorization framework. In: Samarati, P., Ryan, P.Y.A., Gollmann, D.,
Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 1–16. Springer, Heidelberg
(2004)

13. Stoller, S.D., Yang, P., Ramakrishnan, C.R., Gofman, M.I.: Efficient policy analysis
for administrative role based access control. In: ACM Conference on Computer and
Communications Security, pp. 445–455 (2007)

14. Kolovski, V., Hendler, J.A., Parsia, B.: Analyzing web access control policies. In:
WWW, pp. 677–686 (2007)

15. Halpern, J.Y., Weissman, V.: Using first-order logic to reason about policies. In:
Proc. of 16th IEEE Computer Security Foundations Workshop, pp. 251–265 (2003)

16. Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Obligations and their interaction
with programs. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734,
pp. 375–389. Springer, Heidelberg (2007)

17. Craven, R., Lobo, J., Lupu, E., Ma, J., Russo, A., Sloman, M., Bandara, A.: A
formal framework for policy analysis. Technical Report, Department of Computing,
Imperial College, London (2008)

18. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Com-
puting 4, 67–95 (1986)

19. Kakas, A.C., Michael, A., Mourlas, C.: ACLP: Abductive constraint logic program-
ming. J. Log. Program. 44(1-3), 129–177 (2000)

20. Woo, T.Y.C., Lam, S.S.: Authorizations in distributed systems: A new approach.
Journal of Computer Security 2(2-3), 107–136 (1993)

Twelve Definitions of a Stable Model

Vladimir Lifschitz

Department of Computer Sciences, University of Texas at Austin, USA
vl@cs.utexas.edu

Abstract. This is a review of some of the definitions of the concept of a
stable model that have been proposed in the literature. These definitions
are equivalent to each other, at least when applied to traditional Prolog-
style programs, but there are reasons why each of them is valuable and
interesting. A new characterization of stable models can suggest an alter-
native picture of the intuitive meaning of logic programs; or it can lead to
new algorithms for generating stable models; or it can work better than
others when we turn to generalizations of the traditional syntax that are
important from the perspective of answer set programming; or it can be
more convenient for use in proofs; or it can be interesting simply because
it demonstrates a relationship between seemingly unrelated ideas.

1 Introduction

This is a review of some of the definitions, or characterizations, of the concept
of a stable model that have been proposed in the literature. These definitions
are equivalent to each other when applied to “traditional rules”—with an atom
in the head and a list of atoms, some possibly preceded with the negation as
failure symbol, in the body:

A0 ← A1, . . . , Am,not Am+1,not An. (1)

But there are reasons why each of them is valuable and interesting. A new
characterization of stable models can suggest an alternative picture of the intu-
itive meaning of logic programs; or it can lead to new algorithms for generating
stable models; or it can work better when we turn to generalizations of the
traditional syntax that are important from the perspective of answer set pro-
gramming (ASP); or it can be more convenient for use in proofs, such as proofs
of correctness of ASP programs; or, quite simply, it can intellectually excite us
by demonstrating a relationship between seemingly unrelated ideas.

We concentrate here primarily on programs consisting of finitely many rules
of type (1), although generalizations of this syntactic form are mentioned several
times in the second half of the paper. Some work on the stable model semantics
(for instance, [13], [18], [33], [2]) is not discussed here simply because it is about
extending, rather than modifying, the definitions proposed earlier; this kind of
work does not tell us much new about stable models of traditional programs.

The paper begins with comments on the relevant work that had preceded
the invention of stable models—on the semantics of logic programming (Sec-
tion 2) and on formal nomonotonic reasoning (Section 3). Early contributions

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 37–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

38 V. Lifschitz

that can be seen as characterizations of the class of stable models in terms of
nonmonotonic logic are discussed in Section 4. Then we review the definition of
stable models in terms of reducts (Section 5) and turn to its characterizations
in terms of unfounded sets and loop formulas (Section 6). After that, we talk
about three definitions of a stable model that use translations into classical logic
(Sections 7 and 8) and about the relation between stable models and equilibrium
logic (Section 9).

In recent years, two interesting modifications of the definition of the reduct
were introduced (Section 10). And we learned that a simple change in the defini-
tion of circumscription can give a characterization of stable models (Section 11).

2 Minimal Models, Completion, and Stratified Programs

2.1 Minimal Models vs. Completion

According to [41], a logic program without negation represents the least (and
so, the only minimal) Herbrand model of the corresponding set of Horn clauses.
On the other hand, according to [4], a logic program represents a certain set of
first-order formulas, called the program’s completion.

These two ideas are closely related to each other, but not equivalent. Take,
for instance, the program

p(a, b).
p(X, Y) ← p(Y, X). (2)

The minimal Herbrand model

{p(a, b), p(b, a)}

of this program satisfies the program’s completion

∀XY (p(X, Y) ↔ ((X = a ∧ Y = b) ∨ p(Y, X))) ∧ a �= b.

But there also other Herbrand interpretations satisfying the program’s
completion—for instance, one that makes p identically true.

Another example of this kind, important for applications of logic program-
ming, is given by the recursive definition of transitive closure:

q(X, Y) ← p(X, Y).
q(X, Z) ← q(X, Y), q(Y, Z). (3)

The completion of the union of this program with a definition of p has, in many
cases, unintended models, in which q is weaker than the transitive closure of p
that we want to define.

Should we say then that Herbrand minimal models provide a better seman-
tics for logic programming than program completion? Yes and no. The concept
of completion has a fundamental advantage: it is applicable to programs with

Twelve Definitions of a Stable Model 39

negation. Such a program, viewed as a set of clauses, usually has several minimal
Herbrand models, and some of them may not satisfy the program’s completion.
Such “bad” models reflect neither the intended meaning of the program nor the
behavior of Prolog. For instance, the program

p(a). p(b). q(a).
r(X) ← p(X),not q(X). (4)

has two minimal Herbrand models:

{p(a), p(b), q(a), r(b)} (5)

(“good”) and
{p(a), p(b), q(a), q(b)} (6)

(“bad”). The completion of (4)

∀X(p(X) ↔ (X = a ∨X = b)) ∧ ∀X(q(X) ↔ X = a)
∧∀X(r(X) ↔ (p(X) ∧ ¬q(X))) ∧ a �= b

characterizes the good model.

2.2 The Challenge

In the 1980s, the main challenge in the study of the semantics of logic program-
ming was to invent a semantics that

– in application to a program without negation, such as (2), describes the
minimal Herbrand model,

– in the presence of negation, as in example (4), selects a “good” minimal
model satisfying the program’s completion.

Such a semantics was proposed in two papers presented at the 1986 Workshop
on Foundations of Deductive Databases and Logic Programming [1], [44]. That
approach was not without defects, however. First, it is limited to programs in
which recursion and negation “don’t mix.” Such programs are called stratified.
Unfortunately, some useful Prolog programs do not satisfy this condition. For
instance, we can say that a position in a two-person game is winning if there ex-
ists a move from it to a non-winning position (cf. [40]). This rule is not stratified:
it recursively defines winning in terms of non-winning. A really good semantics
should be applicable to rules like this.

Second, the definition of the semantics of stratified programs is somewhat
complicated. It is based on the concept of the iterated least fixpoint of a program,
and to prove the soundness of this definition one needs to show that this fixpoint
doesn’t depend on the choice of a stratification. A really good semantics should
be a little easier to define.

The stable model semantics, as well as the well-founded semantics [42,43], can
be seen as an attempt to generalize and simplify the iterated fixpoint semantics
of stratified programs.

40 V. Lifschitz

3 Nonmonotonic Reasoning

Many events in the history of research on stablemodels canbe onlyunderstood ifwe
think of it as part of a broader research effort—the investigation of nonmonotonic
reasoning. Three theories of nonmonotonic reasoning are particularly relevant.

3.1 Circumscription

Circumscription [28,28,29] is a syntactic transformation that turns a first-order
sentence F into the conjunction of F with another formula, which expresses
a minimality condition (the exact form of that condition depends on the “cir-
cumscription policy”). This additional conjunctive term involves second-order
quantifiers.

Circumscription generalizes the concept of a minimal model from [41]. The
iterated fixpoint semantics of stratified programs can be characterized in terms
of circumscription also [20]. On the other hand, circumscription is similar to
program completion in the sense that both are syntactic transformations that
make a formula stronger. The relationship between circumscription and program
completion was investigated in [37].

3.2 Default Logic

A default theory in the sense of [36] is characterized by a set W of “axioms”—
first-order sentences, and a set D of “defaults”—expressions of the form

F : M G1, . . . , M Gn

H
, (7)

where F, G1, . . . , Gn, H are first-order formulas. The letter M, according to Reiter,
is to be read as “it is consistent to assume.” Intuitively, default (7) is similar to the
inference rule allowing us to derive the conclusion H from the premise F , except
that the applicability of this rule is limited by the justifications G1, . . . , Gn; deriv-
ing H is allowed only if each of the justifications can be “consistently assumed.”

This informal description of the meaning of a default is circular: to decide
which formulas can be derived using one of the defaults from D we need to
know whether the justifications of that default are consistent with the formulas
that can be derived from W using the inference rules of classical logic and the
defaults from D—including the default that we are trying to understand! But
Reiter was able to turn his intuition about M into a precise semantics. His theory
of defaults tells us under what conditions a set E of sentences is an “extension”
for the default theory with axioms W and defaults D.

In Section 4 we will see that one of the earliest incarnations of the stable
model semantics was based on treating rules as defaults in the sense of Reiter.

3.3 Autoepistemic Logic

According to [32], autoepistemic logic “is intended to model the beliefs of an
agent reflecting upon his own beliefs.” The definition of propositional autoepis-
temic logic builds on the ideas of [30] and [31].

Twelve Definitions of a Stable Model 41

Formulas of this logic are constructed from atoms using propositional connec-
tives and the modal operator L (“is believed”). Its semantics specifies, for any
set A of formulas (“axioms”), which sets of formulas are considered “stable ex-
pansions” of A. Intuitively, Moore explains, the stable expansions of A are “the
possible sets of beliefs that a rational agent might hold, given A as his premises.”

In Section 4 we will see that one of the earliest incarnations of the stable model
semantics was based on treating rules as autoepistemic axioms in the sense of
Moore. The term “stable model” is historically related to “stable expansions” of
autoepistemic logic.

3.4 Relations between Nonmonotonic Formalisms

The intuitions underlying circumscription, default logic, and autoepistemic logic
are different from each other, but related. For instance, circumscribing (that is,
minimizing the extent of) a predicate p is somewhat similar to adopting the
default

true : M¬p(X)
¬p(X)

(if it is consistent to assume that X does not have the property p, conclude that
it doesn’t). On the other hand, Moore observes that “a formula is consistent if
its negation is not believed”; accordingly, Reiter’s M is somewhat similar to the
combination ¬L¬ in autoepistemic logic, and default (7), in propositional case,
is somewhat similar to the autoepistemic formula

F ∧ ¬L¬G1 ∧ · · · ∧ ¬L¬Gn → H.

However, the task of finding precise and general relationships between these
three formalisms turned out to be difficult. Discussing technical work on that
topic is beyond the scope of this paper.

4 Definitions A and B, in Terms of Translations into
Nonmonotonic Logic

The idea of [14] is to think of the expression not A in a logic program as syn-
onymous with the autoepistemic formula ¬LA (“A is not believed”). Since au-
toepistemic logic is propositional, the program needs to be grounded before this
transformation is applied. After grounding, each rule (1) is rewritten as a formula:

A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An → A0, (8)

and then L inserted after each negation. For instance, to explain the meaning of
program (4), we take the result of its grounding

p(a). p(b). q(a).
r(a) ← p(a),not q(a).
r(b) ← p(b),not q(b).

(9)

and turn it into a collection of formulas:

42 V. Lifschitz

p(a), p(b), q(a),
p(a) ∧ ¬L q(a) → r(a),
p(b) ∧ ¬L q(b) → r(b).

The autoepistemic theory with these axioms has a unique stable expansion,
and the atoms from that stable expansion form the intended model (5) of the
program.

This epistemic interpretation of logic programs—what we will call Defini-
tion A—is more general than the iterated fixpoint semantics, and it is much
simpler. One other feature of Definition A that makes it attractive is the sim-
plicity of the underlying intuition: negation as failure expresses the absence of
belief.

The “default logic semantics” proposed in [3] is translational as well; it inter-
prets logic programs as default theories. The head A0 of a rule (1) turns into the
conclusion of the default, the conjunction A1 ∧· · · ∧Am of the positive members
of the body becomes the premise, and each negative member not Ai turns into
the justification M¬Ai (“it is consistent to assume ¬Ai”). For instance, the last
rule of program (4) corresponds to the default

p(X) : M¬q(X)
r(X)

. (10)

There is no need for grounding, because defaults are allowed to contain variables.
This difference between the two translations is not essential though, because
Reiter’s semantics of defaults treats a default with variables as the set of its
ground instances. Grounding is simply “hidden” in the semantics of default
logic.

This Definition B of the stable model semantics stresses an analogy between
rules in logic programming and inference rules in logic. Like Definition A, it
has an epistemic flavor, because of the relationship between the “consistency
operator” M in defaults and the autoepistemic “belief operator” L (Section 3.4).

The equivalence between these two approaches to semantics of traditional
programs follows from the fact that each of them is equivalent to Definition C
of a stable model reviewed in the next section. This was established in [12] for
the autoepistemic semantics and in [26] for the default logic approach.

5 Definition C, in Terms of the Reduct

Definitions A and B are easy to understand—assuming that one is familiar with
formal nonmonotonic reasoning. Can we make these definitions direct and avoid
explicit references to autoepistemic logic and default logic?

This question has led to the most widely used definition of the stable model
semantics, Definition C [12]. The reduct of a program Π relative to a set M of
atoms is obtained from Π by grounding followed by

Twelve Definitions of a Stable Model 43

(i) dropping each rule (1) containing a term not Ai with Ai ∈ M , and
(ii) dropping the negative parts not Am+1, . . . ,not An from the bodies of the

remaining rules.

We say that M is a stable model of Π if the minimal model of (the set of clauses
corresponding to the rules of) the reduct of Π with respect to X equals X . For
instance, the reduct of program (4) relative to (5) is

p(a). p(b). q(a).
r(b) ← p(b). (11)

The minimal model of this program is the set (5) that we started with; conse-
quently, that set is a stable model of (4).

Definition C was independently invented in [10].

6 Definitions D and E, in Terms of Unfounded Sets and
Loop Formulas

According to [39], stable models can be characterized in terms of the concept
of an unfounded set, which was introduced in [42] as part of the definition of
the well-founded semantics. Namely, a set M of atoms is a stable model of a
(grounded) program Π iff

(i) M satisfies Π ,1 and
(ii) no nonempty subset of M is unfounded for Π with respect to M .2

According to [17], this Definition D can be refined using the concept of a
loop, introduced many years later by [23]. If we require, in condition (i), that
M satisfy the completion of the program, rather than the program itself, then
it will be possible to relax condition (ii) and require only that no loop contained
in M be unfounded; there will be no need then to refer to arbitrary nonempty
subsets in that condition.

In [23] loops are used in a different way. They associated with every loop X
of Π a certain propositional formula, called the loop formula for X . According
to their Definition E, M is a stable model of Π iff M satisfies the completion
of Π conjoined with the loop formulas for all loops of Π .

The invention of loop formulas has led to the creation of systems for gen-
erating stable models that use SAT solvers for search (“SAT-based answer set
programming”). Several systems of this kind performed well in a recent ASP
system competition [11].

1 That is, M satisfies the propositional formulas (8) corresponding to the rules of Π .
2 To be precise, unfoundedness is defined with respect to a partial interpretation, not

a set of atoms. But we are only interested here in the special case when the partial
interpretation is complete, and assume that complete interpretations are represented
by sets of atoms in the usual way.

44 V. Lifschitz

7 Definition F, in Terms of Circumscription

We saw in Section 4 that a logic program can be viewed as shorthand for an
autoepistemic theory or a default theory. The characterization of stable models
described in [25, Section 3.4.1] relates logic programs to the third nonmono-
tonic formalism reviewed above, circumscription. Like Definitions A and B, it
is based on a translation, but the output of that translation is not simply a
circumscription formula; it involves also some additional conjunctive terms.

The first step of that translation consists in replacing the occurrences of each
predicate symbol p in the negative parts ¬Am+1 ∧ · · · ∧ ¬An of the formulas (8)
corresponding to the rules of the program with a new symbol p′ and forming
the conjunction of the universal closures of the resulting formulas. The sentence
obtained in this way is denoted by C(Π). For instance, if Π is (4) then C(Π) is

p(a) ∧ p(b) ∧ q(a) ∧ ∀X(p(X) ∧ ¬q′(X) → r(X)).

The translation of Π is a conjunction of two sentences: the circumscription of
the old (non-primed) predicates in C(Π) and the formulas asserting, for each of
the new predicates, that it is equivalent to the corresponding old predicate. For
instance, the translation of (4) is

CIRC[C(Π)] ∧ ∀X(q′(X) ↔ q(X)); (12)

the circumscription operator CIRC is understood here as the minimization of
the extents of p, q, r.

The stable models of Π can be characterized as the Herbrand interpretations
satisfying the translation of Π , with the new (primed) predicates removed from
them (“forgotten”).

An interesting feature of this Definition F is that, unlike Definitions A–E,
it does not involve grounding. We can ask what non-Herbrand models of the
translation of a logic program look like. Can it be convenient in some cases to
represent possible states of affairs by such “non-Herbrand stable models” of a
logic program? A non-Herbrand model may include an object that is different
from the values of all ground terms, or there may be several ground terms having
the same value in it; can this be sometimes useful?

We will return to the relationship between stable models and circumscription
in Section 11.

8 Definitions G and H, in Terms of Tightening and the
Situation Calculus

We will talk now about two characterizations of stable models that are based,
like Definition F, on translations into classical logic that use auxiliary predicates.

For a class of logic programs called tight, stable models are identical to Her-
brand models of the program’s completion [6]. (Programs (2) and (3), used above
to illustrate peculiarities of the completion semantics, are not tight.) Definition G

Twelve Definitions of a Stable Model 45

[45] is based on a process of “tightening” that makes an arbitrary traditional pro-
gram tight. This process uses two auxiliary symbols: the object constant 0 and
the unary function constant s (“successor”). Besides, the tightened program uses
auxiliary predicates with an additional numeric argument. Intuitively, p(X, N)
expresses that there exists a sequence of N “applications” of rules of the pro-
gram that “establishes” p(X). The stable models of a program are described
then as Herbrand models of the completion of the result of its tightening, with
the auxiliary symbols “forgotten.”

We will not reproduce here the definition of tightening, but here is an example:
the result of tightening program (4) is

p(a, s(N)). p(b, s(N)). q(a, s(N)).
r(X, s(N)) ← p(X, N),not q(X).
p(X) ← p(X, N).
q(X) ← q(X, N).
r(X) ← r(X, N).

Rules in line 1 tell us that p(a) can be established in any number of steps that
is greater than 0; similarly for p(b) and q(a). According to line 2, r(X) can
be established in N + 1 steps if p(X) can be established in N steps and q(X)
cannot be established at all (note that an occurrence of a predicate does not get
an additional numeric argument if it is negated). Finally, an atom holds if it can
be established by some number N of rule applications.

Definition H [21] treats a rule in a logic program as an abbreviated description
of the effect of an action—the action of “applying” that rule—in the situation
calculus.3 For instance, if the action corresponding to the last rule of (4) is de-
noted by lastrule(X) then that rule can be viewed as shorthand for the situation
calculus formula

p(X, S) ∧ ¬∃S(q(X, S)) → r(X, do(lastrule(X), S))

(if p(X) holds in situation S and q(X) does not hold in any situation then r(X)
holds after executing action lastrule(X) in situation S).

In this approach to stable models, the situation calculus function do plays the
same role as adding 1 to N in Wallace’s theory. Instead of program completion,
Lin and Reiter use the process of turning effect axioms into successor state
axioms, which is standard in applications of the situation calculus.

9 Definition I, in Terms of Equilibrium Logic

The logic of here-and-there, going back to the early days of modern logic [15], is a
modification of classical propositional logic in which propositional interpretations
in the usual sense—assignments, or sets of atoms—are replaced by pairs (X, Y)

3 See [38] for a detailed description of the situation calculus [27] as developed by the
Toronto school.

46 V. Lifschitz

of sets of atoms such that X ⊆ Y . (We think of X as the set of atoms that are
true “here”, and Y as the set of the atoms that are true “there.”) The semantics
of this logic defines when (X, Y) satisfies a formula F .

In [35], the logic of here-and-there was used as a starting point for defining a
nonmonotonic logic closely related to stable models. According to that paper, a
pair (Y, Y) is an equilibrium model of a propositional formula F if F is satisfied in
the logic of here-and-there by (Y, Y) but is not satisfied by (X, Y) for any proper
subset X of Y . A set M of atoms is a stable model of a program Π iff (M, M) is
an equilibrium model of the set of propositional formulas (8) corresponding to
the grounded rules of Π .

This Definition I is important for two reasons. First, it suggests a way to ex-
tend the concept of a stable model from traditional rules—formulas of form (1)—
to arbitrary propositional formulas: we can say that M is a stable model of a
propositional formula F if (M, M) is an equilibrium model of F . This is valuable
from the perspective of answer set programming, because many “nonstandard”
constructs commonly used in ASP programs, such as choice rules and weight
constraints, can be viewed as abbreviations for propositional formulas [7]. Sec-
ond, Definition I is a key to the theorem about the relationship between the
concept of strong equivalence and the logic of here-and-there [19].

10 Definitions J and K, in Terms of Modified Reducts

In [5] the definition of the reduct reproduced in Section 5 is modified by in-
cluding the positive members of the body, along with negative members, in the
description of step (i), and by removing step (ii) altogeher. In other words, in
the modified process of constructing the reduct relative to M we delete from the
program all rules (1) containing in their bodies a term Ai such that Ai �∈ M
or a term not Ai such that Ai ∈ M ; the other rules of the program remain
unchanged. For instance, the modified reduct of program (4) relative to (5) is

p(a). p(b). q(a).
r(b) ← p(b),not q(b).

Unlike the reduct (11), this modified reduct contains negation as failure in the
last rule. Generally, unlike the reduct in the sense of Section 5, the modified
reduct of a program has several minimal models.

According to Definition J, M is a stable model of Π iff M is a minimal model
of the modified reduct of Π relative to M .

In [9] the definition of the reduct is modified in a different way. The reduct of
a program Π in the sense of [9] is obtained from the formulas (8) corresponding
to the grounding rules of Π by replacing every maximal subformula of F that is
not satisfied by M with “false”. For instance, the formulas corresponding to the
grounded rules (9) of (4) are the formulas

p(a), p(b), q(a),
false → false,
p(b) ∧ ¬ false → r(b).

Twelve Definitions of a Stable Model 47

Definition K: M is a stable model of Π iff M is a minimal model of the reduct
of Π in the sense of [9] relative to M .

Definitions J and K are valuable because, like definition I, they can be ex-
tended to some nontraditional programs. The former was introduced, in fact,
in connection with the problem of extending the stable model semantics to pro-
grams with aggregates. The latter provides a satisfactory solution to the problem
of aggregates as well. Furthermore, it can be applied in a straightforward way
to arbitrary propositional formulas, and this generalization of the stable model
semantics turned out to be equivalent to the generalization based on equilibrium
logic that was mentioned at the end of Section 9.

11 Definition L, in Terms of Modified Circumscription

In [8] a modification of circumscription is defined that is called the stable model
operator, SM. According to their Definition L, an Herbrand interpretation M is
a stable model of Π iff M satisfies SM[F] for the conjunction F of the universal
closures of the formulas (8) corresponding to the rules of Π .

Syntactically, the difference between SM and circumscription is really minor.
If F contains neither implications nor negations then SM[F] does not differ from
CIRC[F] at all. If F has “one level of implications” and no negations (as, for
instance, when F corresponds to a set of traditional rules without negation, such
as (2) and (3)), SM[F] is equivalent to CIRC[F]. But SM becomes essentially
different from CIRC as soon as we allow negation in the bodies of rules.

The difference between SM[F] and the formulas used in Definition F is that
the former does not involve auxiliary predicates and consequently does not re-
quire additional conjunctive terms relating auxiliary predicates to the predicates
occurring in the program.

Definition L combines the main attractive feature of Definitions F, G, and
H—no need for grounding—with the main attractive feature of Definitions I
and K—applicability to formulas of arbitrarily complex logical form. In [16] this
fact is used to give a semantics for an ASP language with choice rules and
aggregates without any references to grounding.

Among the other definitions of a stable model discussed in this paper, Defini-
tion I, based on equilibrium logic, is the closest relative of Definition L. Indeed,
in [34] the semantics of equilibrium logic is expressed by quantified Boolean
formulas, and we can say that Definition L eliminated the need to ground the
program using the fact that the approach of that paper can be easily extended
from propositional formulas to first-order formulas.

A characterization of stable models that involves grounding but is otherwise
similar to Definition L is given in [24]. It has emerged from research on the
nonmonotonic logic of knowledge and justified assumptions [22].

12 Conclusion

Research on stable models has brought us many pleasant surprises.

48 V. Lifschitz

At the time when the theory of iterated fixpoints of stratified programs was
the best available approach to semantics of logic programming, it was difficult
to expect that an alternative as general and as simple as Definition C would
be found. And prior to the invention of Definition K, who could think that
Definition C can be extended to choice rules, aggregates and more without
paying any price in terms of the simplicity of the process of constructing the
reduct?

A close relationship between stable models and a nonclassical logic that had
been invented decades before the emergence of logic programming was a big
surprise. The possibility of defining stable models by twisting the definition of
circumscription just a little was a surprise too.

There was a time when the completion semantics, the well-founded seman-
tics, and the stable model semantics—and a few others—were seen as rivals;
every person interested in the semantics of negation in logic programming would
tell you then which one was his favorite. Surprisingly, these bitter rivals turned
out to be so closely related to each other on a technical level that they even-
tually became good friends. One cannot study the algorithms used today for
generating stable models without learning first about completion and unfounded
sets.

And maybe the biggest surprise of all was that an attempt to clarify some
semantic issues related to negation in Prolog was destined to be enriched by
computational ideas coming from research on the design of SAT solvers and to
give rise to a new knowledge representation paradigm, answer set programming.

Acknowledgements

Many thanks to Michael Gelfond, Joohyung Lee, Nicola Leone, Yuliya Lierler,
Fangzhen Lin,Victor Marek, and Mirek Truszczyński for comments on a draft of
this note. I am also grateful to Mirek and to Andrea Formisano for the invitation
to contribute a paper to the special session on stable models planned as part of
ICLP’08. This work was partially supported by the National Science Foundation
under Grant IIS-0712113.

References

1. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In:
Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp.
89–148. Morgan Kaufmann, San Mateo (1988)

2. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In:
Working Notes of the AAAI Spring Symposium on Logical Formalizations of Com-
monsense Reasoning (2003),
http://www.krlab.cs.ttu.edu/papers/download/bg03.pdf

3. Bidoit, N., Froidevaux, C.: Minimalism subsumes default logic and circumscription
in stratified logic programming. In: Proc. LICS 1987, pp. 89–97 (1987)

4. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum Press, New York (1978)

http://www.krlab.cs.ttu.edu/papers/download/bg03.pdf

Twelve Definitions of a Stable Model 49

5. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS, vol. 3229. Springer, Heidelberg (2004)

6. Fages, F.: A fixpoint semantics for general logic programs compared with the well–
supported and stable model semantics. New Generation Computing 9, 425–443
(1991)

7. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and
Practice of Logic Programming 5, 45–74 (2005)

8. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp.
372–379 (2007)

9. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp. 119–131. Springer,
Heidelberg (2005)

10. Fine, K.: The justification of negation as failure. In: Proceedings of the Eighth
International Congress of Logic, Methodology and Philosophy of Science, pp. 263–
301. North Holland, Amsterdam (1989)

11. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński,
M.: The first answer set programming system competition. In: Baral, C., Brewka,
G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 3–17. Springer, Heidelberg
(2007)

12. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming
Conference and Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)

13. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D.,
Szeredi, P. (eds.) Proceedings of International Conference on Logic Programming
(ICLP), pp. 579–597 (1990)

14. Gelfond, M.: On stratified autoepistemic theories. In: Proceedings of National Con-
ference on Artificial Intelligence (AAAI), pp. 207–211 (1987)

15. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte
der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische
Klasse, pp. 42–56 (1930)

16. Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in
answer set programming. In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 472–479 (2008)

17. Lee, J.: A model-theoretic counterpart of loop formulas. In: Proceedings of Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pp. 503–508 (2005)

18. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence 25, 369–389 (1999)

19. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2, 526–541 (2001)

20. Lifschitz, V.: On the declarative semantics of logic programs with negation. In:
Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp.
177–192. Morgan Kaufmann, San Mateo (1988)

21. Lin, F., Reiter, R.: Rules as actions: A situation calculus semantics for logic pro-
grams. Journal of Logic Programming 31, 299–330 (1997)

22. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT
solvers. In: Proceedings of National Conference on Artificial Intelligence (AAAI),
pp. 112–117 (2002)

50 V. Lifschitz

23. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT
solvers. Artificial Intelligence 157, 115–137 (2004),
http://www.cs.ust.hk/faculty/flin/papers/assat-aij-revised.pdf

24. Lin, F., Zhou, Y.: From answer set logic programming to circumscription via logic
of GK. In: Proceedings of International Joint Conference on Artificial Intelligence,
IJCAI (2007)

25. Lin, F.: A Study of Nonmonotonic Reasoning. PhD thesis, Stanford University
(1991)

26. Marek, V., Truszczyński, M.: Stable semantics for logic programs and default the-
ories. In: Proc. North American Conf. on Logic Programming, pp. 243–256 (1989)

27. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of ar-
tificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4,
pp. 463–502. Edinburgh University Press, Edinburgh (1969)

28. McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artificial In-
telligence 13, 27–39, 171–172 (1980)

29. McCarthy, J.: Applications of circumscription to formalizing common sense knowl-
edge. Artificial Intelligence 26(3), 89–116 (1986)

30. McDermott, D., Doyle, J.: Nonmonotonic logic I. Artificial Intelligence 13, 41–72
(1980)

31. McDermott, D.: Nonmonotonic logic II: Nonmonotonic modal theories. Journal of
ACM 29(1), 33–57 (1982)

32. Moore, R.: Semantical considerations on nonmonotonic logic. Artificial Intelli-
gence 25(1), 75–94 (1985)

33. Niemelä, I., Simons, P.: Extending the Smodels system with cardinality and weight
constraints. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 491–521.
Kluwer, Dordrecht (2000)

34. Pearce, D., Tompits, H., Woltran, S.: Encodings for equilibrium logic and logic
programs with nested expressions. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001.
LNCS, vol. 2258, pp. 306–320. Springer, Heidelberg (2001)

35. Pearce, D.: A new logical characterization of stable models and answer sets. In: Dix,
J., Pereira, L., Przymusinski, T. (eds.) NMELP 1996. LNCS (LNAI), vol. 1216, pp.
57–70. Springer, Heidelberg (1997)

36. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
37. Reiter, R.: Circumscription implies predicate completion (sometimes). In: Pro-

ceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp.
418–420 (1982)

38. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

39. Saccá, D., Zaniolo, C.: Stable models and non-determinism in logic programs with
negation. In: Proceedings of ACM Symposium on Principles of Database Systems
(PODS), pp. 205–217 (1990)

40. van Emden, M., Clark, K.: The logic of two-person games. In: Micro-PROLOG:
Programming in Logic, pp. 320–340. Prentice-Hall, Englewood Cliffs (1984)

41. van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming
language. Journal of ACM 23(4), 733–742 (1976)

42. Van Gelder, A., Ross, K.A., Schlipf, J.S.: Unfounded sets and well-founded seman-
tics for general logic programs. In: Proceedings of the Seventh ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, Austin, Texas,
March 21-23, 1988, pp. 221–230. ACM Press, New York (1988)

http://www.cs.ust.hk/faculty/flin/papers/assat-aij-revised.pdf

Twelve Definitions of a Stable Model 51

43. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic
programs. Journal of ACM 38(3), 620–650 (1991)

44. Van Gelder, A.: Negation as failure using tight derivations for general logic pro-
grams. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Pro-
gramming, pp. 149–176. Morgan Kaufmann, San Mateo (1988)

45. Wallace, M.: Tight, consistent and computable completions for unrestricted logic
programs. Journal of Logic Programming 15, 243–273 (1993)

Sixty Years of Stable Models

David Pearce

Universidad Rey Juan Carlos, Madrid, Spain

Overview

Twenty years ago Michael Gelfond and Vladimir Lifschitz published their celebrated
paper on the stable model semantics of logic programs. Today, having built on and en-
larged those key ideas of twenty years ago, answer set programming (ASP) has emerged
as a flourishing paradigm of declarative programming, rich in theoretical advances and
maturing applications. This is one aspect of the legacy of stable models, and a very
important one. Another aspect, equally important, but somewhat farther from the lime-
light today, resides in the ability of stable models to provide us with a valuable method
of reasoning - to give it a name let us call it stable reasoning. In the full version of
this essay I examine some of the foundational concepts underlying the approach of sta-
ble models. I try to answer the question: “What is a stable model?” by searching for a
purely logical grasp of the stability concept. In so doing, I shall discuss some concepts
and results in logic from around 60 years ago. In particular, I look at questions such as:

– How does a notion of stability presented in a work on intuitionistic mathematics in
1947 relate to the Gelfond-Lifschtiz concept of 1988?

– How does the notion of constructible falsity published in 1949 help to explain cer-
tain properties of negation arising in the language of ASP?

– Why is a seminal paper by McKinsey and Tarski, published in 1948, important for
understanding the relations between answer sets and epistemic logic?

Relating stable models and answer sets to logical concepts and results from the 1940s
and even earlier sets the stage for a second line of discussion. I shall consider different
techniques for studying the mathematical foundations of stable reasoning and ASP. One
of these is based on classical, propositional and predicate logic. Its main advantage is
its familiarity, its wealth of results and its suitability for rapid prototyping. Its drawback
is that it lies, in a sense that can be made precise, one level removed from the action. We
first have to translate, manipulate and modify, before we obtain relevant representations
in classical logic that we could have obtained in simpler fashion using a non-classical
logic. The second approach is based directly on a well-known non-classical logic. I use
it to make some recommendations not only how stable reasoning and the foundations of
ASP can best be grasped and further studied, but also on some specific topics for future
research.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, p. 52, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The DLV Project: A Tour from Theory and Research
to Applications and Market�

Nicola Leone and Wolfgang Faber

Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy
{leone,faber}@mat.unical.it

Abstract. DLV is one of the most succesful and widely used ASP systems. It
is based on stable model semantics, and supports a powerful language extending
Disjunctive Logic Programming with many expressive constructs, including ag-
gregates, strong and weak constraints, functions, lists, and sets. In this paper, we
describe the long tour from basic research on languages and semantics, studies
on algorithms and complexity, design and implementation of prototypes, up to
the realization of a powerful and efficient system, which won the last ASP com-
petition, is employed in industrial applications, and is even ready for marketing
and commercial distribution. We report on the experience we got in more than
twelve years of work in the DLV project, focusing on most recent developments,
industrial applications, trends, and market perspectives.

1 Introduction

Disjunctive Logic Programming [1] under the stable model semantics [2,3] (DLP,
ASP)1 is a powerful formalism for Knowledge Representation and Reasoning. Dis-
junctive logic programs are logic programs where disjunction is allowed in the heads of
the rules and negation may occur in the bodies of the rules. Disjunctive logic programs
under stable model semantics are very expressive: they allow us to express, in a precise
mathematical sense, every property of finite structures over a function-free first-order
structure that is decidable in nondeterministic polynomial time with an oracle in NP
[4]. The high knowledge modeling power of DLP has implied a renewed interest in
this formalism in the recent years, due to the need for representing and manipulating
complex knowledge, arising in Artificial Intelligence and in other emerging areas, like
Knowledge Management and Information Integration.

In this paper, we overview the DLV project, which has been active for more than
twelve years, and has led to the development of the DLV system – the state-of-the-art
implementation of disjunctive logic programming. DLV is widely used by researchers
all over the world, and it is competitive, also from the viewpoint of efficiency, with
the most advanced ASP systems. Indeed, at the First Answer Set Programming Sys-
tem Competition [5]2, DLV won in the Disjunctive Logic Programming category. And
� Supported by M.I.U.R. within projects “Potenziamento e Applicazioni della Programmazione

Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresentazione di conoscenza:
estensioni e tecniche di ottimizzazione.”

1 ASP stands for Answer Set Programming, with answer-set being an alternative name for
stable-model, which is more frequently used than the latter today.

2 See also http://asparagus.cs.uni-potsdam.de/contest/

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 53–68, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://asparagus.cs.uni-potsdam.de/contest /

54 N. Leone and W. Faber

DLV finished first also in the general category MGS (Modeling, Grounding, Solving
— also called royal competition, which is open to all ASP systems). Importantly, DLV
is profitably employed in many real-word applications, and has stimulated quite some
interest also in industry (see Section 7). The key reasons for the success of DLV can be
summarized as follows:

Advanced knowledge modeling capabilities. DLV provides support for declarative
problem solving in several respects:

– High expressiveness of its knowledge representation language, extending disjunc-
tive logic programming with many expressive constructs, including aggregates,
weak constraints, functions, lists, and sets. These constructs not only increase the
expressiveness of the language; but they also improve its knowledge modeling
power, enhancing the usability in real-world contexts.

– Full declarativeness: ordering of rules and subgoals is immaterial, the computation
is sound and complete, and its termination is always guaranteed.

– A number of front-ends for dealing with specific AI applications [6,7,8,9], infor-
mation extraction [10], Ontology Representation and Reasoning [11,12].

Solid Implementation. Much effort has been spent on sophisticated algorithms and
techniques for improving the performance, including

– Database optimization techniques: indexing, join ordering methods [13], Magic
Sets [14,15].

– Search optimization techniques: heuristics [16,17,18], backjumping techniques
[19,20], pruning operators [21].

DLV is able to solve complex problems and can deal with data-intensive applications
by evaluating the program in mass-memory on a language subset [22,23].

Interoperability. A number of powerful mechanisms have been implemented to allow
DLV to interact with external systems:

– Interoperability with Semantic Web reasoners: DLVHEX [24].
– Interoperability with relational DBMSs: ODBC interface [25,22].
– Calling external (C++) functions from DLV programs: DLVEX [26].
– Calling DLV from Java programs: Java Wrapper [27].

In the following, we report on the long tour which has led to the DLV system imple-
mentation, focusing on most recent developments, industrial applications, trends, and
market perspectives.

2 Ancestry

Probably the earliest relevant roots of DLV are to be found in the 1950ies, when
McCarthy proposed the use of logical formulas as a basis for a knowledge repre-
sentation language [28,29]. It was soon realized, however, that classical logic is not
always adequate to model commonsense reasoning [30]. As an alternative, it has been

The DLV Project: A Tour from Theory and Research to Applications and Market 55

suggested to represent commonsense reasoning using logical languages with non-
monotonic consequence relations, which allow new knowledge to invalidate some of
the previous conclusions. This observation has led to the development and investiga-
tion of new logical formalisms, nonmonotonic logics, on which nonmonotonic logic
programming has been based.

In the 1980ies, Minker proposed Disjunctive Logic Programming (DLP) [1], which
allows for disjunctions instead of just atoms in rule heads, yielding (in general) a more
expressive language. Early methods for implementations have been proposed already in
the book by Lobo, Minker, and Rajasekar [31]. In the early 1990ies nonmonotonic and
disjunctive logic programming have been succesfully merged in the semantic proposals
by Gelfond and Lifschitz [3] and Przymusinski [32], called Stable Model Semantics,
and yielding what is today known as Answer Set Programming (ASP),3 Stable Logic
Programming, ASP-Prolog, or simply Disjunctive Logic Programming (DLP).

After a few early attempts on implementing DLP [33,34,35], the foundation of what
would become the DLV system was laid in the seminal works [36] and [37]. These
articles essentially contain an abstract description of the basic DLV algorithm.

3 Implementing the Core System

The core system of DLV works on a set of disjunctive rules, i.e., clauses of the form

a1 v · · · v an :- b1, · · · , bk, not bk+1, · · · , not bm

where atoms a1, . . . , an, b1, . . . , bm may contain variables and each of n, k,m may be
0. If n = 0, then the clause is referred to as an integrity constraint, as the empty head
acts like falsity. If n = 1 and k = m = 0, the rule is referred to as a fact, and for facts
:- is usually omitted. The intuitive reading of such a rule is “If all b1, . . . , bk are true
and none of bk+1, . . . , bm is true, then at least one atom in a1, . . . , an must be true.”
Additionally, there is a stability criterion [2,3], which also implies minimality of truth.

Disjunctive logic programming is strictly more expressive that disjunction-free logic
programming, it can represent some problems which cannot be encoded in OR-free
programs, and cannot be translated even to SAT in polynomial time. We next show an
example of a problem, called strategic companies, where disjunction is strictly needed.

Example 1. Suppose there is a collection C = {c1, . . . , cm} of companies ci owned by
a holding, a set G = {g1, . . . , gn} of goods, and for each ci we have a set Gi ⊆ G of
goods produced by ci and a set Oi ⊆ C of companies controlling (owning) ci. Oi is
referred to as the controlling set of ci. This control can be thought of as a majority in
shares; companies not in C, which we do not model here, might have shares in compa-
nies as well. Note that, in general, a company might have more than one controlling set.
Let the holding produce all goods in G, i.e. G =

⋃
ci∈C Gi.

A subset of the companies C′ ⊆ C is a production-preserving set if the following
conditions hold: (1) The companies in C′ produce all goods in G, i.e.,

⋃
ci∈C′ Gi = G.

3 Stable Models are also called Answer Sets, and we will often use the latter name which is
more frequently used today.

56 N. Leone and W. Faber

(2) The companies in C′ are closed under the controlling relation, i.e. if Oi ⊆ C′ for
some i = 1, . . . ,m then ci ∈ C′ must hold.

A subset-minimal set C′, which is production-preserving, is called a strategic set. A
company ci ∈ C is called strategic, if it belongs to some strategic set of C.

In the following, we adopt the setting from [38] where each product is produced by
at most two companies (for each g ∈ G |{ci | g ∈ Gi}| ≤ 2) and each company is
jointly controlled by at most three other companies, i.e. |Oi| ≤ 3 for i = 1, . . . ,m
(in this case, the problem is still ΣP

2 -hard). For a given instance of STRATCOMP, the
program will contain the following facts:

– company(c) for each c ∈ C,
– prod by(g, cj , ck), if {ci | g ∈ Gi} = {cj, ck}, where cj and ck may possibly

coincide,
– contr by(ci, ck, cm, cn), if ci ∈ C and Oi = {ck, cm, cn}, where ck, cm, and cn

are not necessarily distinct.

Given this instance representation, the problem itself can be represented by the fol-
lowing two rules:

s1 : strat(Y) v strat(Z):- prod by(X,Y, Z).
s2 : strat(W):- contr by(W,X, Y, Z), strat(X), strat(Y), strat(Z)

Here strat(X) means that company X is a strategic company.
DLV today can solve instances with thousands of companies in reasonable time.

The main tasks for computing a DLP program in a (by now) typical architecture are
eliminating variables by instantiation (grounding), creating candidate answer sets (gen-
eration), and finally checking their stability (checking). It is worthwhile noting that, due
to the higher expressiveness of DLP, the (stability) checking is a co-NP-complete task
for disjunctive programs, while it is polynomially doable for OR-free programs.

In November 1996 the DLV project started in Vienna, its goal being the production
of a performant system for computing answer sets of disjunctive logic programs. A
working system was produced fairly quickly, and the first description of the system was
presented at LPNMR 1997 [39]. The basic architecture of the system as presented in
that paper stands until today more or less unchanged. The paper also introduced the
grounding module, which proved to be a strong component of the system. Along with
the basic model generator, it also described the model checker (a key module which is
not needed for dealing with nondisjunctive programs) and various forms of dependency
graphs.

The following major publication about the system was at KR 1998 [40], in which
the newly created front-ends (brave and cautious reasoning, various forms of diagnostic
reasoning, and a subset of the then-unpublished SQL-3 (later SQL98) language (see also
Section 4), which allows for recursion in SQL. Another main focus of this work were
the benchmarks. DLV was compared to two of the most competitive systems of the era,
Smodels [41] (as yet without Lparse) and DeReS [42], and found to be competitive.

The computational core modules of DLV continued to be improved. A major step
was the move to a more goal-oriented computation, by introducing a new truthvalue

The DLV Project: A Tour from Theory and Research to Applications and Market 57

or atom class named “must-be-true” [43] together with a suitable heuristic. These fea-
tures proved to boost the system’s performance on many benchmarks. In fact, work on
tuning the heuristics has been continued ever since, giving rise to a number of signif-
icant improvements [16,44,45]. Other enhancements of the model generator were the
comparison of various pruning operators [46,21] employed during model construction,
which also yields considerable performance gains on certain kinds of problem.

Also DLV’s model checker has been improved by introducing a new, lightweight
technique which permits the use of a SAT solver to decide model stability [47]. It has
been shown that the introduction of this technique significantly improves performance
on the hardest (ΣP

2 -complete) problems that DLV can handle in a uniform way.
The grounding module is a very important part of DLV, as on the one hand it solves

a difficult problem and on the other hand it should output a program that is as small
as possible, as the efficiency of all subsequent computations will in general depend
on this size. Thus, grounding optimizations are very important and often have a pro-
found impact on the overall system performance, cf. [48,13,20,17]. The enhancement
of grounding by “porting” optimization techniques from relational databases to DLP,
has been one of the most effective improvements of DLV for real-world applications.

4 Language Extensions and Their Optimization

Early on, extensions of the basic language were a main focus of DLV. The first of
these was the introduction of support for brave and cautious query answering, first de-
scribed in [49]. In nonmonotonic reasoning, these are the two major modes for answer-
ing queries. In DLV, a program with a query is transformed into a program the structure
and meaning of which depends on the reasoning mode. Answer sets are then computed
for the transformed program: For brave reasoning, each answer set supports the truth of
the query, while for cautious reasoning, an answer set is a witness for the falsity of the
query.

Example 2. In order to check whether a company c is strategic in Example 1, one can
write a query strat(c)?. Brave reasoning on this query decides whether c is strategic,
while cautious reasoning decides whether c is contained in each strategic set.

For query evaluation, an adaption of the Magic Sets method to (fragments of) the
DLV language has been introduced as an optimization [15,14]. The basic idea is to
make the process more query oriented, and consider only a fragment of the program
which is sufficient to answer the query. In addition, if constants are present in the query,
this optimization attempts to minimize also the rule instantiations to those that are nec-
essary to answer the query correctly.

The introduction of weak constraints [50,51] was the next major language extension.
A weak constraint is a construct of the form

:∼ b1, · · · , bk, not bk+1, · · · , not bm.[w : l]

where for m ≥ k ≥ 0, b1, . . . , bm are atoms, while w (the weight) and l (the level)
are positive integer constants or variables occuring in b1, . . . , bm. For convenience, w

58 N. Leone and W. Faber

and/or l might be omitted and are set to 1 in this case. The idea is that weak constraints
should preferably be satisfied, with the weight and level specifying a penalty in case a
weak constraint is not satisfied. Basically, for each answer set we can associate a vector
of weights, which are the sum of weights of unsatisfied weak constraints of a specific
level. Optimal answer sets are then selected by first choosing those answer sets having
the least weight for the highest level, among these those having the least weight for the
next highest level and so on (that is, the optimum of a lexicographical ordering).

Example 3. For instance, if one wants to avoid scenarios in which company c is con-
tained in a strategic set (and thus be bound to sold), we may add a weak constraint

:∼ strat(c). [1 : 1]

in this way, if strategic sets exist which do not contain c, then only those will be com-
puted. However, this is a preference criterion: if there exists no one missing c, then the
other answer sets will be anyway computed.

Having weak constraints actually increases the expressiveness of the language and
incurred some fairly crucial modifications of the core system. For instance, the model
generator potentially is activated twice in the presence of weak constraints: Once for
determining the optimal value of answer sets and a second time for enumerating the
optimal answer sets.

Especially with the advent of data-intensive applications, it became clear that some
interface to databases is necessary, as extracting data from a database and putting it
into a temporary text file is not a very practical option. After initial trials with propri-
etary interfaces, eventually an ODBC interface has been provided, which abstracts from
the actual database used, and allows for both importing input data from and exporting
answer set data to an external database.

A major language extension was the introduction of aggregates [52]. Aggregate
atoms consist of an aggregation function (currently one of cardinality, sum, product,
maximum, minimum), which is evaluated over a multiset of terms, which are deter-
mined by the truthvalues of standard (non-aggregate) atoms. The syntax is

L ≺1 F{Vars :Conj } ≺2 U

where F is a function #count, #min, #max, #sum, #times,≺1,≺2∈ {=, <, ≤, >,
≥}, and L and U , the guards, are integers or variables.

Intuitively, a symbolic set {X,Y : a(X,Y), not p(Y)} stands for the set of pairs
(X,Y) making the conjunction a(X,Y), not p(Y) true, i.e., S = {(X,Y) | ∃Y such
that a(X,Y) ∧ not p(Y) is true}. When evaluating an aggregate function over it, the
projection on the first elements of the pairs is considered, which yields a multiset in
general. The value yielded by the function application is compared against the guards
in order to determine the truth value of the aggregate. DLV comes with full support for
non-recursive aggregates, as described in [52]. To this end, specialized data structures
were introduced, and the model generation algorithm was significantly enhanced in
order to deal with aggregates.

In presence of recursion through aggregates, special care is needed for defining the
semantics of aggregates.

The DLV Project: A Tour from Theory and Research to Applications and Market 59

Example 4. Consider a(1):-#count{X:a(X)} < 1.
we see that in this example a(1) can be true only if a(1) is false. Therefore, any an-
swer set containing a(1) should not include a(1), and any answer set not containing
a(1) should include a(1), which are both infeasible conditions and therefore no answer
should exist for this program.

However, looking at a(1):-#count{X:a(X)} > 0.
intuitively, a(1) can become true only if a(1) is true, which would thus be a self-support
for a(1). One would expect that in any answer set a(1) is false.

In a way, the first program behaves just like a(1):-not a(1). while the second one
is like a(1):- a(1). Thus, “easy” approaches treating aggregate atoms like negative
atoms are bound to give incorrect results on programs such as the second.

In [53,54] a semantics has been presented, which deals with these issues in a simple,
but effective way. Later, in [55,56], characterizations of this semantics using an adapted
version of unfounded sets has been presented, which paved the way for a reasonable
implementation for recursive aggregates. Currently, a special version of DLV exists,
which supports an ample class of programs with recursive aggregates under this seman-
tics. This will eventually be integrated in the main distribution of DLV.

The latest extension of DLV language is the addition of functions, lists, and sets,
along with a rich library of built-in functions for their manipulation [57]. This is a
very relevant extension, which lifts up the expressive power of the language allowing
to encode any computable function. Even if the integration in the main distribution of
DLV is under development, this extension is already spread and succesfully used in
many universities and research institutes.4

5 Frontends, Backends and Research-Applications

DLV has been succesfully integrated as a computational engine in systems which use it
as an oracle, usually acting as frontends and/or backends to DLV. Also the implemen-
tation of brave and cautious query answering described in Section 4 can be viewed as
such a frontend, but since it seamlessly integrates into the language we have described
it as a language extension.

The first major frontend was the diagnosis frontend [6], which is now integrated into
the DLV distribution. It supports various modes of abductive- and consistency-based
diagnosis by transforming the input into a DLV program and extracting the diagnoses
of the answer sets. Later, also diagnosis with penalization [9] has been studied and
implemented using DLV.

The second frontend which became included in the DLV distribution supported ob-
ject programs which can be linked via inheritance constructs, as described in [58]. Also
this could be viewed as a language extension by considering programs not in any object
as belonging to a special, isolated object. Also in this case the input is transformed into
a standard DLV program and the resulting answer sets are cleaned of the intermediate
symbols introduced by the translation.

4 We refrain from providing further details, since the paper describing the extension of DLV
with functions is reported in this book.

60 N. Leone and W. Faber

The last major frontend to be included into the DLV distribution was the support for
finding plans for domains formulated in the action language K [59,7,60]. In this case,
the interaction with DLV is somewhat more complex, and also the extraction of plans
from answer sets is slightly more involved than in the frontends discussed so far.

There are several other systems which wrap around DLV; a few of these can also
use other ASP systems in place of DLV.

There are actually two such systems for ASP with preferences, where the preferences
are expressed between rules. The system plp [61] transforms these programs into a
standard ASP program and extracts the preferred answer sets from the answer sets of
the transformed program. A different approach has been presented in [62], which uses
a metainterpretation technique. In this context, this means that the propositional atoms
of the preference programs become terms in the transformed program, where the exten-
sional database defines the program structure and an intensional fixed part characterizes
the semantics.

The system nlp is an implementation for computing answer sets for programs with
nested expressions, which relax the structural requirements for connectors occurring in
rules [63]. Also here the program with nested expressions is transformed, introducing
several intermediate predicates on the way, which are finally filtered from the output.

The system A-POL provides a solver for programs with partial order constructs by
transforming them to standard DLV programs [64].

A major endeavor and interdisciplinary success has been the coupling between An-
swer Set Programming and Description Logic. System NLP-DL [65,66] uses DLV on
its ASP side. It turned out that for certain tasks DLV can perform much better than
Description Logic systems in this sort of coupling.

DLV has also been used inside a system for strong equivalence testing and associated
program simplification [67]. Also in this case, it is used as a backend for deciding
whether some rule is redundant or can be simplified.

Two systems have been devised which work on action descriptions in the language
K and on plans, one for monitoring plan execution (KMonitor) [68], and another one
which diagnoses plan execution failures (KDiagnose) [69]. Another system implements
query answering on action descriptions (AD-Query) [70]. All of these systems use DLV
for solving various computational tasks arising during their execution.

Recently, a system for Answer Set Optimization [71] has been presented, which
handles programs with preferences expressed among atoms (rather than rules as for
plp described earlier). In this case, DLV is used for producing candidate answer sets,
which are then tested for optimality by other software.

Finally, we mention spock, a system for debugging ASP programs [72,73], which
may be configured to use DLV as its computational core.

6 Spin-Off Projects

Several projects have spun off DLV over the time. A fairly early one was the DLV Java
wrapper, described in [27]. Since industrial applications (cf. Section 7) are frequently
developed in a Java environment, some means had to be found to interact with DLV
from Java. The DLV Java wrapper project provides interfaces, which are in some way

The DLV Project: A Tour from Theory and Research to Applications and Market 61

inspired by ODBC or JDBC. They allow for creating DLV programs, passing them to
DLV, invoking DLV and getting back and analyzing the answer sets produced. This
software has been succesfully applied in industrial settings described in Section 7.

DLVT [74] is a project which enhances DLV by so-called templates. These templates
can be viewed as abstractions for programs, which can then be used by instantiating
them for a particular setting. The semantics for these constructs is defined by expanding
the respective templates, and allows for modular programming in DLV.

Again experiences with industrial applications motivated the creation of DLVEX
[26]. The main observation was that it is often necessary to delegate certain compu-
tational tasks in programs to functions evaluated outside of DLV’s proper language.
This requirement arises because ASP is not well-suited for certain tasks such as string-
handling, various numeric computations and similar features. Moreover it allows for
easy language extensions, the idea being to define a suitable semantics for a generic ex-
tension, the semantics for a particular extension then being automatically provided by
the generic definition. It can also be seen as an easy means for providing new data types
and associated operations. Several libraries have already been provided for DLVEX, in-
cluding numeric operations, string handling, manipulation of biological data, and more.
It is planned that these features will be merged into standard DLV in the near future.

A system which is similar in spirit is dlvhex [24], which also allows for external
calls. However, while DLVEX is situated at the grounding level, in dlvhex these exter-
nal predicates may be evaluated at an arbitrary stage of the computation. For instance,
the truthvalue of an atom may be determined by the answer that a Description Logic
reasoner provides for a query, where the state of the Description Logic reasoner itself
may be determined by the truthvalue of atoms occurring in the dlvhex program. This
project has received a lot of attention by the Semantic Web community.

A spin-off of DLV which seems very attractive for real-world applications, where
large amount of data are to be dealt with, is DLVDB. The basic idea undelying DLVDB

[23,22] is to create a close interaction between DLV and databases, delegating some
computational tasks to the database engine. The motivation is that if some data is ob-
tained from a database anyway, it might be more efficient to reason on it directly where
it resides; this becomes particularly important if the data size does not fit main memory
(which is a typical case in real world applications). Moreover, if input data is spread
over different databases, DLVDB provides suitable constructs to reason on them trans-
parently. Finally, as many database engines give the possibility to attach stored function
calls to queries, DLVDB allows for attaching such function calls to declarative pro-
grams, allowing for solving procedural sub-tasks directly on the database.

Essentially forming a language extension, a system for supporting parametric con-
nectives [75] in the language of DLV has been implemented, which should eventually
be integrated into regular DLV. Parametric connectives allow for dynamically creating
disjunctions and conjunctions during grounding. This is especially useful if one does
not know in advance which or how many options there will be in a particular instance
of a program. For instance, for the well-known 3-colorability problem it is known in ad-
vance that there are exactly three colors available, and one can exploit this knowledge
for writing a concise program that includes a disjunction involving the three colors.
When one is interested in n-colorability instead, one cannot write a similar disjunction,

62 N. Leone and W. Faber

as it depends on the problem instance how many colors will be available. With paramet-
ric disjunctions, this can be done as the disjunction will be dynamically created based
on the extension of some predicate. The following program encodes n-colorability by
means of parametric disjunction:∨

{col(X,C) : color(C)} :- vertex(X)
:- col(X,C), col(Y,C), edge(X,Y), X �= Y

A project for improving runtimes of basic DLV is to endow the model generator with
a reason calculus and backjumping [19]. These techniques are quite well-known in SAT
solving, and in this project those methods have been considerably adapted to suit the
ASP world, and the DLV system in particular. It has been shown that these techniques
are beneficial with respect to runtime, and they will eventually be included in mainline
DLV.

Based on the reason calculus discussed above, another side project has been estab-
lished that defines VSIDS-like heuristics for ASP, and DLV in particular [76]. This kind
of heuristics tries to look back on the computation and guide choices based on previous
experiences. Standard DLV does the opposite, it looks ahead by performing a tentative
computational step and analyzing the output. Eventually it is planned to integrate also
this kind of heuristics into DLV.

A recent effort to improve the scalability of DLV has been the parallelization of
DLV’s grounding module [77]. The original implementation was sequential, but con-
ceptually the grounding procedure has potential for parallel processing. The implemen-
tation is done having a multiprocessor machine with shared memory in mind.

7 Industry-Level Applications and Commerce

Unlike many other ASP systems, DLV has a history of applications on the industrial
level. An important application area, in which DLV has been succesfully applied, is
Information Integration. The European Commission funded a project on Information
Integration, which produced a sophisticated and efficient data integration system, called
INFOMIX, which uses DLV at its computational core [78]. The powerful mecha-
nisms for database interoperability, together with magic sets [15,14] and other database
optimization techniques [13,79], which are implemented in DLV, make DLV very well-
suited for handling information integration tasks. And DLV (in INFOMIX) was succes-
fully employed in an advanced real-life application, in which data from various legacy
databases and web sources must be integrated for the information system of the Univer-
sity of Rome “La Sapienza”.

The DLV system has been experimented also with an application for Census Data
Repair [80], in which errors in census data are identified and eventually repaired. This
application includes a formalization of error models and hypothetical reasoning on pos-
sible repairs. DLV has been employed at CERN, the European Laboratory for Particle
Physics, for an advanced deductive database application that involves complex knowl-
edge manipulation on large-sized databases. The Polish company Rodan Systems S.A.
has exploited DLV in a tool for the detection of price manipulations and unauthorized
use of confidential information, which is used by the Polish Securities and Exchange

The DLV Project: A Tour from Theory and Research to Applications and Market 63

Commission. In the area of self-healing Web Services5 the most recent extension of
DLV with function symbols is succesfully exploited for implementing the computation
of minimum cardinality diagnoses [81]. Function symbols are employed to replace ex-
istential quantification, which is needed to model the existence of values in case the
semantics of Web Services is unknown, e.g., because of faulty behaviors.

Thanks to the high expressivity of the language and to its solid implementation DLV
has been attractive for many other similar applications. However, the most valuable
applications from a commercial viewpoint are those in the area of Knowledge Manage-
ment, which have been realized by the company EXEURA s.r.l., with the support of the
DLVSYSTEM s.r.l. (see below).

The experience gained in these real-world settings confirmed plans to promote DLV
also commercially. To this end, the key people involved in DLV founded the company
DLVSYSTEM s.r.l. in September 2005. This company is located in Calabria, Italy, and
its main goal is to license DLV to interested partners in industry as well as to provide
consultancy and support for its use in an industrial context.

The main licensee so far has been EXEURA, a spin-off company of the Univer-
sity of Calabria having a branch also in Chicago, which extensively uses DLV in its
Knowledge Management (KM) products. Three main industrial prototypes of Exeura,
currently in production, are strongly based on DLV: OntoDLV, Olex, and HiLeX.

OntoDLV is a system for ontology specification and reasoning [82,11]. The sys-
tem supports a powerful ontology representation language, called OntoDLP, extending
Disjunctive Logic Programming with all the main ontology features including classes,
inheritance, relations, and axioms. OntoDLP is strongly typed, and includes also com-
plex type constructors, like lists and sets. Importantly, OntoDLV supports powerful
rule-based reasoning on ontologies, by incorporating the DLV system. The semantic
peculiarities of DLP, like the Closed World Assumption (CWA) and the Unique Name
Assumption (UNA), allow to overcome some limits of OWL, making OntoDLV very
suitable for Enterprise Ontologies. It is worth noting that OntoDLV supports a powerful
interoperability mechanism with OWL, allowing the user to retrieve information from
OWL ontologies, and build rule-based reasoning on top of OWL ontologies. Moreover,
through the exploitation of DLVDB, OntoDLV is able to deal also with data-intensive
applications, by working in mass-memory when main memory is not sufficient. The
system is already used in a number of real-world applications including agent-based
systems, information extraction, and text classification.

HiLeX [10] supports a semantic-aware approach to information extraction from un-
structured data (i.e., documents in several formats, e.g., html, txt, doc, pdf, etc). In
HiLeX information extraction is “Ontology driven”, and exploits a domain descrip-
tion expressed through an OntoDLP ontology. A pre-processing phase transforms the
input document in a set of logical facts, extraction patterns are rewritten into log-
ical rules, and the whole process of information extraction amounts to answer set
computation, which is carried out by the DLV system. The HiLex system has been suc-
cesfully applied for the extraction of clinical data (stored in flat text format in Italian lan-
guage) from an Electronic Medical Record (EMR), and for the extraction of data from
balance sheets.

5 http://wsdiamond.di.unito.it

http://wsdiamond.di.unito.it

64 N. Leone and W. Faber

Olex is a rule-based system for text classification [83,84]. Roughly, given an ontol-
ogy of the domain, Olex assigns each input document to the classes of the ontology
which are relevant for it (by recognizing and analyzing the concepts treated in the doc-
ument). For instance, Olex can automatically classify ANSA news according with their
contents (Sport, Economy, Politics, etc.). Olex classifiers are learned automatically in
a “training phase”, and expressed by DLP rules. The document classification process
amounts to answer set computation, which is performed by the DLV system. Olex has
been succesfully applied in a number of real world applications in various industries
including health-care, tourism, and insurance.

Exeura is currently concentrating its efforts on the implementation of a data-mining
suite, where DLV will be employed for reasoning on top of the results of data mining.

References

1. Minker, J.: On Indefinite Data Bases and the Closed World Assumption. In: Loveland, D.W.
(ed.) CADE 1982. LNCS, vol. 138, pp. 292–308. Springer, Heidelberg (1982)

2. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In:
ICLP/SLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)

3. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
NGC 9, 365–385 (1991)

4. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22(3), 364–418 (1997)
5. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first

answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS, vol. 4483, pp. 3–17. Springer, Heidelberg (2007)

6. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The Diagnosis Frontend of the dlv System. AI
Communications 12(1-2), 99–111 (1999)

7. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A Logic Programming Approach to
Knowledge-State Planning, II: the DLVK System. AI 144(1-2), 157–211 (2003)

8. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Answer Set Planning under Action
Costs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS, vol. 2424,
pp. 186–197. Springer, Heidelberg (2002)

9. Perri, S., Scarcello, F., Leone, N.: Abductive Logic Programs with Penalization: Semantics,
Complexity and Implementation. TPLP 5(1-2), 123–159 (2005)

10. Ruffolo, M., Manna, M., Gallucci, L., Leone, N., Saccà, D.: A Logic-Based Tool for Seman-
tic Information Extraction. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.)
JELIA 2006. LNCS, vol. 4160, pp. 506–510. Springer, Heidelberg (2006)

11. Ricca, F., Leone, N.: Disjunctive Logic Programming with types and objects: The DLV+

System. Journal of Applied Logics 5(3), 545–573 (2007)
12. Ricca, F., Leone, N., De Bonis, V., Dell’Armi, T., Galizia, S., Grasso, G.: A DLP System with

Object-Oriented Features. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR
2005. LNCS, vol. 3662, pp. 432–436. Springer, Heidelberg (2005)

13. Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantiators by Join-Ordering Methods.
In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS, vol. 2173, pp. 280–
294. Springer, Heidelberg (2001)

14. Faber, W., Greco, G., Leone, N.: Magic Sets and their Application to Data Integration.
JCSS 73(4), 584–609 (2007)

15. Cumbo, C., Faber, W., Greco, G.: Enhancing the magic-set method for disjunctive datalog
programs. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132. Springer, Hei-
delberg (2004)

The DLV Project: A Tour from Theory and Research to Applications and Market 65

16. Faber, W., Leone, N., Pfeifer, G.: Experimenting with Heuristics for Answer Set Program-
ming. In: IJCAI 2001, pp. 635–640 (2001)

17. Perri, S., Scarcello, F., Catalano, G., Leone, N.: Enhancing DLV instantiator by backjumping
techniques. AMAI 51(2-4), 195–228 (2007)

18. Faber, W., Leone, N., Ricca, F.: Heuristics for Hard ASP Programs. In: IJCAI 2005, pp.
1562–1563 (2005)

19. Ricca, F., Faber, W., Leone, N.: A Backjumping Technique for Disjunctive Logic Program-
ming. AI Communications 19(2), 155–172 (2006)

20. Leone, N., Perri, S., Scarcello, F.: BackJumping Techniques for Rules Instantiation in the
DLV System. In: NMR 2004, pp. 258–266 (2004)

21. Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning Operators for Disjunctive Logic Pro-
gramming Systems. Fundamenta Informaticae 71(2-3), 183–214 (2006)

22. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries in data-
base and logic programming systems. TPLP 8, 129–165 (2008)

23. Terracina, G., De Francesco, E., Panetta, C., Leone, N.: Enhancing a DLP system for
advanced database applications. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS,
vol. 5341, pp. 119–134. Springer, Heidelberg (2008)

24. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order Rea-
soning and External Evaluations in Answer Set Programming. In: IJCAI 2005, Edinburgh,
UK, pp. 90–96 (2005)

25. Leone, N., Lio, V., Terracina, G.: DLV DB: Adding Efficient Data Management Features
to ASP. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 341–345.
Springer, Heidelberg (2003)

26. Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value invention in logic
programming. AMAI 50(3-4), 333–361 (2007)

27. Ricca, F.: The DLV Java Wrapper. In: ASP 2003, Messina, Italy, pp. 305–316 (2003),
http://CEUR-WS.org/Vol-78/

28. McCarthy, J.: Programs with Common Sense. In: Proceedings of the Teddington Conference
on the Mechanization of Thought Processes, pp. 75–91. Her Majesty’s Stationery Office
(1959)

29. McCarthy, J., Hayes, P.J.: Some Philosophical Problems from the Standpoint of Artificial
Intelligence. In: Machine Intelligence 4, pp. 463–502. Edinburgh University Press (1969)
reprinted in [85]

30. Minsky, M.: A Framework for Representing Knowledge. In: The Psychology of Computer
Vision, pp. 211–277. McGraw-Hill, New York (1975)

31. Lobo, J., Minker, J., Rajasekar, A.: Foundations of Disjunctive Logic Programming. The
MIT Press, Cambridge (1992)

32. Przymusinski, T.C.: Stable Semantics for Disjunctive Programs. NGC 9, 401–424 (1991)
33. Subrahmanian, V., Nau, D., Vago, C.: WFS + Branch and Bound = Stable Models. IEEE

TKDE 7(3), 362–377 (1995)
34. Seipel, D., Thöne, H.: DisLog – A System for Reasoning in Disjunctive Deductive Databases.

In: DAISD 1994, Universitat Politecnica de Catalunya (UPC), pp. 325–343 (1994)
35. Pfeifer, G.: Disjunctive Datalog — An Implementation by Resolution. Master’s thesis, TU

Wien, Wien, Österreich (1996); Supported by Eiter, T.
36. Leone, N., Rullo, P., Scarcello, F.: Declarative and Fixpoint Characterizations of Disjunctive

Stable Models. In: ILPS 1995, Portland, Oregon, pp. 399–413. MIT Press, Cambridge (1995)
37. Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint

Semantics and Computation. Information and Computation 135(2), 69–112 (1997)
38. Cadoli, M., Eiter, T., Gottlob, G.: Default Logic as a Query Language. IEEE TKDE 9(3),

448–463 (1997)

http://CEUR-WS.org/Vol-78/

66 N. Leone and W. Faber

39. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A Deductive System for Non-
monotonic Reasoning. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS,
vol. 1265, pp. 363–374. Springer, Heidelberg (1997)

40. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: The KR System dlv: Progress
Report, Comparisons and Benchmarks. In: KR 1998, pp. 406–417 (1998)

41. Niemelä, I., Simons, P.: Efficient Implementation of the Well-founded and Stable Model
Semantics. In: ICLP 1996, Bonn, Germany, pp. 289–303. MIT Press, Cambridge (1996)

42. Cholewiński, P., Marek, V.W., Truszczyński, M.: Default Reasoning System DeReS. In: KR
1996, Cambridge, Massachusetts, USA, pp. 518–528 (1996)

43. Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computations. In: Gel-
fond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS, vol. 1730, pp. 177–191.
Springer, Heidelberg (1999)

44. Faber, W., Leone, N., Pfeifer, G.: Optimizing the Computation of Heuristics for Answer
Set Programming Systems. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001.
LNCS, vol. 2173, pp. 288–301. Springer, Heidelberg (2001)

45. Faber, W., Leone, N., Ricca, F.: Solving Hard Problems for the Second Level of the Polyno-
mial Hierarchy: Heuristics and Benchmarks. Intelligenza Artificiale 2(3), 21–28 (2005)

46. Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning Operators for Answer Set Program-
ming Systems. In: NMR 2002, pp. 200–209 (2002)

47. Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive Logic Programming Systems by
SAT Checkers. AI 15(1-2), 177–212 (2003)

48. Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using Database Optimization Techniques for
Nonmonotonic Reasoning. In: DDLP 1999, pp. 135–139. Prolog Association of Japan (1999)

49. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: Progress Report on the Disjunc-
tive Deductive Database System dlv. In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds.)
FQAS 1998. LNCS, vol. 1495, pp. 148–163. Springer, Heidelberg (1998)

50. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints. IEEE
TKDE 12(5), 845–860 (2000)

51. Faber, W.: Disjunctive Datalog with Strong and Weak Constraints: Representational and
Computational Issues. Master’s thesis, TU Wien (1998)

52. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implementation of
aggregate functions in the dlv system. TPLP (accepted for publication, 2008)

53. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Se-
mantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp.
200–212. Springer, Heidelberg (2004)

54. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer
set programming. AI (accepted for publication, 2008)

55. Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative and Computational Properties of
Logic Programs with Aggregates. In: IJCAI 2005, pp. 406–411 (2005)

56. Faber, W.: Unfounded Sets for Disjunctive Logic Programs with Arbitrary Aggregates. In:
Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp.
40–52. Springer, Heidelberg (2005)

57. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable Functions in ASP: Theory and
Implementation. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
407–424. Springer, Heidelberg (2008)

58. Buccafurri, F., Faber, W., Leone, N.: Disjunctive Logic Programs with Inheritance.
TPLP 2(3) (2002)

59. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A Logic Programming Approach to
Knowledge-State Planning: Semantics and Complexity. ACM TOCL 5(2), 206–263 (2004)

60. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Answer Set Planning under Action
Costs. JAIR 19, 25–71 (2003)

The DLV Project: A Tour from Theory and Research to Applications and Market 67

61. Delgrande, J.P., Schaub, T., Tompits, H.: A Framework for Compiling Preferences in Logic
Programs. TPLP 3(2), 129–187 (2003)

62. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Computing Preferred and Weakly Preferred An-
swer Sets by Meta-Interpretation in Answer Set Programming. In: AAAI 2001 Spring Sym-
posium on ASP, California, USA, pp. 45–52. AAAI Press, Menlo Park (2001)

63. Pearce, D., Sarsakov, V., Schaub, T., Tompits, H., Woltran, S.: A Polynomial Translation
of Logic Programs with Nested Expressions into Disjunctive Logic Programs: Preliminary
Report. In: NMR 2002 (2002)

64. Osorio, M., Corona, E.: The A-Pol system. In: Answer Set Programming (2003)
65. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set Program-

ming with Description Logics for the Semantic Web. In: KR 2004, Whistler, Canada, pp.
141–151 (2004); Extended Report RR-1843-03-13, Institut für Informationssysteme, TU
Wien (2003)

66. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Nonmonotonic description logic programs:
Implementation and experiments. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS,
vol. 3452, pp. 511–527. Springer, Heidelberg (2005)

67. Eiter, T., Traxler, P., Woltran, S.: An Implementation for Recognizing Rule Replacements in
Non-ground Answer-Set Programs. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A.
(eds.) JELIA 2006. LNCS, vol. 4160, pp. 477–480. Springer, Heidelberg (2006)

68. Eiter, T., Fink, M., Senko, J.: KMonitor - A Tool for Monitoring Plan Execution in Action
Theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS,
vol. 3662, pp. 416–421. Springer, Heidelberg (2005)

69. Eiter, T., Erdem, E., Faber, W., Senko, J.: A Logic-Based Approach to Finding Explanations
for Discrepancies in Optimistic Plan Execution. Fundamenta Informaticae 79(1-2), 25–69
(2007)

70. Eiter, T., Fink, M., Senko, J.: A Tool for Answering Queries on Action Descriptions. In:
Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS, vol. 4160,
pp. 473–476. Springer, Heidelberg (2006)

71. Caroprese, L., Trubitsyna, I., Zumpano, E.: Implementing prioritized reasoning in logic pro-
gramming. In: ICEIS 2007, pp. 94–100 (2007)

72. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging asp pro-
grams by means of asp. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS,
vol. 4483, pp. 31–43. Springer, Heidelberg (2007)

73. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A Meta-Programming Technique for Debug-
ging Answer-Set Programs. In: AAAI 2008, pp. 448–453. AAAI Press, Menlo Park (2008)

74. Calimeri, F., Ianni, G., Ielpa, G., Pietramala, A., Santoro, M.C.: A system with template
answer set programs. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp.
693–697. Springer, Heidelberg (2004)

75. Perri, S., Leone, N.: Parametric connectives in disjunctive logic programming. AI Commu-
nications 17(2), 63–74 (2004)

76. Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics in dlv: Im-
plementation, evaluation and comparison to qbf solvers. Journal of Algorithms in Cognition,
Informatics and Logics 63(1-3), 70–89 (2008)

77. Calimeri, F., Perri, S., Ricca, F.: Experimenting with Parallelism for the Instantiation of ASP
Programs. Journal of Algorithms in Cognition, Informatics and Logics 63(1-3), 34–54 (2008)

78. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In:
SIGMOD 2005, Baltimore, Maryland, USA, pp. 915–917. ACM Press, New York (2005)

68 N. Leone and W. Faber

79. Calimeri, F., Citrigno, M., Cumbo, C., Faber, W., Leone, N., Perri, S., Pfeifer, G.: New dlv
features for data integration. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229,
pp. 698–701. Springer, Heidelberg (2004)

80. Franconi, E., Palma, A.L., Leone, N., Perri, S., Scarcello, F.: Census Data Repair: a Chal-
lenging Application of Disjunctive Logic Programming. In: Nieuwenhuis, R., Voronkov, A.
(eds.) LPAR 2001. LNCS, vol. 2250, pp. 561–578. Springer, Heidelberg (2001)

81. Friedrich, G., Ivanchenko, V.: Diagnosis from first principles for workflow executions.
Tech. Rep., http://proserver3-iwas.uni-klu.ac.at/download area/
Technical-Reports/technical report 2008 02.pdf

82. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: OntoDLV: an
ASP-based System for Enterprise Ontologies. Journal of Logic and Computation (Forthcom-
ing)

83. Cumbo, C., Iiritano, S., Rullo, P.: Reasoning-Based Knowledge Extraction for Text Classi-
fication. In: Proceedings of Discovery Science, 7th International Conference, Padova, Italy,
pp. 380–387 (2004)

84. Curia, R., Ettorre, M., Gallucci, L., Iiritano, S., Rullo, P.: Textual Document Pre-Processing
and Feature Extraction in OLEX. In: Proceedings of Data Mining 2005, Skiathos, Greece
(2005)

85. McCarthy, J.: Formalization of Common Sense, papers by John McCarthy edited by V. Lif-
schitz, Ablex (1990)

http://proserver3-iwas.uni-klu.ac.at/download_area/Technical-Reports/technical_report_2008_02.pdf
http://proserver3-iwas.uni-klu.ac.at/download_area/Technical-Reports/technical_report_2008_02.pdf

Using Answer Set Programming for Knowledge
Representation and Reasoning: Future

Directions

Chitta Baral

Department of Computer Science and Engineering
Arizona State University
Tempe, AZ 85287-8809

Since the proposal of the stable model semantics [1] of logic programs there has
been a lot of developments that make answer set programs a suitable language
for various kinds of knowledge representation. The building blocks that make
answer set programming a suitable knowledge representation language include
theoretical results, implementation and applications. The book [2] compiles most
of the results that were available until 2002. Since then many additional results
have been developed. However, many challenges and issues need to be further
addressed before knowledge based intelligent systems become more prevalent.

One of the first challenge is to explore the extension of answer set program-
ming so that it can model additional knowledge representation concepts in a
natural way. Such concepts include representation of probabilistic information
and representation and reasoning beyond the Herbrand Universe. Closely related
to that is to explore ways to develop answer set programming systems that are
not bogged down by grounding and can deal with numbers as easily as constraint
logic programming systems do.

Secondly, to develop large knowledge bases (answer set programs) additional
software engineering tools need to be developed. In particular, theory and sys-
tems that allow for modular development and verification of knowledge bases
is needed. In addition, similar to libraries in other programming languages, we
need to develop a knowledge library or knowledge repository so that knowledge
base development need not start from scratch, and knowledge engineers have a
easy way to reuse already developed knowledge modules.

Even with all the above developments, knowledge acquisition is a big chal-
lenge and we need to explore ways to automatically translate knowledge already
expressed in other formats to answer set programs. In particular, large bodies of
knowledge are currently expressed in natural language. Thus we need to explore
how such knowledge can be translated to answer set program modules.

The above are some of the challenges and issues that would tremendously
contribute to the wide spread development and usage of knowledge based intel-
ligent systems. Some progress have been made in all of the above directions and
we will discuss them.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 69–70, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

70 C. Baral

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, pp. 1070–1080. The MIT Press, Cambridge (1988)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

Building a Knowledge Base System for an Integration of
Logic Programming and Classical Logic

Marc Denecker and Joost Vennekens

Department Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

{marc.denecker,joost.vennekens}@cs.kuleuven.be

Abstract. This paper presents a Knowledge Base project for FO(ID), an exten-
sion of classical logic with inductive definitions. This logic is a natural integration
of classical logic and logic programming based on the view of a logic program as
a definition. We discuss the relationship between inductive definitions and com-
mon sense reasoning and the strong similarities and striking differences with ASP
and Abductive LP. We report on inference systems that combine state-of-the-art
techniques of SAT and ASP. Experiments show that FO(ID) model expansion
systems are competitive with the best ASP-solvers.

1 Introduction

Logic Programming (LP) with stable model semantics is commonly regarded as an
effective KR system when used according to the ASP computational paradigm. Our
position is that all the attractive features of the semantics and the ASP approach notwith-
standing, there are alternative approaches that are better suited to address KR chal-
lenges, without compromising on computational adequacy. Our approach aims at a
fundamental goal in the field of Knowledge Representation and Reasoning (KRR):
to develop a Knowledge Base System (KBS), a system storing (declarative) domain
knowledge and able to solve a range of tasks and problems in that domain, by apply-
ing various forms of inference on its knowledge base. As an example, imagine a KBS
storing a specification of course scheduling at a university, and able to solve or support
tasks of generating schedules at the start of the year, but also of verifying correctness
of hand-made or revised schedules, of updating or revising the current schedule under
additional or changed requirements, etc., all using the same KB.

The difference between the KBS paradigm and declarative programming frame-
works such LP, ASP or Constraint Logic Programming (CLP), lies in the reuse of the
KB for solving different problems and tasks requiring different forms of inference: de-
duction, model checking, model generation, update and revision, abduction, learning,
etc. Thus, a KB does not encode a solution for a specific problem, nor is it a declarative
program with an operational semantics induced by one specific form of inference. The
KB is ”only” a formal representation of declarative properties of the domain. This im-
poses a strong requirement on the KB language: its expressions should be interpretable
as (informal) propositions about the domain, and this interpretation, its informal se-
mantics, should be as clear, precise and objective as possible. First order logic (FO) is
a language that satisfies this requirement by excellence. For example, if H/1,M/1 and

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 71–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

72 M. Denecker and J. Vennekens

F/1 represent humans, men and women, then the sentence ∀x(H(x) ⊃M(x)∨F (x))
expresses the property that humans are men or (inclusive or) women. Our project uses
an extension of FO with a concept whose informal meaning is understood with great
precision throughout mathematics: the notion of an inductive definition. As we will
argue, the resulting logic FO(ID) can be viewed as an integration of FO and LP.

Building a KBS is a compound research goal consisting of many subgoals which
are challenging in their own right: development of KB languages and methodologies,
building different sorts of inference systems, etc. Even when working on one of these
subgoals, there are two reasons to keep the KBS paradigm in the back of our mind.
The first is that the KBS paradigm focusses our research by putting constraints on the
languages and systems to be developed. For example, the KBS paradigm induces us to
work with truly declarative KR languages; it also induces us to study what knowledge
is required to solve practical tasks and what forms of inference are needed for this. The
second reason is that recent trends in computational logic suggest that building a useful
KBS may not be as impossible as many believe now.

A fundamental constraint in building a KBS is the trade-off between expressivity of
its KB language and efficiency of its inference engines. On the one hand, we need rich,
expressive languages to specify in sufficient detail the background knowledge needed to
solve real-world problems. On the other hand, expressive KB languages lead to compu-
tationally complex inference problems, which may be intractable or even undecidable.
E.g., given FO’s undecidability, there is no hope to use theorem proving for reliable
problem solving in a full FO knowledge base. This consideration has led, e.g., the de-
scription logic area (DL) to build deductive knowledge bases for severely restricted
versions of FO. The price is that in such languages, it is often hard or even impossible
to specify the background knowledge required to solve many practical tasks.

The way out of this apparent deadlock, and the main hope for building practical ap-
plications using KBSs with more expressive KB languages, lies in the use of “cheaper”
forms of inference, such as finite model checking, finite or bounded model generation
or expansion, or approximate reasoning. In this respect, it is exciting to see recent trends
in areas such as ASP, SAT and DL, that show that many real-world problems can indeed
be solved by such forms of inference. ASP plays a prominent role in this evolution. It
is based on the observation that deduction is often the wrong form of inference; what
we often want as a solution for a task is (part of) a finite structure/interpretation satisfy-
ing a domain theory. In LP, the ASP paradigm was preceded by a somewhat similarly
flavored paradigm based on abduction [1]. As stated in [2], the idea of finite model gen-
eration as a computational paradigm can also be applied for other languages than ASP.
Indeed, some of the successful applications of SAT-systems, e.g., in planning, are by
generating finite models as solutions to problems [3]. Other successful applications of
SAT (e.g., in verification) are for problems of computing entailment or satisfiability of
a domain theory in the context of a finite or bounded universe [4]. Another promising
computational paradigm is approximate reasoning, which was developed and used re-
cently for expressive description logics [5]. By integrating these forms of inference, a
KBS system might be built that is able to solve a useful class of practical problems.

The next sections recall the main ideas underlying FO(ID), its role for KR and its
relation to LP and ASP, and discuss the inference tools under development for this logic.

Building a Knowledge Base System for an Integration of Logic Programming 73

2 The KB-language FO(ID)

In ASP, an answer set program is a sort of default theory [6]. From in the early days of
LP, an alternative -but implicit- view was of a logic program as a definition; e.g., in com-
pletion semantics [7], or in datalog where intentional predicates are defined in terms of
extensional ones. Many prototypical logic programs (e.g., member, append, transitive
closure, etc.) are undeniably inductive (i.e., recursive) definitions. Also, the syntacti-
cal correspondence between LP and the way inductive definitions are often phrased in
mathematics is more than striking. E.g.:

Definition 1. The satisfaction relation |= of propositional logic is defined by induction
on the structure of formulas:

– I |= P if P is an atom and P ∈ I .
– I |= ϕ ∧ ψ if I |= ϕ and I |= φ.
– I |= ¬ϕ if I �|= ϕ (i.e., it is not the case that I |= ϕ).

This non-monotone inductive definition consists mainly of a set of informal rules, the
third one with negation in the body. But the correspondence with logic programs goes
beyond the syntactical level. Such an inductive definition defines a relation by describ-
ing how to construct it. The defined relation consists of all and only the tuples produced
by a rule during this construction process. Thus, such inductive definitions consist of a
set of informal rules augmented with a precise, natural, informal form of Closed World
Assumption (CWA).

An inductive definition is a precise, well-understood informal language construct
of mathematicians which makes this concept amenable for logical formalization. A
natural, modular syntax for representing such inductive definitions is as a set of rules

∀x(A← ϕ)

where A is an atom of a defined predicate, ← is called the definitional implication (to
be distinguished from material implication) and ϕ a FO formula which may contain
(classical) negation. Such a rule set aims to define the defined predicates in the head in
terms of the other, called open symbols. In [8,9], the thesis was argued that the parame-
terized form of well-founded semantics (WFS) defined in [10] formalizes all common
forms of inductive definitions in mathematics. This parameterized WFS constructs a
unique, possibly three-valued interpretation for the defined predicates in terms of any
given interpretation of the open symbols of the definition.

The above formal construct has historical roots in LP. The syntax and the parameter-
ized WFS were presented first in [10], not as formal construct to represent definitions
but as an extended datalog program. A logic program corresponds to a definition defin-
ing all its predicates. Given that inductive definitions include CWA, this view matches
with the standard view of a logic program as a collection of clauses under CWA. An
abductive logic program [1] corresponds to a definition whose open predicates are the
abducible ones. A definition with open predicates might be viewed as a collection of
clauses with a parameterized form of CWA, where the open symbols of the definition
are unconstrained and the CWA of inductive definitions derives the defined predicates
from the interpretation of the open symbols.

74 M. Denecker and J. Vennekens

Our KB language FO(ID) is obtained by integrating such definitions in FO. Our mo-
tivation for this is that, on the one hand, we believe that FO and its connectives and
quantifiers (∧,¬, ∀, . . .) are indispensable for KR. Extrapolating [11], we believe that
any expressive KB language will have a sizable overlap with FO. (E.g., ASP constraints
are a form of FO formulas in disguise.) On the other hand, expressing inductive def-
initions such as reachability and transitive closure is a well-known weakness of FO.
Hence, it makes perfect sense to extend FO with inductive definitions. Formally, an
FO(ID) theory is a set of FO axioms and definitions1. A model of such a theory is a
(2-valued) structure satisfying all FO axioms and being a well-founded model of all
definitions. Conceptually, FO(ID) can be seen as an expressive description logic using
definitions for the TBox and FO for the ABox. It is also strongly related to fixpoint
extensions of FO [12].

FO(ID) is a conceptually clean (read “non-hybrid”) integration of FO and LP, and
combines the strengths of both. In particular, inductive definitions are a precise natural
non-monotonic construct from mathematics but they are also very useful for represent-
ing common sense knowledge. We already mentioned the relation to CWA. It follows
that the methodologies for representing defaults and exceptions developed for LP under
WFS, work also using FO(ID) definitions. As shown in [13], there is a straightfor-
ward modular mapping from logic programs under stable semantics into a sublogic of
FO(ID). This means that methodologies for KR using this formalism can be emulated
in FO(ID). Likewise for the KR methodologies of ALP: an abductive logic framework
consisting of an abductive program and a set of FO constraints, can be viewed as an
FO(ID) theory with one definition.

Inductive definitions include CWA but seem strongly related to another concept of
common sense knowledge, namely causality. Recall that a definition defines a relation
by describing how to construct it. Thus, such definitions implicitly describe a sort of
mathematical construction processes which show strong similarity with causal ramifica-
tion processes. In [14], we defined a logic for modeling non-deterministic probabilistic
causality by extending definitions with causal rules with probabilities and disjunction
in the head.

We thus argue that FO(ID)’s definition construct not only compensates for FO’s
weakness on expressing inductive definitions but also for FO’s weakness on express-
ing common sense knowledge. Hence, FO(ID) might provide a solid theoretical un-
derpinning for the recent attempts to integrate monotone and non-monotone logic, in
particular the family of hybrid logics that combine logic programming with description
logics [15].

3 Reasoning in FO(ID)

Several forms of inference for FO(ID) are under development. Most progress has been
obtained for finite model expansion (MX). Model expansion is a sort of finite model
generation in which the goal is to compute (finite) models M of an input theory T that
expand a finite input structure I interpreting an subvocabulary σ (i.e., M |= T and

1 In [9], an FO(ID) theory is defined more generally, as a set of a boolean combinations of FO
formulas and definitions.

Building a Knowledge Base System for an Integration of Logic Programming 75

M |σ = I). Thus, the input structure I fixes a finite domain and is useful to store data
which are available in many MX-problems. In [16], MX was proposed as an alternative
declarative programming paradigm that generalizes finite Herbrand model generation
and offers some practical and theoretical advantages. Every MX problem in FO is an
NP search problem; the same holds for every logic for which finite model checking is
polynomial in the size of the domain. Inversely, MX in FO captures NP: for any NP
class C of finite σ-structures, there exists an FO theory TC such that σ-structure I ∈ C
iff I can be expanded to a model of TC.

Several model generation or expansion systems are available for languages based on
FO, such as aspps [13] and MXG [17]. Our group has developed the IDP system2, an
MX solver for a rich extension of full FO, including an order-sorted type system, in-
ductive definitions, partial functions, arithmetic, existential quantifiers with numerical
bounds and aggregates such as cardinality, minimum, maximum and sum. Though in
principle none of these extensions increase the class of problems that can be solved us-
ing MX in FO [16], they do often considerably simplify the modeling task and increase
the class of problems that can be solved in practice. For instance, reachability in the
context of a finite domain can be expressed in FO, but not in a natural manner. On the
other hand, it can easily be expressed by an inductive definition, and a solver able to
natively handle such definitions is more efficient than a SAT solver on FO encodings of
reachability.

To illustrate language and system, assume that company A wishes to take control
over company B, by spending at most a fixed amount of say 100M buying shares in
other companies. This is expressed in the following theory, together with the recursive
definition of Controls(a, b) and a definition for Shares(a, b, s) expressing that, after
the purchases, a has s shares in b:

Controls(A,B)
Sum({c|∃s(Buy(A, b, s) ∧ c = s× Cost(b))}) ≤ 100{
∀a b (Controls(a, b) ← 50 < Sum({s| (z = a ∨ Controls(a, z))∧

Shares(z, b, s) })
}

{
∀a b s (Shares(a, b, s) ← s = Sum({s′|Buy(a, b, s

′)∨
IShares(a, b, s′)})

}
Note that it may be cheaper for A to buy shares in third companies than directly in B.
IDP can solve this problem as an MX problem using an input structure specifying the
initial shareholders in IShares and the cost of the shares in the function Cost.

The IDP system consists of a grounder that uses approximate reasoning to reduce
grounding size and a propositional solver built on top of the minisat solver. In a series
of experiments2, we compared IDP to a number of other MX and ASP systems over
a range of different problems. More concretely, we considered (Lparse+)Clasp, DLV,
MXG, aspps and IDP. The IDP system had the best performance on at least three ag-
gregated measures: number of solved instances, number of instances solved in less than
10 seconds, and total time.

2 A description of the IDP system and details of the experiments can be obtained via
http://www.cs.kuleuven.be/\simdtai/krr/LaSh.html

http://www.cs.kuleuven.be/$sim $dtai/krr/LaSh.html

76 M. Denecker and J. Vennekens

4 Conclusion

We believe that the best strategy to consolidate LP’s contributions to KR and to cer-
tify LP’s long term future as a KR language, is to show what it contributes to classical
logic and to integrate it with the latter. This is what FO(ID) achieves. We stressed the
strong relation between inductive definitions and concepts of common sense reasoning
such as CWA and causality. Thus, the ”logic programs”, i.e., the definitions, in FO(ID)
compensate for FO’s weakness on representing inductive definitions and common sense
knowledge. The feasibility of using this logic for problem solving is demonstrated by
the model expansion system IDP. This system supports a rich extension of FO(ID) and,
by integrating state-of-the-art technologies from SAT and ASP, it is competitive with the
best ASP systems.

References

1. Kakas, A.C., Kowalski, R., Toni, F.: Abductive logic programming. Journal of Logic and
Computation 2(6), 719–770 (1992)

2. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming par-
adigm. In: Apt, K.R., Marek, V.W., Truszczyński, M., Warren, D.S. (eds.) The Logic Pro-
gramming Paradigm: a 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)

3. Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic
search. In: AAAI 1996 (1996)

4. Prasad, M., Biere, A., Gupta, A.: A survey of recent advances in sat-based formal verification.
Intl. Journal on Software Tools for Technology Transfer (STTT) 7(2) (2005)

5. Stuckenschmidt, H.: Partial matching using approximate subsumption. In: AAAI 2007 (2007)
6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Interna-

tional Joint Conference and Symposium on Logic Programming (JICSLP 1988), pp. 1070–
1080. MIT Press, Cambridge (1988)

7. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Databases, pp.
293–322. Plenum Press (1978)

8. Denecker, M., Bruynooghe, M., Marek, V.: Logic programming revisited: Logic programs
as inductive definitions. ACM Transactions on Computational Logic 2(4), 623–654 (2001)

9. Denecker, M., Ternovska, E.: A logic of non-monotone inductive definitions. Transactions
On Computational Logic (TOCL) 9(2) (2008)

10. Van Gelder, A.: The alternating fixpoint of logic programs with negation. Journal of Com-
puter and System Sciences 47(1), 185–221 (1993)

11. Moore, R.: The role of logic in knowledge representation and commonsense reasoning. In:
AAAI 1982, pp. 428–433 (1982)

12. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
13. East, D., Truszczyński, M.: Predicate-calculus-based logics for modeling and solving search

problems. ACM Trans. Comput. Log. 7(1), 38–83 (2006)
14. Vennekens, J., Denecker, M., Bruynooghe, M.: Representing causal information about a

probabilistic process. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA
2006. LNCS, vol. 4160, pp. 452–464. Springer, Heidelberg (2006)

15. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming
with description logics for the semantic web. In: KR 2004 (2004)

16. Mitchell, D.G., Ternovska, E.: A framework for representing and solving NP search prob-
lems. In: AAAI 2005, pp. 430–435 (2005)

17. Mitchell, D., Ternovska, E., Hach, F., Mohebali, R.: Model expansion as a framework for
modelling and solving search problems. Technical Report TR2006-24, Simon Fraser Univer-
sity (2006)

SMS and ASP: Hype or TST?�

Thomas Eiter

Institute of Information Systems, TU Vienna
eiter@kr.tuwien.ac.at

Abstract. Twenty years of stable model semantics (SMS) and almost
ten years of Answer Set Programming (ASP) are a good reason for a
moment of reflection on these important concepts. This position paper
gives a personal account of their history, aspects of ASP, and emphasizes
the role of theory and practice in this area.

1 Introduction

It is now 20 years since Michael Gelfond and Valdimir Lifschitz proposed in
their famous paper [1] the stable model semantics (SMS) for logic programs
with arbitrary use of negation in rule bodies, which at that time and in the years
following was just one of many proposals to give a meaning to such programs.
A few years later, they extended in [2] the semantics to programs with a second
kind of negation (called “strong negation” or sometimes “classical negation”)
and with disjunction in the rule heads, and introduced the term “answer sets”
for the models of these programs, which consist of sets of ground literals rather
than of ground atoms, as customary in logic programming.

The impact of these papers was enormous, and perhaps nobody would have
guessed that two decades later, the seminal paper [1] is one of the most cited
documents in Computer Science (as of February 26, 2008, according to citeseerx1

it ranks #29, while [2] ranks #158), and among the very top papers in Artificial
Intelligence. In fact, these papers were foundational for the current standard
semantics of non-monotonic (disjunctive) logic programs that adopts a multiple
models view. Furthermore, these papers layed the foundations for the Answer Set
Programming (ASP) paradigm, which exploits logic programs and answer sets as
a declarative means to problem solving. The paradigm, whose name was coined
by Lifschitz [3] and which was suggested also by others (e.g. [4,5]), is a booming
stream in knowledge representation and reasoning to date; without ASP, there
would perhaps be less fuss about SMS and no celebration at this conference.

A moment of reflection about the history of SMS, its current status and
possible future is appropriate, which will done from various perspectives in this
session. I share here some of my personal views and observations; the SMS and
ASP era largely overlaps with my academic career and strongly influenced it.

� Work supported by Austrian Science Fund (FWF) grants P18019, P20840 & P20841.
1 http://citeseerx.ist.psu.edu/stats/articles

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 77–82, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://citeseerx.ist.psu.edu/stats/articles

78 T. Eiter

2 Questions about ASP

There are quite a few questions that people have asked me when talking about
this subject outside the community. Some of these questions are interesting, I
think, to position ASP better in the landscape of research and development, to
sharpen its aims, and perhaps to clarify possible misunderstandings; the reply
to these questions here is not canonical, just my personal opinion.
• Is ASP a hype? For ASP being a hype, the interest in it is (still) far

too little compared to other subjects that may be considered as hypes in
retro-perspective, such as object-oriented databases systems (OODB) in the
1980/90s. It depends on when to consider something as a hype; e.g., whether
there is tremendous (perhaps hysteric) interest, and whether disappearance
as in the case of OODBs plays a role. ASP has emerged on a steadily (and not
rapidly) growing pace, reaching different fields and applications. It is more
previous lack of awareness of the concept that may raise the impression of
a hype. Partly this may be attributed to comparably little propaganda, but
there are also other factors.

• Is ASP a better Prolog? This question is natural, given the close relation-
ship between ASP and Prolog; furthermore, ASP is sometimes is also called
Answer Set Prolog (A-Prolog) [6]. ASP is not a better Prolog; while similar,
it is just different and has different aims. Prolog is a powerful tool that was
laid out as a general problem programming language. Mastered by its user,
it is a sword in the hands of a samurai, but without training difficult to
handle. ASP instead is not conceived for such generality and aims at specific
problems that may occur in more complex problems; also, the more liberal
use of syntax in ASP compared to Prolog, which governs search to reach
high efficiency, would make it difficult to reach comparable efficiency in a
full-fledged setting and range of applications.

• Is ASP a hammer for all nails? Naturally, enthusiasm and blind conviction
can drive one to apply a tool to whatever problem is coming up, be it feasible
or not. This is not to be mixed with vital curiosity, which may also lead to
failures as feasibility in practice is sometimes hard to predict. As evident
from the reply to the previous question, ASP is clearly not a hammer for all
nails. Its deployment to certain application areas (e.g., data integration or
workflow management) was initiated from there, recognizing the usefulness
of the tool.

• What is the killer application of ASP? As to date, there is no “killer appli-
cation” of ASP like the Semantic Web is for Description Logics. The ques-
tion is, however, whether a killer application is really needed to justify an
approach. ASP has a number of fruitful uses in a range of applications, that
allow to build advanced systems and solve problems (better) than before; it
is attractive (similar as Prolog) for prototyping, as an executable specifica-
tion language, when the knowledge engineering may be still in flux, with a
repertoire of language constructs provided by the various ASP engines. Like
for AI in general, silent use of “ASP inside” may be more rewardable than
a killer application.

SMS and ASP: Hype or TST? 79

There are many more questions, e.g., why to use ASP and not SAT solving
or CSP; what are specific benefits of ASP etc., which others will address here.

3 SMS and ASP: A Historical Account

To some extent, the history of SMS and ASP mirrors history of AI in a mi-
crocosm, and can be divided into periods of ups and downs with respect to
attention and emotional affectedness: enthusiasm, depression close to disappear-
ance, renewed interest, and flourishing. Theory and practice played important
roles, being Siamese twins that are tied together, such that the one can on the
longer run not survive without the other. In particular, foundational studies of
complexity and computation played an important role as driver of research to
cast the theory of SMS into implemented systems, which where the key to ASP.
In turn, such systems and applications tackled with them raised a number of the-
oretical issues and challenging problems for research, be it efficient algorithms
and methods for program evaluation, which necessarily also involved a better
understanding of semantic properties; extensions of the core language to accom-
modate needs in practice, be it “syntactic sugar” that can be compiled away, or
real increase in expressiveness; or be it programming methodology.

Enthusiasm. In the 1980’s, there was reviving enthusiasm about AI, triggered
by the success of expert systems. Common-sense reasoning, which is inher-
ently non-monotonic, had been identified as an important capability, and for-
malisms like Reiter’s Default Logic, McCarthy’s Circumscription, or McDermott
& Doyle’s Nonmonotonic Logics, followed by Moore’s Autoepistemic Logic, had
been devised; ambitious projects like CYC or the 5th Generation project were
launched.

The issue of defining semantics to program with non-monotonic “negation
as failure” turned out to be highly nontrivial and, in fact, raised a “war of
semantics” between rival proposals that started in the late 1980es and kept
the field of nonmonotonic logic programming busy for many years. Answer set
semantics can be viewed, as shown in [2] already, as a fragment of Reiter’s Default
Logic, and by this resemblance might seem less innovative. The crucial point,
however, is that this fragment is “handy” for expressing knowledge with rules.
Furthermore, [2] avoided problems of Default Logic with logical disjunction,
giving it a meaning that can be seen as provability from a model and generalizes
Minker’s minimal model semantics. Another important aspect is that there are
numerous characterizations of stable models resp. answer sets, in diverse settings
and underlying intuitions, which provides evidence for robustness of the concept.

Depression. After initial enthusiasm, the interest in SMS and answer sets
started to decrease close to the mid 1990s. While the theory had been advanced
and the basic characteristics of the SMS and answer sets had been outlined, com-
prising both semantical and computational properties, there were some aspects
that made the prospects for future development unclear:

80 T. Eiter

• On the semantical side, the war of semantics was still waging, and real world
applications or implementations were not in sight.

• On the computational side, SMS was shown to have tremendous expressivity,
far beyond recursive enumerability, that made implementations unrealistic.
Already in the propositional case, the semantics is NP-complete (in terms
of consistency checking), and more expensive depending on the constructs
available (e.g., NPNP-complete for disjunction). These complexity results
were noticed, but their relevance for implementation not fully recognized in
the beginning.

• The interest in non-monotonic reasoning declined in general, as hopes and
early expectations could not be fulfilled.

At this time, research on SMS and answer sets was endangered to become, in
the terminology of David Harel, TST (Theory for the Sake of Theory) research,
disconnected to practical relevance.2 Fortunately, it did not take this turn.

The advent of systems. Based on SMS theory and guided by computational
complexity results, first systems were then developed from the mid 1990s on,
for normal and disjunctive logic programs, with Smodels (TU Helsinki) [7] and
DLV (TU Vienna/ Univ. Calabria) [8] being those on which perhaps most efforts
have been spent over the years.3 However, initial systems were rather slow, mir-
roring the worst case complexity of the problems.4 Serious research efforts and
innovation were made in order to speed them up significantly, and the systems
progressed continuously over the years.

With the advent of systems, it was also realized that SMS engines could serve
as a host for problem solving and other formalisms; e.g., the DLV project ap-
plication back in 1995, which actually targeted a deductive database system,
sketched applications in model-based diagnosis which then led to DLV’s diagno-
sis front end. The successive formulation of the ASP idea around 1999, which
borrows from the earlier idea of SAT solving, seems then a natural consequence
(witnessed by the fact that it was proposed by several people independently).

Flourishing. Once the idea of ASP had been articulated, it immediately found
broader interest, and dedicated meetings were initiated. The first Workshop on
Answer Set Programming, organized by Alessandro Provetti and Tran Cao Son,
took place 2001 in Stanford within the AAAI Spring Symposium series, and was
a big success. Since then this workshop has been held biannually, and ASP has
become a major stream of work not only in Non-monotonic Reasoning, but also in

2 In his invited talk at PODS’94, Harel gave a taxonomy of work in theory, in which the
unhealthiest category is TST. He deplored that TST may receive high recognition
by self-adulation, while good theory motivated from practice is disregarded. In fact,
most of the talk he complained about the poor initial reception of his—nowadays
widely used—state charts approach, reading from unfavorable review reports.

3 The earlier DeReS system (Univ. Kentucky) targeted default logic, facing all the
problems of the richer formalism.

4 I still remember Gerald Pfeifer, one of the chief DLV developers, crying after runs of
the first DLV prototype: ‘This will never work, reasonable performance is an illusion!’

SMS and ASP: Hype or TST? 81

Logic Programming (as witnessed by this ICLP edition). The great interest also
led to a EU project in the Working Group on Answer Set Programming (WASP),
which was a concerted effort to further the paradigm, creating the backbone for
the research network of the ASP community in the European sector.

The increasing interest in ASP has led to advances in various aspects: more
and improved ASP solvers, employing new algorithms and techniques; language
extensions and enhancements; and a growing range of applications in the last
years. This involved a great deal of theoretical work (to mention here, as ex-
amples, algorithms to compute answer sets using SAT solvers, or aggregates in
programs), and in fact theory and application have been in close and fruitful
interplay. To date, ASP is more lively than ever and the threat of TST seems
far. However, it still has not unleashed its full potential, and more efforts are
needed to consolidate ASP into a long term success.

4 Conclusion

There are some lessons that we can learn from the evolution of SMS and ASP:

• Theory and application are two legs on which any area in the computing
sciences has to stand upon, and in fact in need of each other. Without appli-
cations (of whatever sort), research is endangered to end in TST, isolated in
its own world doomed to perish sooner or later. Fortunately, SMS escaped
this threat.

• Implementations and systems, as draft and imperfect they may be, are vital
to push research forward. An experimental testbed to work with is very
valuable, and helps generating new ideas and research problems. Thus, it
should not take too long until such systems are around. As for SMS, it took
almost too long.

• Along with systems, applications are an important driver of research and a
source of new challenging theoretical problems.

• In turn, a solid theory and understanding of computational properties is
needed in order to build effective implementations. Some ASP systems are
highly sophisticated and aim to solve problem instances, depending on pre-
liminary analysis, with appropriate algorithms and resources. Respective
knowledge about problem complexity played, e.g., a major role in the design
of the DLV system.

• Needs or opportunities may be emerging, as they are not always foresee-
able from the beginning. After all, stable models were not conceived for
an ASP paradigm but rather as a stepping stone to query-answering from
non-monotonic logic programs; the idea to use them for ASP was more a
byproduct.

SMS and ASP flourish to date, and one may have great expectations about
their future. However, deploying ASP on an industrial scale needs further efforts,
and new generations of ASP solvers must be developed. Connected with this are
many research challenges: ASP with function symbols, program equivalence and

82 T. Eiter

optimization, incremental model building, modularity, non-ground processing,
programming methodology, embedded ASP, and software tools are avenues for
exciting research on theory and applications, for sure for another 20 years.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proc. 5h Int’l Conf. & Symp. on Logic Progr., pp. 1070–1080. MIT Press, Cambridge
(1988)

2. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive data-
bases. New Generation Computing 9, 365–385 (1991)

3. Lifschitz, V.: Action languages, answer sets and planning. In: The Logic Program-
ming Paradigm – A 25-Year Perspective, pp. 357–373. Springer, Heidelberg (1999)

4. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm, pp. 375–398. Springer, Heidelberg
(1999)

5. Niemelä, I.: Logic programming with stable model semantics as a constraint pro-
gramming paradigm. Ann. Math. Artif. Intell. 25, 241–273 (1999)

6. Gelfond, M.: Representing knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.)
Computational Logic: Logic Programming and Beyond. LNCS, vol. 2408, pp. 413–
451. Springer, Heidelberg (2002)

7. Niemelä, I., Simons, P.: Smodels–An implementation of the stable model and well-
founded semantics for normal logic programs. In: Fuhrbach, U., Dix, J., Nerode, A.
(eds.) LPNMR 1997. LNCS (LNAI), vol. 1265, pp. 420–429. Springer, Heidelberg
(1997)

8. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for
non-monotonic reasoning. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997.
LNCS (LNAI), vol. 1265, pp. 364–375. Springer, Heidelberg (1997)

Quo Vadis Answer Set Programming?
Past, Present, and Future

V.W. Marek

Department of Computer Science
University of Kentucky

Lexington, KY 40506-0046, USA

Abstract. We discuss the development, current state and the future of Answer
Set Programming, making predictions that are not necessarily accurate.

1 How Did It Happen, or Prehistory

In early 1984, less than a year after I joined CSD, University of Kentucky, my for-
mer student, late Witold Lipski suggested that I look at nonmonotonic logic. It will be
next big thing, he wrote and suggested reading papers by Raymond Reiter. I went a
step further and went to the first Nonmonotonic Logic Workshop in Mohonk, NY. That
workshop was, in fact, co-organized by Reiter. Fate had it - the organizers made me
share the room with Vladimir Lifschitz who immediately straightened up my wrong
ideas on nonmonotonic logic. I knew that change of semantics from all models to a
subclass may result in a nonmonotonic consequence operation; this phenomenon was
observed by professional logicians earlier. But what I did not know was that the idea
was to formalize (fragments of) commonsense reasoning.

That same year another fortunate event of my scientific life occurred – Mirek Trusz-
czynski joined our department. Two years later we understood what autoepistemic logic
was really about and what the algorithms for manipulation of modal formulas in au-
toepistemic context were. In 1987 Michael Gelfond visited us in Lexington and talked
about the use of autoepistemic logic to provide semantics for negation in logic pro-
gramming [2]; the goal that at that time appeared elusive. Then, in 1988 we got the
seminal paper of Gelfond and Lifschitz [3]. I presented it at our Logic and AI semi-
nar. Very quickly we understood that the technique was closely related to that of Reiter
(via appropriate fixpoint construct). Putting it all together, Mirek and I realized that the
complexity of basic problems related to stable semantics can be established. It all came
together quickly.

We looked at the implementation of stable semantics almost immediately, although
we did not know what this can do for us. Eric and Elisabeth Freeman were our students
at the time and they implemented a very simple stable semantics solver (no bells and
whistles). While I cannot find the written report of that work (but there was one), my
recollection is that it could handle programs with 30 variables at most. Mirek and I then
moved to a more ambitious project called DeReS (Default Reasoning System). Today
forgotten, it was an implementation of Reiter’s logic and thus stable semantics as well.
Two Ph.D. students, Paweł Cholewiński and Artur Mikitiuk worked with Mirek and me

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 83–87, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

84 V.W. Marek

on that project. By 1993, the area was mature enough so Mirek and I could publish a
monograph of the results so far [10].

It was Ilkka Niemelä who, like Mirek and I, came to stable semantics through au-
toepistemic logic. He made a breakthrough in the implementation of stable semantics
with his smodels. What was very important in that research and implementation was the
first grounder, lparse, built in collaboration with Patrik Simons. Another important sys-
tem, dlv was started in Vienna and continued in Vienna and Calabria. This one was a
solver for the disjunctive logic programming; a powerful extension of stable semantics.

In 1991, Anil Nerode, V.S. Subrahmanian and I started the conference series called
Logic Programming and Nonmonotonic Reasoning, alternating every other year with
Nonmonotonic Logic Workshop. This action created a community which exists today.

In 1998 Mirek and I, and independently Ilkka realized that stable model semantics
can be used efficiently and user-friendly for solving NP-search problems. By pure coin-
cidence that same year Krzysztof Apt wanted to have a workshop for 25 years of logic
programming (and an accompanying volume) and we, in Lexington, had a venue: the
beautiful Pleasant Hill, a place where a (now extinct) religious group of Shakers built
its paradise on earth. Mirek and I presented the idea there. A catchy name was needed
and was provided by Vladimir.

2 What Do We Have Now

When we met at Stanford in 2001 for the first ASP workshop, the name was there and
the issue was how better and faster ASP solvers could be built. Bart Selman was asked
for an invited presentation and he talked about the progress with SAT solvers, a tech-
nology which in the past number of years made a tremendous leap forward based on
several theoretical advances, better data structures and more careful implementations.
The class of problems solved by SLP solvers and SAT solvers is exactly the same. But
SAT solvers were significantly faster (not uniformly, but on average). Not only sys-
tems such as sato and grasp but truly lightning-speed systems like chaff were showing
the way forward. Both smodels and dlv used improvements that were suggested by
the SAT community, but not everything that the SAT community used was directly ap-
plicable. A new idea was needed and the next big thing in ASP was the appearance of
ASSAT, the system built by Fangzhen Lin and Yuting Zhao. Its novel idea was based
on a careful studies of reasons why some supported models are not stable. In the hind-
sight, one could see that it was all about the cycles in the call graph (and since Apt,
Blair and Walker, and then later work by Stefania Costantini and Alessandro Provetti
we knew that there was a connection). But the issue was that while the completion of
the program can easily be reduced to a propositional theory without significant increase
in the size of the resulting theory, adding the clauses “killing” the cycles increases the
size of the corresponding theory exponentially. Fortunately, it turned out that this can
be done piecemeal, maybe killing some cycles (this was called by Lin and Zhao adding
loop formulas) was enough. There are, unfortunately exponentially many loop formulas
(as explained in [7]), but not all of them have to be there to find stable model.

I am sure that there are various ways ASSAT and other systems based on the idea of
loop formulas can be viewed. For me ASSAT and cmodels are examples of the approach

Quo Vadis Answer Set Programming? 85

that has been successful in many other areas, namely so-called Satisfiability modulo
theories (SMT) where a back-end SAT engine is used as a generator and enumerator for
candidate assignment. In this approach (very successful in a variety of applications in
electronic design automation [14], but also in other areas, for instance Lintao Zhang and
Ilya Mironov SAT attack on hash function collisions), a propositional theory generating
some assignments is used to assist the programmer in systematic search for solution.
The domain specific engine (in this case checker that tests if the assignment indeed a
stable model) is used as a front-end. Thus, SAT is used as a back-end enumerator, and
(possibly optimized) checker is used as the front-end, neatly tying ASP to SAT.

May be it is just a sign of times, but a new thing in this period was the appearance
of ASP competition and a benchmarking environment Asparagus. It looks like it is no
longer possible to talk about solving without actually solving it.

The pioneering work of Niemelä resulted in extending ASP to the context where
constructs such as cardinality constraints and weight constraints can be used within the
programs. This extended significantly the conciseness of knowledge representation with
ASP and should result in better usability of the ASP in practice. We need new types of
constraints that can be added to stable semantics to facilitate the tasks of programmers.

3 Where to from Here

There is, as of now, very little commercial development of ASP. The system closest
to the use as a non-academic, “for-profit” software is, clearly, dlv (of course I may
not be aware of all that is available). There are several reasons for this situation. In my
mind, the most important issue is the lack of easy explanation of stable semantics to
a “programmer from the street”. While the Computer Engineering students can (and
even often are) taught about SAT, I suspect that it would be quite difficult to explain to a
general audience the semantics of logic programs. I tried this in the past, and failed (be-
low Ph.D. students’ level, of course). There are many equivalent descriptions of stable
semantics (viz. recent text by Lifschitz [5]), but we should somehow make it explain-
able on undergraduate, or beginning graduate level. It is even more difficult to explain
disjunctive logic programming (or am I just inept?). This, in my mind, is the most im-
portant stumbling block for applicability of ASP in electronic design automation, the
area driving progress in SAT. This is an important issue: once the initial investment in
understanding stable semantics is made, the advantages of stable semantics are obvious.
To give one example (due to Mirek) implementing Cannibals and Missionaries puzzle in
ASP is easy; doing it directly with SAT is unpleasant. That is knowledge representation
with ASP is much easier, and we should take advantage of this phenomenon.

The question of software engineering for ASP still needs answers and tools. There
were meetings and papers, but we still are far away from production-level environments,
or even understanding what are those problems that software engineering is supposed
to handle in this area.

Another problem is the working with databases. The dlv system is a nice exception;
for a number of years now they paid attention to the issues of getting data from and to
databases. It is not difficult, and in principle ASP systems can even simulate SQL, but,
of course this should not be done, database systems do this better.

86 V.W. Marek

Yet another issue is the availability of data types. I do not mean only the basic issues
such as availability of string manipulation (important with database applications) but it
is possible to define type systems over user defined types (as done within extensional
database). As long as reasonable limitations are imposed (for instance length of avail-
able lists is specified) this can be done. To the best of my knowledge such constructs
were not studied in the ASP context. But may be I am a pessimist here. Adding XML
constructs (as suggested by Thomas Eiter in his work on Semantic Web) may do the
same thing.

In recent years there was a lot of work on various forms of equivalence of programs.
This clearly has a software engineering flavor (like does my subroutine always do the
same thing as your subroutine). In my mind, however strong equivalence is something
else. Namely, it attempts to find a correct logic for stable logic semantics (and more gen-
erally, disjunctive logic programming). The connections of logics such as intuitionistic
logic and programs were observed early. The most amazing thing of strong equivalence
is the use of the maximal intermediate logic HT (Gödel-Smetanich logic)[6]. It is sur-
prising that this logic appears in the context of software engineering of ASP. Whether
it really will take us somewhere beyond theoretical progress – remains to be seen.

As we progress with the theory of ASP we need a better bounds on both the number
of answer sets and on the bounds on time needed to find first solution [9].

The work of Niemelä on constraints [13] were followed by many (myself and Jeff
Remmel included). But we still do not have a definitive account of the treatment of
constraints in ASP. It is, in fact quite important, as (in my view) successful implemen-
tation of those constraints resulted in the increased interest in some of these constraints
in SAT (of course 0-1 Integer Programming is another candidate for the source of this
influence).

Generally, since the very beginning (and this is the legacy of Logic Programming),
the importance of Knowledge Representation with ASP was of primary interest to all
of us. This is different from the attitude of the sister community, SAT, where these is-
sues were not so prominent (although, of course SAT planning is, primarily an issue
in knowledge representation). Several extensive articles and even a book [4,1] were
devoted to this issue in ASP. This all needs to be seen in the major context men-
tioned at the beginning; the problems with explaining of ASP to the wider commu-
nity of potential users, especially in electronic design automation. It is not enough to
use ASP (say for model checking, [15]), the issue is to convince others to use it. For
that reason, for instance dlv offers a front-end which uses the solver as a back-end
engine.

Time for conclusions. As is clear from my presentation, I believe that a simpler,
clearer, less technical descriptions of ASP must be found. Being by nature an optimist,
I believe that they will be found. The elegance of knowledge representation with ASP
will then open the possibility of a wider use of ASP. I also believe that one way or
another we are bound to get closer with SAT community. Signs of this phenomenon
are already seen. So, I do not know how the celebrations of the 40th anniversary of
stable semantics of logic programs will look like. But I am sure there will be a lot to
celebrate.

Quo Vadis Answer Set Programming? 87

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

2. Gelfond, M.: On stratified autoepistemic theories. In: Proceedings of AAAI 1987, pp. 207–
211 (1987)

3. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceed-
ings of the International Joint Conference and Symposium on Logic Programming, pp. 1070–
1080. MIT Press, Cambridge (1988)

4. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – A-Prolog
perspective. Artificial Intelligence 138, 3–38 (2002)

5. Lifschitz, V.: Twelve Definitions of a Stable model. This volume
6. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-

tions on Computational Logic 2, 526–541 (2001)
7. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on

Computational Logic 7, 261–268 (2006)
8. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artifi-

cial Intelligence Journal 157, 115–137 (2004)
9. Lonc, Z., Truszczyński, M.: Computing minimal models, stable models and answer sets.

Theory and Practice of Logic Programming 6, 395–449 (2006)
10. Marek, V.W., Truszczyński, M.: Nonmonotonic Logic, Context-Dependent Reasoning.

Springer, Berlin (1993)
11. Marek, V., Truszczyński, M.: Stable Models and an Alternative Logic Programming Par-

adigm. In: The Logic Programming Paradigm. Series Artificial Intelligence, pp. 375–398.
Springer, Heidelberg (1999)

12. Niemelä, I.: Logic programs with stable model semantics as a constraint programming para-
digm. Annals of Mathematics and Artificial Intelligence 25, 241–273 (1999)

13. Niemelä, I., Simons, P., Soininen, T.: Stable Model Semantics of Weight Constraint Rules.
In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS, vol. 1730, pp. 317–331.
Springer, Heidelberg (1999)

14. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and Abstract DPLL Modulo The-
ories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 36–50. Springer,
Heidelberg (2005)

15. Tang, C., Ternovska, E.: Model Checking Abstract State Machines with Answer Set Pro-
gramming. Fundamenta Informaticae 77, 105–141 (2007)

Answer Set Programming without Unstratified
Negation

Ilkka Niemelä

Helsinki University of Technology (TKK)
Department of Information and Computer Science

Ilkka.Niemela@tkk.fi

Abstract. The paper argues that for answer set programming purposes
it is not necessary to use unstratified negation but it is more appropriate
to employ a basic language based on simple choice constructs, integrity
constraints, and stratified negation. This offers a framework that enables
natural problem encodings and smooth extensions, for instance, with
constraints and aggregates.

1 Introduction

The stable model semantics [1] was introduced originally to provide a declarative
account of negation as failure in normal logic programs used in logic program-
ming systems such as Prolog. In particular, the challenge was to capture the
problematic case of recursion through negation, i.e., unstratified negation.

In the mid 1990s systems capable of computing stable models for tens of
thousands of (ground) rules were emerging [2,3]. Then it was realized that logic
programs with stable models could be used in a novel way to solve challenging
search problems [4,5,6]. The name answer set programming (ASP) was coined
to this new paradigm where the idea is to see rules as constraints characterizing
a set of (stable) models. Now a given search problem can be solved by encoding
the problem as a set of rules such that the stable models of the rules correspond
to the solutions of the original problem. Hence, a solution to a given problem can
be found by giving the logic program encoding as input to an ASP solver which
computes a stable model of the encoding and then a solution of the original
problem can be extracted from the computed stable model.

ASP has its origins in the stable model semantics of normal programs. Nat-
urally this class of programs has provided the basic logic program language for
ASP and it has been the starting point for extensions including disjunctions and
aggregates which increase expressivity and often also complexity. In particular,
unstratified negation is an essential part of ASP based on normal programs be-
cause without recursion through negation a normal program has at most one
stable model and, hence, is not possible to capture potential solutions to a given
problem as alternative stable models. For example, to encode a choice whether
to include an atom a in a stable model or not we need to introduce a new atom,
say a, and employ unstratified negation as in the two rules:

a← not a a← not a.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 88–92, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Answer Set Programming without Unstratified Negation 89

Such encodings using negation through recursion are very challenging to un-
derstand and develop. To overcome the problem, normal programs were ex-
tended, for example, by disjunctions [7] and various choice constructs [8,9].

The paper reconsiders the role of normal programs allowing unstratified nega-
tion as the basic language for ASP. It argues that for ASP purposes it is not
necessary to use unstratified negation but it is more suitable to employ a basic
language based on simple choice constructs, integrity constraints, and stratified
negation. This offers a framework where recursive definitions are allowed, prob-
lem encoding can be done in a very direct way using a generate and test approach,
and unstratified negation is easy to capture if needed. Moreover, the approach
provides a basic language which is straightforward to extend with different kinds
of constraints and aggregates without changing the underlying ideas in the se-
mantics and where primitives such as disjunction [7] that increase expressivity
(and complexity) can be added.

2 SCI Programs

We put forward a class of logic programs which we call SCI programs (for
Stratified negation, Choice constructs, and Integrity constraints) where programs
consist of normal rules of the form (1), choice rules of the form (2) and integrity
constraints of the form (3)

a← b1, . . . , bm, not c1, . . . ,not cn (1)
{a1, . . . , al} ← b1, . . . , bm, not c1, . . . ,not cn (2)

← b1, . . . , bm, not c1, . . . ,not cn (3)

where ai, bj , ck are all atoms. As usual the positive literals b1, . . . , bm and negative
literals not c1, . . . ,not cn are called the body of the rule and a ({a1, . . . , al}) is
the head for a normal (choice) rule and for integrity constraints the head is
empty. For a SCI program P we denote by NR(P), CR(P), and IC(P) the sets
of normal rules, choice rules and IC(P) integrity constraints, respectively.

In SCI programs unstratified negation is not allowed and programs are re-
quired to be stratified in the usual sense [10]: for each program there should
exist a mapping S from the predicate symbols in the program to natural num-
bers such that for each rule and each predicate symbol p appearing in the head
(i) S(p) ≥ S(q) holds for every predicate symbol q appearing in the positive
body literals and (ii) S(p) > S(q) holds for every predicate symbol q appearing
in the negative body literals of the rule.

3 Semantics of SCI Programs

Choice and integrity rules can be seen as special cases of the cardinality con-
straints in [11] and, hence, the stable model semantics for SCI programs can be
defined using a Gelfond-Lifschitz type of a reduct generalized to choice rules as
done in [11] (or more generally for abstract constraint atoms in [12]) .

90 I. Niemelä

However, here we propose a slightly different method of defining the semantics
which coincides with the approach explained above for SCI programs but pro-
vides a more direct path to extending the language as will be discussed below.
We outline the method in the ground case, i.e., for programs without variables.
Generalizing it to programs with variables can be done in the usual way by
Herbrand instantiation.

Models of a program are sets of atoms and a positive (negative) literal a
(not a) is satisfied in a model S if a ∈ S (a �∈ S). A normal rule of the form (1)
is satisfied by a model S if the head is satisfied whenever all the body literals
are satisfied. A choice rule is satisfied in any model and an integrity constraint
is satisfied if at least one of the body literals is not. A model S satisfies a set of
rules P if it satisfies all the rules (denoted by S |= P).

Given a set S of atoms (a candidate model) the SCI-reduct PS of P w.r.t. S
is the set of rules including all normal rules NR(P) in P and a rule

al ← b1, . . . , bm, not c1, . . . ,not cn

for each choice rule of the form (2) in CR(P) with al ∈ S. Notice that PS is
a normal stratified program without integrity constraints and it has a unique
canonical model which can be defined iteratively bottom up layer by layer in the
stratification, for details see [10]. For a normal stratified program P we denote
the unique stratified model by StM(P)1.

Definition 1. For a SCI program P , a set of atoms S is a stable model of P
iff S |= IC(P) and S = StM(PS).

Example 1. Consider the program P

c← a b← not a {a} ← not d ← not a

Now S1 = {a, c} is a stable model of P because it satisfies the only integrity con-
straint (last rule) in P and it is the stratified model of the reduct PS1 consisting
of the first two rules and the rule a← not d. However, S2 = {b} is not a stable
model because it does not satisfy the integrity constraint and S3 = {a, b, c} is
not a stable model because it is not the stratified model of the reduct PS3 . In
fact, S1 is the only stable model of P .

Example 2. The choice rules enable very natural encodings without using un-
stratified negation. We illustrate this with an encoding of the Hamiltonian circuit
problem for directed graphs, i.e., the problem of finding a path in a graph visit-
ing each node exactly once and returning to the starting node. We assume that
the graph is given using a set of facts of the form edge(v, u), vtx(v) specifying the
edges and vertices and a fact start(w) for some arbitrary starting vertex for the
circuit. In the encoding below the circuit is represented by the predicate hc(·, ·).
The first rule introduces for each edge a choice whether to include the edge in
1 Note that for a stratified normal program P the unique model coincides with the

stable model and the well-founded model of P .

Answer Set Programming without Unstratified Negation 91

the circuit or not and the two other rules on the left require that a vertex can
have at most one immediate successor and predecessor in the circuit. The rules
on the right state that each vertex needs to be reachable through the circuit
from the starting node of the circuit.

{hc(V, U)} ← edge(V, U)
← hc(V, U), hc(V,W), U �= W
← hc(U, V), hc(W,V), U �= W

r(V) ← hc(S, V), start(S)
r(V) ← r(U), hc(U, V)
← not r(V)

4 Capturing Unstratified Negation

In SCI programs unstratified negation is not allowed and an interesting ques-
tion is whether it can be captured with a suitable translation in terms choices,
integrity constraints and stratified negation. In fact, this is possible because a
literal not p with (unstratified) negation can be seen as a new atom p for which
a choice needs to be made whether to include p in the model such that a model
cannot contain both p and p but one of them needs to be included.

Hence, a normal program P can be translated to a SCI program tr(P) where
all unstratified negations (or in fact all negative literals) in P can be eliminated
as follows. For each atom p in P , we introduce a new atom p and add the
following three rules in the translation:

{p} ← ← p, p ← not p, not p

Then each negative literal not p in the rules can be replaced p.
It can be shown that given a normal program P (i) if S is a stable model of

P , then S ∪ {p | p ∈ At(P) − S, } is a stable model of the SCI program tr(P)
and (ii) if S is a stable model of tr(P), then S ∩ At(P) is a stable model of P ,
where At(P) is the set of atoms in P .

5 Extending SCI Programs

One of the advantages of the approach is that it is very straightforward and
unproblematic to extend the framework with new kinds of constraints and ag-
gregates. The idea is to require that these extensions can appear only in bodies
of rules and only in a stratified way, i.e., predicates used in a constraint or ag-
gregate need to be defined on an earlier stratum. Then it is straightforward to
the generalize the stratified model to handle novel kinds of constraints, see for
instance [13].

Notice that a rule with a constraint in the head can be directly represented
with a choice rule and an integrity constraint. For example, a rule such as

odd(a1, ..., al) ← b, not c

stating that an odd number of atoms a1, ..., al should be selected if b, not c hold,
can be encoded using two rules:

{a1, ..., al} ← b, not c ← not odd(a1, ..., al), b, not c.

92 I. Niemelä

There are some cases where positive recursion through a constraint has clear
semantics and is usable in practical applications, for example, in the case of
monotone constraints. For such cases it is straightforward to relax the notion of
stratification to allow positive recursion through such constraints and to extend
the semantics to handle this case [12].

Acknowledgments. The financial support of the Academy of Finland (project
122399) is gratefully acknowledged.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the 5th International Conference on Logic Programming, pp. 1070–
1080. The MIT Press, Cambridge (1988)

2. Niemelä, I., Simons, P.: Efficient implementation of the well-founded and stable
model semantics. In: Proceedings of the Joint International Conference and Sym-
posium on Logic Programming, pp. 289–303. The MIT Press, Cambridge (1996)

3. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: The KR system dlv:
Progress report, comparisons and benchmarks. In: Proceedings of the 6th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning, pp.
406–417. Morgan Kaufmann Publishers, San Francisco (1998)

4. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. In: Proceedings of the Workshop on Computational Aspects of
Nonmonotonic Reasoning (1998); Extended version appeared in Annals of Mathe-
matics and Artificial Intelligence 25(3,4), 241–273 (1999)

5. Marek, W., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–
398. Springer, Heidelberg (1999)

6. Lifschitz, V.: Answer set planning. In: Proceedings of the 16th International Con-
ference on Logic Programming, pp. 25–37. The MIT Press, Cambridge (1999)

7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

8. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications
in product configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp.
305–319. Springer, Heidelberg (1999)

9. Niemelä, I., Simons, P., Soininen, T.: Stable model semantics of weight constraint
rules. In: Proceedings of the 5th International Conference on Logic Programming
and Nonmonotonic Reasoning, pp. 317–331. Springer, Heidelberg (1999)

10. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In:
Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp.
89–148. Morgan Kaufmann Publishers, San Francisco (1988)

11. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artificial Intelligence 138(1-2), 181–234 (2002)

12. Marek, V., Niemelä, I., Truszczyński, M.: Programs with monotone abstract con-
straint atoms. Theory and Practice of Logic Programming 8(2), 167–199 (2008)

13. Kemp, D.B., Stuckey, P.J.: Semantics of logic programs with aggregates. In: Pro-
ceedings of the 1991 International Symposium on Logic Programming, pp. 387–401.
MIT Press, Cambridge (1991)

Here’s the Beef: Answer Set Programming!

Torsten Schaub�

Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89,
D-14482 Potsdam

torsten@cs.uni-potsdam.de

At the occasion of the Third International Conference on Principles of Knowledge
Representation and Reasoning [1] in 1992, Ray Reiter delivered an invited talk enti-
tled “Twelve Years of Nonmonotonic Reasoning Research: Where (and What) Is the
beef?”,1,2 reflecting the state and future of the research area of Nonmonotonic Reason-
ing (NMR;[2]). Ray Reiter describes it in [3] as a “flourishing subculture” making many
outside researchers “wonder what on earth this stuff is good for.” Although he seemed
to be rather optimistic about the future of NMR, he nonetheless saw its major contribu-
tion on the theoretical side, providing “important insights about, and solutions to, many
outstanding problems, not only in AI but in computer science in general.” Among them,
he lists “Logic Programming implementations of nonmonotonic reasoning”.

Although the link between Michael Gelfond and Vladimir Lifschitz’ Stable Model
Semantics for Logic Programming [4] and NMR formalisms like Ray Reiter’s De-
fault Logic [5] were discovered soon after the proposal of Stable Model Semantics,3

it still took some years until the first such implementation was conceived, namely,
the smodels system [8,9]. The emergence of such a highly efficient and robust sys-
tem has boosted the combination of Logic Programming and NMR and finally led to
a novel declarative programming paradigm, referred to as Answer Set Programming
(ASP;[10,11,12,13,14]). Since its inception, ASP has been regarded as the computa-
tional embodiment of Nonmonotonic Reasoning and a primary candidate for an ef-
fective tool for Knowledge Representation and Reasoning. After all, it seems nowadays
hard to dispute that ASP brought new life to Logic Programming and NMR research and
has become a major driving force for these two fields, helping dispel gloomy prophecies
of their impending demise.

Meanwhile, the prospect of ASP has been demonstrated in numerous application sce-
narios, including bio-informatics [15,16], configuration [17], database integration [18],
diagnosis [19], hardware design [20], insurance industry [21], model checking [22],
phylogenesis [23,24], planing [12], security protocols [25], etc.4 A highlight among
these applications is arguably the usage of ASP for the high-level control of the
space shuttle [26,27]. The increasing popularity of ASP is for one thing due to the

� Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.
1 By then twelve years after the publication of the Special Issue of the Artificial Intelligence

Journal on Nonmonotonic Reasoning.
2 See also http://en.wikipedia.org/wiki/Where’s the beef
3 Logic Programming under Stable Model Semantics turned out to be a special case of Default

Logic, with stable models corresponding to default extensions [6,7].
4 Seealsohttp://www.kr.tuwien.ac.at/research/projects/WASP/report.
html

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 93–98, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://en.wikipedia.org/wiki/Where's_the_beef
http://www.kr.tuwien.ac.at/research/projects/WASP/report.
html

94 T. Schaub

availability of efficient off-the-shelf ASP systems [28,29,30,31,32] and for another due
to its rich modeling language, jointly allowing for an easy yet efficient handling of
knowledge-intensive applications. Essentially all ASP systems that have been devel-
oped so far contain two major components. The first of them, a grounder, grounds an
input program, that is, produces its compact propositional equivalent, often by appeal
to advanced database techniques. The input language goes well beyond that of Prolog,
offering among others, integrity constraints, classical negation, disjunction, and var-
ious types of aggregates. The second component, a solver, accepts the ground pro-
gram and actually computes its answer sets (which amount to the stable models of the
original program). Modern ASP solvers rely on advanced Boolean constraint solving
techniques, stemming from the area of Satisfiability Checking and allowing for tackling
application problems encompassing millions of variables. All in all, ASP has become an
efficient and expressive declarative problem solving paradigm, particularly well-suited
for knowledge-intensive applications.

Taking up Ray Reiter’s challenge after sixteen years, my obvious answer is that An-
swer Set Programming is the beef of twenty-eight years of NMR research! Although
twenty-eight years appear to be quite a while, successful neighboring areas such as
Description Logics (DLs) and Satisfiability Checking (SAT) look back onto similar
histories, taking major references in their field, like [33] and [34,35], respectively.
Nonetheless both areas have prospered in recent years due to their success in industri-
ally relevant application areas. SAT is the key technology underlying Bounded Model
Checking [36] and DLs have become standard ontology languages for the Semantic
Web [37]. Although different factors have abetted these success stories, in the end, their
breakthrough was marked by their establishment as salient technologies in their respec-
tive application areas. What can ASP learn from this? First of all, we should keep build-
ing upon strong formal foundations, just as SAT and DLs do. However, ASP should gear
its research vision towards application scenarios in order to make ASP technology more
efficient, more robust, more versatile, and in the end ready for real applications. This
orientation is such a fruitful approach, being full of interesting and often fundamental
research questions.

Second, we have to foster the dissemination of ASP in order to increase its percep-
tion. Apart from promoting ASP in our academic and industrial environment, teaching
ASP is an important means to enhance the common awareness of it. This does not nec-
essarily mean to teach full-fledged ASP courses, which is difficult in view of many
encrusted curricula, but rather to incorporate ASP in AI-related classes as a tool for il-
lustrating typical reasoning patterns in Knowledge Representation and Reasoning, like
closed-world reasoning, abduction, planning, etc. And after all, to put it in Ray Reiter’s
words, it’s the ASP community’s duty to show “what on earth this stuff is good for.”

ASP has staked its claim in being an attractive approach to declarative problem solv-
ing in combing an expressive modelling language with efficient solving technology. But
how does it scale? In fact, this is not only a matter of performance but also of applica-
bility and usability. Here is my personal view.

Performance. Modern ASP solvers are based on advanced Boolean constraint tech-
nology and exhibit a similar performance as advanced SAT solvers [38]. Unlike
SAT, however, ASP offers a uniform modelling language admitting variables. In

Here’s the Beef: Answer Set Programming! 95

fact, grounding non-propositional logical specifications constitutes a major bottle-
neck in both ASP and SAT.5 While this problem is addressed in SAT anew for
each application, ASP centralizes this task in its grounders. The more surprising
it is that there is so little work devoted to grounding within the ASP community
(cf. [39,40,41,42]). This is a central yet neglected research topic. Apart from in-
creasing research efforts in grounding, another major research theme is the devel-
opment of program optimizers. That is, systems that transform highly declarative
logic programs into equivalent ones, for which the overall solving time is signifi-
cantly shorter than for the original program. In view of the vast literature on pro-
gram equivalence in ASP (cf. [43,44,45,46,47]) the field appears to be well farmed
for this endeavor.

Usability. At first, many people are impressed by the ease of modelling in ASP. How-
ever, once they attack the first more complex problem and draft their first buggy
encoding, they become often lost in the flat of declarativity. The solving process
is completely transparent. No handle is available for finding out why the wrong or
no solution is obtained. Also, when performance matters, it is still an art to come
up with an efficient encoding, and often the result trades off declarativity. What
is needed are dedicated tools, techniques, and methodologies to facilitate the de-
velopment of answer set programs. In a nutshell, we need Software Engineering
capacities that are adept enough to match ASP’s high level of declarativity. First
work on this can be found in [48,49,50,51] but much more work is needed.

Applicability. Many practical applications of ASP motivate extensions or combina-
tions with other problem-solving paradigms. Looking at SAT’s breakthrough in
planning and model checking [52,36], it is interesting to observe that both involved
dealing with an increasing bound on the solution size. Meanwhile dedicated SAT
solvers allow for addressing this issue [53,54]. Also, a whole sub-area of SAT,
known as SAT modulo theories, deals with the integration of other problem-solving
paradigms. So far, ASP is making only modest steps in similar directions. For in-
stance, a first approach to incremental ASP solving is described in [55] and the
combination of ASP and Constraint Processing is explored in [56,57,58]. More
cross-fertilization with neighboring fields is needed to tackle real applications.

Last but not least, we have to foster the exchange within the ASP community as
well as to neighboring fields like Constraint Processing and SAT and moreover re-
enforce the link to ASP’s parental research areas, Logic Programming and NMR.
We need to improve the inter-operability of our systems and tools through specifying
interfaces and fixing some standards. We need common benchmark and problem reposi-
tories and encourage comprehensive system competitions going beyond specific declar-
ative solving paradigms. Otherwise, I am afraid that we will never turn our beef into a
steak!

Acknowledgements. I would like to thank Gerd Brewka, Martin Gebser, Mirosław
Truszczyński, and Stefan Woltran for fruitful comments on an earlier draft.

5 Interestingly, in SAT, recourse to first-order theorem proving seems not an option because of
the high performance of Boolean constraint technology.

96 T. Schaub

References

1. Nebel, B., Rich, C., Swartout, W. (eds.): Proceedings of the Third International Conference
on Principles of Knowledge Representation and Reasoning (KR 1992). Morgan Kaufmann,
San Francisco (1992)

2. Ginsberg, M. (ed.): Readings in Nonmonotonic Reasoning. Morgan Kaufmann, San Fran-
cisco (1987)

3. Reiter, R.: Twelve years of nonmonotonic reasoning research: Where (and what) is the beef?
In: [1], p. 789

4. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski,
R., Bowen, K. (eds.) Proceedings of the Fifth International Conference and Symposium of
Logic Programming (ICLP 1988), pp. 1070–1080. The MIT Press, Cambridge (1988)

5. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)
6. Marek, V., Truszczyński, M.: Stable semantics for logic programs and default theories. In:

Lusk, E., Overbeek, R. (eds.) Proceedings of the North American Conference on Logic Pro-
graming, pp. 243–256. The MIT Press, Cambridge (1989)

7. Bidoit, N., Froidevaux, C.: General logical databases and programs: Default logic semantics
and stratification. Information and Computation 91(1), 15–54 (1991)

8. Niemelä, I., Simons, P.: Evaluating an algorithm for default reasoning. In: Working Notes of
the IJCAI 1995 Workshop on Applications and Implementations of Nonmonotonic Reason-
ing Systems, pp. 66–72 (1995)

9. http://www.tcs.hut.fi/Software/smodels
10. Niemelä, I.: Logic programs with stable model semantics as a constraint programming para-

digm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)
11. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.

In: Apt, K., Marek, W., Truszczyński, M., Warren, D. (eds.) The Logic Programming Para-
digm: a 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)

12. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2),
39–54 (2002)

13. Gelfond, M., Leone, N.: Logic programming and knowledge representation — the A-Prolog
perspective. Artificial Intelligence 138(1-2), 3–38 (2002)

14. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

15. Tran, N., Baral, C.: Reasoning about triggered actions in AnsProlog and its application to
molecular interactions in cells. In: Dubois, D., Welty, C., Williams, M. (eds.) Proceedings of
the Ninth International Conference on Principles of Knowledge Representation and Reason-
ing (KR 2004), pp. 554–564. AAAI Press, Menlo Park (2004)

16. Dworschak, S., Grell, S., Nikiforova, V., Schaub, T., Selbig, J.: Modeling biological networks
by action languages via answer set programming. Constraints 13(1-2), 21–65 (2008)

17. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product
configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 305–319. Springer,
Heidelberg (1999)

18. Leone, N., Greco, G., Ianni, G., Lio, V., Terracina, G., Eiter, T., Faber, W., Fink, M., Gottlob,
G., Rosati, R., Lembo, D., Lenzerini, M., Ruzzi, M., Kalka, E., Nowicki, B., Staniszkis,
W.: The INFOMIX system for advanced integration of incomplete and inconsistent data. In:
Özcan, F. (ed.) Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD 2005), pp. 915–917. ACM Press, New York (2005)

19. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The diagnosis frontend of the dlv system. AI
Communications 12(1-2), 99–111 (1999)

20. Erdem, E., Wong, M.: Rectilinear Steiner tree construction using answer set programming.
In: [59], pp. 386–399

http://www.tcs.hut.fi/Software/smodels

Here’s the Beef: Answer Set Programming! 97

21. Beierle, C., Dusso, O., Kern-Isberner, G.: Using answer set programming for a decision sup-
port system. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS,
vol. 3662, pp. 374–378. Springer, Heidelberg (2005)

22. Heljanko, K., Niemelä, I.: Bounded LTL model checking with stable models. Theory and
Practice of Logic Programming 3(4-5), 519–550 (2003)

23. Kavanagh, J., Mitchell, D., Ternovska, E., Manuch, J., Zhao, X., Gupta, A.: Constructing
Camin-Sokal phylogenies via answer set programming. In: Hermann, M., Voronkov, A.
(eds.) LPAR 2006. LNCS, vol. 4246, pp. 452–466. Springer, Heidelberg (2006)

24. Brooks, D., Erdem, E., Erdogan, S., Minett, J., Ringe, D.: Inferring phylogenetic trees using
answer set programming. Journal of Automated Reasoning 39(4), 471–511 (2007)

25. Aiello, L., Massacci, F.: Verifying security protocols as planning in logic programming.
ACM Transactions on Computational Logic 2(4), 542–580 (2001)

26. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-prolog deci-
sion support system for the space shuttle. In: Ramakrishnan, I. (ed.) PADL 2001. LNCS,
vol. 1990, pp. 169–183. Springer, Heidelberg (2001)

27. Balduccini, M., Gelfond, M.: Model-based reasoning for complex flight systems. In: Pro-
ceedings of the Fifth AIAA Conference on Aviation, Technology, Integration, and Operations
(ATIO 2005) (2005)

28. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

29. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (2006)

30. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence 157(1-2), 115–137 (2004)

31. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

32. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
Veloso, M. (ed.) Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI 2007), pp. 386–392. AAAI Press/The MIT Press (2007)

33. Brachman, R., Schmolze, J.: An overview of the KL-ONE knowledge representation system.
Cognitive Science 9(2), 189–192 (1985)

34. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM 7, 201–215 (1960)

35. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-
nications of the ACM 5, 394–397 (1962)

36. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solv-
ing. Formal Methods in System Design 19(1), 7–34 (2001)

37. Baader, F., Horrocks, I., Sattler, U.: Description logics as ontology languages for the semantic
web. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning, pp. 228–248.
Springer, Heidelberg (2005)

38. Gomes, C., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Lifschitz, V., van
Hermelen, F., Porter, B. (eds.) Handbook of Knowledge Representation. Elsevier, Amster-
dam (2008)

39. Syrjänen, T.: Omega-restricted logic programs. In: Eiter, T., Faber, W., Truszczyński, M.
(eds.) LPNMR 2001. LNCS, vol. 2173, pp. 267–279. Springer, Heidelberg (2001)

40. Syrjänen, T.: Cardinality constraint programs. In: Alferes, J., Leite, J. (eds.) JELIA 2004.
LNCS, vol. 3229, pp. 187–199. Springer, Heidelberg (2004)

41. Leone, N., Perri, S., Scarcello, F.: Backjumping techniques for rules instantiation in the DLV
system. In: Delgrande, J., Schaub, T. (eds.) Proceedings of the Tenth International Workshop
on Nonmonotonic Reasoning (NMR 2004), pp. 258–266 (2004)

98 T. Schaub

42. Gebser, M., Schaub, T., Thiele, S.: GrinGo: A new grounder for answer set programming.
In: [60], pp. 266–271

43. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-
tions on Computational Logic 2(4), 526–541 (2001)

44. Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. Theory
and Practice of Logic Programming 3(4-5), 609–622 (2003)

45. Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model semantics.
In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238. Springer, Heidelberg
(2003)

46. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and
strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp.
87–99. Springer, Heidelberg (2003)

47. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: Brewka,
G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Proceedings of the Seventeenth European
Conference on Artificial Intelligence (ECAI 2006), pp. 412–416. IOS Press, Amsterdam
(2006)

48. Brain, M., de Vos, M.: Debugging logic programs under the answer set semantics. In: de
Vos, M., Provetti, A. (eds.) Proceedings of the Third International Workshop on Answer Set
Programming (ASP 2005). CEUR Workshop Proceedings (CEUR-WS.org), pp. 141–152
(2005)

49. Syrjänen, T.: Debugging inconsistent answer set programs. In: Dix, J., Hunter, A. (eds.) Pro-
ceedings of the Eleventh International Workshop on Nonmonotonic Reasoning (NMR 2006),
Clausthal University of Technology, Institute for Informatics, pp. 77–83 (2006)

50. Pontelli, E., Son, T.: Justifications for logic programs under answer set semantics. In: Etalle,
S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079. Springer, Heidelberg (2006)

51. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP
programs by means of ASP. In: [60], pp. 31–43

52. Kautz, H., Selman, B.: Planning as satisfiability. In: Neumann, B. (ed.) Proceedings of the
Tenth European Conference on Artificial Intelligence (ECAI 1992), pp. 359–363. Wiley,
Chichester (1992)

53. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes
in Theoretical Computer Science 89(4) (2003)

54. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model finding.
In: Baumgartner, P., Fermüller, C. (eds.) Proceedings of the Workshop on Model Computa-
tion — Principles, Algorithms, Applications (2003)

55. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In: Dovier, A., Garcia de la Banda, M., Pontelli, E. (eds.) Pro-
ceedings of the Twenty-fourth International Conference on Logic Programming (ICLP 2008)
(to appear, 2008)

56. Elkabani, I., Pontelli, E., Son, T.: Smodels with CLP and its applications: A simple and
effective approach to aggregates in ASP. In: [59], pp. 73–89

57. Baselice, S., Bonatti, P., Gelfond, M.: Towards an integration of answer set and constraint
solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 52–66.
Springer, Heidelberg (2005)

58. Mellarkod, V., Gelfond, M.: Integrating answer set reasoning with constraint solving tech-
niques. In: Garrigue, J., Hermenegildo, M. (eds.) Proceedings of the Ninth International Sym-
posium of Functional and Logic Programming, pp. 15–31. Springer, Heidelberg (2008)

59. Demoen, B., Lifschitz, V. (eds.): ICLP 2004. LNCS, vol. 3132. Springer, Heidelberg (2004)
60. Baral, C., Brewka, G., Schlipf, J. (eds.): LPNMR 2007. LNCS, vol. 4483. Springer, Heidel-

berg (2007)

Equivalences in Answer-Set Programming by
Countermodels in the Logic of Here-and-There

Michael Fink

Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

fink@kr.tuwien.ac.at

Abstract. In Answer-Set Programming different notions of equivalence, such
as the prominent notions of strong and uniform equivalence, have been studied
and characterized by various selections of models in the logic of Here-and-There
(HT). For uniform equivalence however, correct characterizations in terms of HT-
models can only be obtained for finite theories, respectively programs. In this
paper, we show that a selection of countermodels in HT captures uniform equiva-
lence also for infinite theories. This result is turned into coherent characterizations
of the different notions of equivalence by countermodels, as well as by a mixture
of HT-models and countermodels (so-called equivalence interpretations), which
are lifted to first-order theories under a very general semantics given in terms of a
quantified version of HT. We show that countermodels exhibit expedient proper-
ties like a simplified treatment of extended signatures, and provide further results
for non-ground logic programs. In particular, uniform equivalence coincides un-
der open and ordinary answer-set semantics, and for finite non-ground programs
under these semantics, also the usual characterization of uniform equivalence in
terms of maximal and total HT-models of the grounding is correct, even for infi-
nite domains, when corresponding ground programs are infinite.

Keywords: answer-set programming, uniform equivalence, knowledge represen-
tation, program optimization.

1 Introduction

Logic programming under the answer-set semantics, called Answer-Set Programming
(ASP), is a fundamental paradigm for nonmonotonic knowledge representation [1]. It is
distinguished by a purely declarative semantics and efficient solvers [2,3,4,5]. Initially
providing a semantics for rules with default negation in the body, the answer-set se-
mantics [6] has been continually extended in terms of expressiveness, and recently the
formalism has been lifted to a general answer-set semantics for first-order theories [7].

In a different line of research, the restriction to Herbrand domains for programs
with variables, i.e., non-ground programs, has been relaxed in order to cope with open
domains [8]. The open answer-set semantics has been further generalized by dropping
the unique names assumption [9] for application settings where it does not apply, for
instance, when combining ontologies with nonmontonic rules [10].

As for a logical characterization of the answer-set semantics, the logic of Here-
and-There (HT), a nonclassical logic extending intuitionistic logic, served as a basis.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 99–113, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

100 M. Fink

Equilibrium Logic selects certain minimal HT-models for characterizing the answer-
set semantics for propositional theories and programs. It has recently been extended to
Quantified Equilibrium Logic (QEL) for first-order theories on the basis of a quanti-
fied version of Here-and-There (QHT) [11]. Equilibrium Logic serves as a viable for-
malism for the study of semantic comparisons of theories and programs, like different
notions of equivalence [12,13,14,15,16]. The practical relevance of this research orig-
inates in program optimization tasks that rely on modifications that preserve certain
properties [17,18,19].

In this paper, we contribute by tackling an open problem concerning uniform equiv-
alence of propositional theories and programs. Intuitively, two propositional logic pro-
grams are uniformly equivalent if the have the same answer sets under the addition of
an arbitrary set of atoms to both programs. As has been shown in [20], so-called UE-
models, a selection of HT-models based on a maximality criterion, do not characterize
uniform equivalence for infinite propositional programs. Moreover, uniform equiva-
lence of infinite programs cannot be captured by any selection of HT-models [20], as
this is the case, e.g., for strong equivalence.

While the problem might seem esoteric at a first glance, since infinite propositional
programs are rarely dealt with in practice, it is relevant when turning to the non-ground
setting, respectively first-order theories, where infinite domains, such as the natural
numbers, are encountered in many application domains.

The main contributions can be summarized as follows:

– We show that uniform equivalence of possibly infinite propositional theories, and
thus programs, can be characterized by certain countermodels in HT. However, HT
is not ‘dual’ (wrt. the characterization of countermodels) in the following sense:
The countermodels of a theory Γ cannot be characterized by the models of a the-
ory Γ ′. Therefore, we also study equivalence interpretations, a mixture of models
and countermodels of a theory, that can be characterized by a transformation of
the theory if it is finite. We characterize classical equivalence, answer-set equiv-
alence, strong equivalence, and uniform equivalence by appropriate selections of
countermodels and equivalence interpretations.

– We lift these results to first-order theories by means of QHT, essentially intro-
ducing uniform equivalence for first-order theories under the most general form
of answer-set semantics currently considered. We prove that, compared to QHT-
models, countermodels alow for a simplified treatment of extended signatures.

– Finally, we show that the notion generalizes uniform equivalence for logic pro-
grams, and prove that it coincides for open and ordinary answer-set semantics. For
finite non-ground programs under both ordinary and open answer-set semantics, we
establish that uniform equivalence can be handled by the usual characterization in
terms of HT-models of the grounding also for infinite domains.

Our results provide an elegant, uniform model-theoretic characterization of the dif-
ferent notions of equivalence considered in ASP. They generalize to first-order theories
without finiteness restrictions, and are relevant for practical ASP systems that handle
finite non-ground programs over infinite domains. For the sake of presentation, the tech-
nical content is split into two parts, discussing the propositional case first (Sections 2
and 3), and addressing first order theories and nonground programs in Sections 4 and 5.

Equivalences in Answer-Set Programming by Countermodels 101

2 Preliminaries

We start with the propositional setting and briefly summarize the necessary background.
Corresponding first-order formalisms will be introduced when discussing first-order
theories, respectively non-ground logic programs.

2.1 Propositional Here-and-There

In the propositional case we consider formulas of a propositional signature L, i.e., a set
of propositional constants, and the connectives∧, ∨,→, and⊥ for conjunction, disjunc-
tion, implication, and falsity, respectively. Furthermore we make use of the following
abbreviations: φ ≡ ψ for (φ → ψ) ∧ (ψ → φ); ¬φ for φ → ⊥; and � for ⊥ → ⊥. A
formula is said to be factual1 if it is built using ∧, ∨, ⊥, and ¬ (i.e., implications of the
form φ→ ⊥), only. A theory Γ is factual if every formula of Γ has this property.

The logic of here-and-there is an intermediate logic between intuitionistic logic and
classical logic. Like intuitionistic logic it can be semantically characterized by Kripke
models, in particular using just two worlds, namely “here” and “there” (assuming that
the here world is ordered before the there world). Accordingly, interpretations (HT-
interpretations) are pairs (X,Y) of sets of atoms from L, such that X ⊆ Y . An HT-
interpretation is total if X = Y . The intuition is that atoms in X (the here part) are
considered to be true, atoms not in Y (the there part) are considered to be false, while
the remaining atoms (from Y \X) are undefined.

We denote classical satisfaction of a formula φ by an interpretation X , i.e., a set of
atoms, as X |= φ, whereas satisfaction in the logic of here-and-there (an HT-model),
symbolically (X,Y) |= φ, is defined recursively:

1. (X,Y) |= a if a ∈ X , for any atom a,
2. (X,Y) �|= ⊥,
3. (X,Y) |= φ ∧ ψ if (X,Y) |= φ and (X,Y) |= ψ,
4. (X,Y) |= φ ∨ ψ if (X,Y) |= φ or (X,Y) |= ψ,
5. (X,Y) |= φ→ ψ if (i) (X,Y) �|= φ or (X,Y) |= ψ, and (ii) Y |= φ→ ψ2.

An HT-interpretation (X,Y) satisfies a theory Γ , iff it satisfies all formulas φ ∈ Γ .
For an axiomatic proof system see, e.g., [13].

A total HT-interpretation (Y, Y) is called an equilibrium model of a theory Γ , iff
(Y, Y) |= Γ and for all HT-interpretations (X,Y), such that X ⊂ Y , it holds that
(X,Y) �|= Γ . An interpretation Y is an answer set of Γ iff (Y, Y) is an equilibrium
model of Γ .

We will make use of the following simple properties: if (X,Y) |= Γ then (Y, Y) |=
Γ ; and (X,Y) |= ¬φ iff Y |= ¬φ; as well as of the following lemma.

Lemma 1 (Lemma 5 in [21]). Let φ be a factual propositional formula. If (X,Y) |= φ
and X ⊆ X ′ ⊆ Y , then (X ′, Y) |= φ.

1 When uniform equivalence of theories is considered, then factual theories can be considered
instead of facts—hence the terminology—see also the discussion at the end of this section.

2 That is, Y satisfies φ → ψ classically.

102 M. Fink

2.2 Propositional Logic Programming

A (disjunctive) rule r is of the form

a1 ∨ · · · ∨ ak ∨ ¬ak+1 ∨ · · · ∨ ¬al ← b1, . . . , bm,¬bm+1, . . . ,¬bn, (1)

where a1, . . . , al, b1, . . . , bn are atoms of a propositional signature L, such that l ≥
k ≥ 0, n ≥ m ≥ 0, and l + n > 0. We refer to “¬” as default negation. The
head of r is the set H(r) = {a1, . . . , ak,¬ak+1, . . . ,¬al}, and the body of r is de-
noted by B(r) = {b1, . . . , bm, ¬bm+1, . . . , ¬bn}. Furthermore, we define the sets
H+(r) = {a1, . . . , ak}, H−(r) = {ak+1, . . . , al}, B+(r) = {b1, . . . , bm}, and even-
tually B−(r) = {bm+1, . . . , bn}. A program Π (over L) is a set of rules (over L).

An interpretation I , i.e., a set of atoms, satisfies a rule r, symbolically I |= r, iff
I∩H+(r) �= ∅ or H−(r) �⊆ I if B+(r) ⊆ I and B−(r)∩I = ∅. Adapted from [6], the
reduct of a program Π with respect to an interpretation I , symbolically ΠI , is given by
the set of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm,

obtained from rules in Π , such that H−(r) ⊆ I and B−(r) ∩ I = ∅.
An interpretation I is called an answer set of Π iff I |= ΠI and it is subset minimal

among the interpretations of L with this property.

2.3 Notions of Equivalence

For any two theories, respectively programs, and a potential extension by Γ , we con-
sider the following notions of equivalence which have been shown to be the only forms
of equivalence obtained by varying the logical form of extensions in the propositional
case in [21].

Definition 1. Two theories Γ1, Γ2 over L are called

– classically equivalent, Γ1 ≡c Γ2, if they have the same classical models;
– answer-set equivalent, Γ1 ≡a Γ2, if they have the same answer sets, i.e., equilib-

rium models;
– strongly equivalent, Γ1 ≡s Γ2, if, for any theory Γ overL′ ⊇ L, Γ1∪Γ and Γ2∪Γ

are answer-set equivalent;
– uniformly equivalent, Γ1 ≡u Γ2, if, for any factual theory Γ over L′ ⊇ L, Γ1 ∪ Γ

and Γ2 ∪ Γ are answer-set equivalent.

Emanating from a logic programming setting, uniform equivalence is usually under-
stood wrt. sets of facts (i.e., atoms). Obviously, uniform equivalence wrt. factual the-
ories implies uniform equivalence wrt. sets of facts. The converse direction has been
shown as well for general propositional theories in [21](cf. Theorem 2). Therefore, in
general there is no difference whether uniform equivalence is considered wrt. sets of
facts or factual theories. The latter may be regarded as facts, i.e., rules with an empty
body, of so-called nested logic program rules. One might also consider sets of disjunc-
tions of atomic formulas and their negations (i.e., clauses), accounting for facts accord-
ing to the definition of program rules in this paper. Note that clauses constitute factual
formulas and the classical transformation of clauses into implications is not valid under
answer set semantics (respectively in HT).

Equivalences in Answer-Set Programming by Countermodels 103

3 Equivalence of Propositional Theories by HT-Countermodels

Uniform equivalence is usually characterized by so-called UE-models, i.e., total and
maximal non-total HT-models, which fail to capture uniform equivalence for infinite
propositional theories.

Example 1 ([20]). Let Γ1 and Γ2 over L = {ai | i ≥ 1} be the following propositional
theories

Γ1 = {ai | i ≥ 1}, and Γ2 = {¬ai → ai, ai+1 → ai | i ≥ 1}.

Both, Γ1 and Γ2, have the single total HT-model (L,L). Furthermore, Γ1 has no non-
total HT-model (X,L), i.e, such that X ⊂ L, while Γ2 has the non-total HT-models
(Xi,L), where Xi = {a1, . . . , ai} for i ≥ 0. Both theories have the same total and
maximal non-total (namely none) HT-models. But they are not uniformly equivalent as
witnessed by the fact that (L,L) is an equilibrium model of Γ1 but not of Γ2. �
The reason for this failure is the inability of the concept of maximality to capture dif-
ferences exhibited by an infinite number of HT-models.

3.1 HT-Countermodels

The above problem can be avoided by taking HT-countermodels that satisfy a closure
condition instead of the maximality criterion.

Definition 2. An HT-interpretation (X,Y) is an HT-countermodel of a theory Γ if
(X,Y) �|= Γ . The set of HT-countermodels of a theory Γ is denoted by Cs(Γ).

Intuitively, an HT-interpretation fails to be an HT-model of a theory Γ when the theory
is not satisfied at one of the worlds (here or there). Note that satisfaction at the there
world amounts to classical satisfaction of the theory by Y . A simple consequence is that
if Y �|= Γ , then (X,Y) is an HT countermodel of Γ for any X ⊆ Y . At the here world,
classical satisfaction is a sufficient condition but not necessary. For logic programs,
satisfaction at the here world is precisely captured by the reduct of the program Π
wrt. the interpretation at the there world, i.e., if X |= ΠY .

Definition 3. A total HT-interpretation (Y, Y) is

– total-open in a set S of HT-interpretations if (Y, Y) ∈ S and (X,Y) �∈ S for every
X ⊂ Y .

– total-closed in a set S of HT-interpretations if (X,Y) ∈ S for every X ⊆ Y .

We say that an HT-interpretation (X,Y) is there-closed in a set S of HT-interpretations
if (X ′, Y) ∈ S for every X ⊆ X ′ ⊂ Y .

A set S of HT-interpretations is total-closed, respectively total-open, if every total HT-
interpretation (Y, Y) ∈ S is total-closed in S, respectively total-open in S. By the
remarks on the satisfaction at the there world above, it is obvious that every total HT-
countermodel of a theory is also total-closed in Cs(Γ). Consequently,Cs(Γ) is a total-
closed set for any theory Γ . By the same argument, if (X,Y) is an HT-countermodel
such that X ⊂ Y and Y �|= Γ , then (X,Y) is there-closed in Cs(Γ). The more
relevant cases concerning the characterization of equivalence are HT-countermodels
(X,Y) such that Y |= Γ .

104 M. Fink

Example 2. Consider the theory Γ1 in Example 1 and a non-total HT-interpretation
(X,L). Since (X,L) is non-total, X ⊂ L holds, and therefore (X,L) �|= ai, for some
ai ∈ L. Thus, we have identified a HT-countermodel of Γ1. Moreover the same argu-
ment holds for any non-total HT-interpretation of the from (X ′,L) (in particular such
that X ⊆ X ′ ⊂ Y). Therefore, (X,L) is there-closed in Cs(Γ1).

The intuition that, essentially, there-closed countermodels can be used instead of
maximal non-total HT-models for characterizing uniform equivalence draws from the
following observation. If (X,Y) is a maximal non-total HT-model, then every (X ′, Y),
such thatX ⊂ X ′ ⊂ Y , is a there-closed HT-countermodel. However, there-closed HT-
countermodels are not sensitive to the problems that infinite chains cause for
maximality.

Given a theory Γ , let Cu(Γ) denote the set of there-closed HT-interpretations in
Cs(Γ).

Theorem 1. Two propositional theories Γ1, Γ2 are uniformly equivalent iff they have
the same sets of there-closed HT-countermodels, in symbols Γ1 ≡u Γ2 iff Cu(Γ1) =
Cu(Γ2).

Proof. For the only-if direction, assume that two theories, Γ1 and Γ2, are uniformly
equivalent. Then they are classically equivalent, i.e., they coincide on total HT-models,
and therefore also on total HT-countermodels. Moreover, since every theory has a total-
closed set of countermodels [22], we conclude that Γ1 and Γ2 coincide on all HT-
models (X,Y) such that (Y, Y) is a (common) total HT-countermodel. Note that all
these models are there-closed.

To prove our claim, it remains to show that Γ1 and Γ2 coincide on there-closed HT-
countermodels (X,Y) such that (Y, Y) is an HT-model of both theories. Consider such
a there-closed HT-countermodel of Γ1. Then, (Y, Y) is a total HT-model of Γ1∪X and
noX ′ ⊂ Y exists such that (X ′, Y) |= Γ1∪X , either because it is an HT-countermodel
of Γ1 (in case X ⊆ X ′ ⊂ Y) or of X (in case X ′ ⊂ X). Thus, Y is an answer set of
Γ1 ∪ X and, by hypothesis since X is factual, it is also an answer set of Γ2 ∪ X . The
latter implies for all X ⊆ X ′ ⊂ Y that (X ′, Y) �|= Γ2∪X . All these HT-interpretations
are HT-models of X . Therefore we conclude that they all are HT-countermodels of
Γ2 and hence (X,Y) is a there-closed HT-countermodel of Γ2. Again by symmetric
arguments, we establish the same for any there-closed HT countermodel (X,Y) of Γ2
such that (Y, Y) is a common total HT-model. This proves that Γ1 and Γ2 have the
same sets of there-closed HT countermodels.

For the if direction, assume that two theories, Γ1 and Γ2, have the same sets of there-
closed HT-countermodels. This implies that they have the same total HT-countermodels
(since these are total-closed and thus there-closed) and hence the same total HT-models.
Consider any factual theory Γ ′ such that Y is an answer set of Γ1∪Γ ′. We show that Y
is an answer set of Γ2∪Γ ′ as well. Clearly, (Y, Y) |= Γ1∪Γ ′ implies (Y, Y) |= Γ ′ and
therefore (Y, Y) |= Γ2∪Γ ′. Consider any X ⊂ Y . Since Y is an answer set of Γ1∪Γ ′,
it holds that (X,Y) �|= Γ1 ∪ Γ ′. We show that (X,Y) �|= Γ2 ∪ Γ ′. If (X,Y) �|= Γ ′ this
is trivial, and in particular the case if (X,Y) |= Γ1. So let us consider the case where
(X,Y) �|= Γ1 and (X,Y) |= Γ ′. By Lemma 1 we conclude from the latter that, for
any X ⊆ X ′ ⊂ Y , (X ′, Y) |= Γ ′. Therefore, (X ′, Y) �|= Γ1, as well. This implies

Equivalences in Answer-Set Programming by Countermodels 105

that (X,Y) is a there-closed HT-countermodel of Γ1. By hypothesis, (X,Y) is a there-
closed HT-countermodel of Γ2, i.e., (X,Y) �|= Γ2. Consequently, (X,Y) �|= Γ2 ∪ Γ ′.
Since this argument applies to any X ⊂ Y , (Y, Y) is an equilibrium model of Γ2 ∪ Γ ′,
i.e., Y is an answer set of Γ2 ∪ Γ ′. The same argument with Γ1 and Γ2 interchanged,
proves that Y is an answer set of Γ1 ∪ Γ ′ if it is an answer set of Γ2 ∪ Γ ′. Therefore,
the answer sets of Γ1 ∪ Γ ′ and Γ2 ∪ Γ ′ coincide for any factual theory Γ ′, i.e., Γ1 and
Γ2 are uniformly equivalent. �

Example 3. Reconsider the theories in Example 1. Every non-total HT-interpretation
(X,L) is an HT-countermodel of Γ1, and thus, each of them is there-closed. On the
other hand, none of these HT-interpretations is an HT countermodel of Γ2. Therefore,
Γ1 and Γ2 are not uniformly equivalent. �

Countermodels have the drawback however, that they cannot be characterized directly
in HT itself, i.e., as the HT-models of a ‘dual’ theory. The usage of “dual” here is non-
standard compared to its application to particular calculi or consequence relations, but
it likewise conveys the idea of a dual concept. In this sense HT therefore is non-dual:

Proposition 1. Given a theory Γ , in general there is no theory Γ ′ such that (X,Y) is
an HT-countermodel of Γ iff it is a HT-model of Γ ′, for any HT-interpretation (X,Y).

3.2 Characterizing Equivalence by means of Equivalence Interpretations

The characterization of countermodels by a theory in HT essentially fails due to total
HT-countermodels. However, total HT-countermodels of a theory are not necessary for
characterizing equivalence, in the sense that they can be replaced by total HT-models
of the theory for this purpose.

Definition 4. An HT-countermodel (X,Y) of a theory Γ is called a here-countermodel
of Γ if Y |= Γ .

Definition 5. An HT-interpretation is an equivalence interpretation of a theory Γ if it
is a total HT-model of Γ or a here-countermodel of Γ . The set of equivalence interpre-
tations of a theory Γ is denoted by Es(Γ).

Theorem 2. Two theories Γ1 and Γ2 coincide on their HT-countermodels iff they have
the same equivalence interpretations, symbolically Cs(Γ1) = Cs(Γ2) iff Es(Γ1) =
Es(Γ2).

As a consequence of this result, and the usual relationships on HT-models, we can
characterize equivalences of propositional theories also by selections of equivalence
interpretations, i.e., a mixture of non-total HT countermodels and total HT-models,
such that the characterizations, in particular for uniform equivalence, are also correct
for infinite theories.

Given a theory Γ , let Cc(Γ), resp. Ec(Γ), denote the restriction to total HT-inter-
pretations in Cs(Γ), resp. in Es(Γ).Ca(Γ) is the set of there-closed HT-interpretations
of the form (∅, Y) in Cs(Γ) such that (Y, Y) �∈ Cs(Γ), and Ea(Γ) is the set of total-
open HT-interpretations in Es(Γ) (i.e., equilibrium models). Finally, Eu(Γ) denotes
the set of there-closed HT-interpretations in Es(Γ).

106 M. Fink

Corollary 1. Given two propositional theories Γ1 and Γ2, the following propositions
are equivalent for e ∈ {c, a, s, u}:

(1) Γ1 ≡e Γ2; (2) Ce(Γ1) = Ce(Γ2); (3) Ee(Γ1) = Ee(Γ2).

Example 4. In our running example, Cu(Γ1) �= Cu(Γ2), as well as Eu(Γ1) �= Eu(Γ2),
by the remarks on non-total HT-interpretations in Example 3. �

Since equivalence interpretations do not encompass total HT-countermodels, we at-
tempt a direct characterization in HT.

Proposition 2. Let M be an HT-interpretation over L. Then, M ∈ Es(Γ) for a theory
Γ iff M |= Γφ for some φ ∈ Γ , where Γφ = {¬¬ψ | ψ ∈ Γ} ∪ {φ → (¬¬a → a) |
a ∈ L}.

For infinite propositional theories, we thus end up with a characterization of equivalence
interpretations as the union of the HT-models of an infinite number of (infinite) theories.
At least for finite theories, however, a characterization in terms of a (finite) theory is
obtained (even for a potentially extended infinite signature).

If L′ ⊃ L and M = (X,Y) is an HT-interpretation over L′, then M |L denotes
the restriction of M to L: M |L = (X |L, Y |L). The restriction is totality preserving, if
X ⊂ Y implies X |L ⊂ Y |L.

Proposition 3. Let Γ be a theory over L, let L′ ⊃ L, and let M an HT-interpretation
over L′ such that M |L is totality preserving. Then, M ∈ Cs(Γ) implies M |L ∈ Cs(Γ).

Theorem 3. Let Γ be a finite theory over L, and let M be an HT-interpretation. Then,
M ∈ Es(Γ) iff M |L |=

∨
φ∈Γ

∧
ψ∈Γφ

ψ, and M |L is totality preserving.

4 Generalization to First-Order Theories

Since the characterizations, in particular of uniform equivalence, presented in the previ-
ous section capture also infinite theories, they pave the way for generalizing this notion
of equivalence to non-ground settings without any finiteness restrictions. In this section
we study first-order theories.

As first-order theories we consider sets of sentences (closed formulas) of a first-
order signature L = 〈F ,P〉 in the sense of classical first-order logic. Hence, F and
P are pairwise disjoint sets of function symbols and predicate symbols with an associ-
ated arity, respectively. Elements of F with arity 0 are called object constants. A 0-ary
predicate symbol is a propositional constant. Formulas are constructed as usual and
variable-free formulas or theories are called ground. A sentence is said to be factual if
it is built using connectives ∧, ∨, and ¬ (i.e., implications of the form φ → ⊥), only.
A theory Γ is factual if every sentence of Γ has this property. The abbreviations intro-
duced for propositional formulas carry over: φ ≡ ψ for (φ → ψ) ∧ (ψ → φ); ¬φ for
φ→ ⊥; and � for ⊥ → ⊥.

Equivalences in Answer-Set Programming by Countermodels 107

4.1 Static Quantified Logic of Here-and-There

Semantically we refer to the static quantified version of here-and-there with decidable
equality as captured axiomatically by the system QHTs

= [13]. It is characterized by
Kripke models of two worlds with a common universe (hence static) that interpret func-
tion symbols in the same way.

More formally, consider a first-order interpretation I of a first-order signature L on
a universe U . We denote by LI the extension of L obtained by adding pairwise distinct
names cε as object constants for the objects in the universe, i.e., for each ε ∈ U . We
write CU for the set {cε | ε ∈ U} and identify I with its extension to LI given by
I(cε) = ε. Furthermore, let tI denote the value assigned by I to a ground term t (of
signatureLI), and letLF denote the restriction ofL to function symbols (thus including
object constants). By BP,CU we denote the set of atomic formulas built using predicates
from P and constants CU .

We represent a first-order interpretation I of L on U as a pair 〈I|LF , I|CU 〉,3 where
I|LF is the restriction of I on function symbols, and I|CU is the set of atomic formulas
from BP,CU which are satisfied in I . Correspondingly, classical satisfaction of a sen-
tence φ by a first-order interpretation 〈I|LF , I|CU 〉 is denoted by 〈I|LF , I|CU 〉 |= φ. We
also define a subset relation for first-order interpretations I1, I2 of L on U (ie., over the
same domain) by I1 ⊆ I2 if I1|CU ⊆ I2|CU .4

A QHT-interpretation of L is a triple 〈I, J,K〉, such that (i) I is an interpretation of
LF on U , and (ii) J ⊆ K ⊆ BP,CU .

The satisfaction of a sentence φ of signature LI by a QHT-interpretation M =
〈I, J,K〉 (a QHT-model) is defined as:

1. M |= p(t1, . . . , tn) if p(ctI
1
, . . . , ctI

n
) ∈ J ;

2. M |= t1 = t2 if tI1 = tI2;
3. M �|= ⊥;
4. M |= φ ∧ ψ if M |= φ and M |= ψ,
5. M |= φ ∨ ψ, if M |= φ or M |= ψ,
6. M |= φ→ ψ if (i) M �|= φ or M |= ψ, and (ii) 〈I,K〉 |= φ→ ψ5;
7. M |= ∀xφ(x) if M |= φ(cε) for all ε ∈ U ;
8. M |= ∃xφ(x) if M |= φ(cε) for some ε ∈ U ;.

A QHT-interpretation M = 〈I, J,K〉 is called a QHT-countermodel of a theory Γ
iff M �|= Γ ; it is called total if J = K . A total QHT-interpretation M = 〈I,K,K〉
is called a quantified equilibrium model (QEL-model) of a theory Γ , iff M |= Γ and
M ′ �|= Γ , for all QHT-interpretations M ′ = 〈I, J,K〉 such that J ⊂ K . A first-order
interpretation 〈I,K〉 is an answer set of Γ iff M = 〈I,K,K〉 is a QEL-model of a
theory Γ .

In analogy to the propositional case, we will use the following simple properties.

Lemma 2. If 〈I, J,K〉 |= φ then 〈I,K,K〉 |= φ.

Lemma 3. 〈I, J,K〉 |= ¬φ iff 〈I,K〉 |= ¬φ.

3 We use angle brackets to distinguish from HT-interpretations.
4 Note that one could additionally require that I1|LF = I2|LF , which is not necessary for our

purpose, however.
5 That is, 〈I,K〉 satisfies φ → ψ classically.

108 M. Fink

4.2 Characterizing Equivalence by QHT-countermodels

We aim at generalizing uniform equivalence for first-order theories, in its most liberal
form, which means wrt. factual theories. For this purpose, we first lift Lemma 1.

Lemma 4. Let φ be a factual sentence. If 〈I, J,K〉 |= φ and J ⊆ J ′ ⊆ K , then
〈I, J ′,K〉 |= φ.

The different notions of closure naturally extend to (sets of) QHT-interpretations. In
particular, a total QHT-interpretation M = 〈I,K,K〉 is called total-open in a set S
of QHT-interpretations, if M ∈ S and 〈I, J,K〉 �∈ S for every J ⊂ K . It is called
total-closed if 〈I, J,K〉 ∈ S for every J ⊂ K . A QHT-interpretation 〈I, J,K〉 is
there-closed in a set S of QHT-interpretations if 〈I, J ′,K〉 ∈ S for every J ⊆ J ′ ⊂ K .

The first main result lifts the characterization of uniform equivalence for theories by
HT-countermodels to the first-order case.

Theorem 4. Two first-order theories are uniformly equivalent iff they have the same
sets of there-closed QHT-countermodels.
We next turn to an alternative characterization by a mixture of QHT-models and QHT-
countermodels as in the propositional case. A QHT-countermodel 〈I, J,K〉 of a the-
ory Γ is called QHT here-countermodel of Γ if 〈I,K〉 |= Γ . A QHT-interpretation
〈I, J,K〉 is an QHT equivalence-interpretation of a theory Γ , if it is a total QHT-model
of Γ or a QHT here-countermodel of Γ . In slight abuse of notation, we reuse the no-
tation Se, S ∈ {C,E} and e ∈ {c, a, s, u}, for respective sets of QHT-interpretations,
and arrive at the following formal result:

Theorem 5. Two theories coincide on their QHT-countermodels iff they have the same
QHT equivalence-interpretations, in symbols Cs(Γ1) = Cs(Γ2) iff Es(Γ1) = Es(Γ2).
As a consequence of these two main results, we obtain an elegant, unified formal char-
acterization of the different notions of equivalence for first-order theories under gener-
alized answer-set semantics.

Corollary 2. Given two first-order theories Γ1 and Γ2, the following propositions are
equivalent for e ∈ {c, a, s, u}: Γ1 ≡e Γ2; Ce(Γ1) = Ce(Γ2); Ee(Γ1) = Ee(Γ2).
Moreover, QHT-countermodels allow for a simplified treatment of extended signatures,
which is not the case for QHT-models. For QHT-models it is known that M |= Γ
implies M |L |= Γ (cf. e.g., Prop. 3 in [10]), hence M |L �|= Γ implies M �|= Γ ,
i.e., M |L ∈ Cs(Γ) implies M ∈ Cs(Γ). The converse direction holds for totality
preserving restrictions.

Proposition 4. Let M be a QHT-interpretation over L on U . Then, M ∈ Es(Γ) for a
theory Γ iff M |= Γφ(M) for some φ ∈ Γ , where Γφ(M) = {¬¬ψ | ψ ∈ Γ} ∪ {φ→
(¬¬a→ a) | a ∈ BP,CU}.

Theorem 6. Let Γ be a theory over L, let L′ ⊃ L, and let M an HT-interpretation
over L′ such that M |L is totality preserving. Then, M ∈ Cs(Γ) implies M |L ∈ Cs(Γ).

Proof. Let M = 〈I ′, J ′,K ′〉, M |L = 〈I, J,K〉, and assume M �|= Γ . First, suppose
〈I ′,K ′,K ′〉 �|= Γ , i.e., there exists a sentence φ ∈ Γ , such that 〈I ′,K ′,K ′〉 �|= φ. We
show that 〈I,K,K〉 �|= φ by induction on the formula structure of φ.

Equivalences in Answer-Set Programming by Countermodels 109

Let us denote 〈I,K,K〉 by N and 〈I ′,K ′,K ′〉 by N ′. For the base case, consider an
atomic sentence φ. If φ is of the form p(t1, . . . , tn), then p(ctI

1
, . . . , ctI

n
) �∈ K because

N ′ �|= φ. By the fact that K ⊆ K ′ we conclude that p(ctI
1
, . . . , ctI

n
) �∈ K and hence

N �|= φ. If φ is of the form t1 = t2 then N ′ �|= φ implies tI1 �= tI2, and thus N �|= φ. If φ
is ⊥ then N ′ �|= φ and N �|= φ. This proves the claim for atomic formulas.

For the induction step, assume that N ′ �|= φ implies N �|= φ, for any sentence of
depth n − 1, and let φ be a sentence of depth n. We show that M |L |= φ implies
M |= φ. Suppose φ is the conjunction or disjunction of two sentences φ1 and φ2.
Then φ1 and φ2 are sentences of depth n − 1. Hence, N ′ �|= φ1 implies N �|= φ1,
and the same for φ2. Therefore, if N ′ is a QHT-countermodel of one or both of the
sentences then so is N , which implies N ′ �|= φ implies N �|= φ if φ is the conjunction
or disjunction of two sentences. As for implication, let φ be of the form φ1 → φ2. In
this case, N ′ �|= φ implies N ′ |= φ1 and N ′ �|= φ2. Therefore, N |= φ1 by the usual
sub-model property for QHT-models, and N �|= φ2 by assumption. Hence, N �|= φ.
Eventually, consider a quantified sentence φ, i.e., φ is of the form ∀xφ1(x) or ∃xφ1(x).
In this case, N ′ �|= φ implies N ′ �|= φ1(cε) for some, respectively all, ε ∈ U . Since
each of the sentences φ1(cε) is of depth n − 1, the same is true for N by assumption.
It follows that N ′ �|= φ implies N �|= φ also for quantified sentences φ of depth n, and
therefore, for any sentence φ of depth n. This concludes the inductive argument and
proves the claim for total QHT-countermodels.

Moreover, because QHT-countermodels are total-closed, this proves the claim for
any QHT-countermodelM = 〈I ′, J ′,K ′〉, such that 〈I ′,K ′,K ′〉 �|= Γ .

We continue with the case that 〈I ′,K ′,K ′〉 |= Γ . Then J ′ ⊂ K ′ holds, which means
that M is a QHT equivalence-interpretation of Γ . Therefore, M �|= φ for some φ ∈ Γ .
Additionally, M |= ¬¬ψ for all ψ ∈ Γ (recall that 〈I ′,K ′,K ′〉 |= Γ , thus 〈I ′,K ′〉 |=
Γ). By construction this implies M |= Γφ(M |L). Therefore, M |L |= Γφ(M |L), i.e.,
M |L is a QHT equivalence-interpretation of Γ . Since the restriction is totality preserv-
ing, M |L is non-total. This proves M |L �|= Γ . �

Since QHT equivalence-interpretations consist of non-total QHT-countermodels and
total QHT-models, the result carries over to QHT equivalence-interpretations. However,
QHT-models do not satisfy such an extended property:

Example 5. Consider the theory Γ = {q(X) → p(X)} over L = 〈{c1}, {p, q}〉, and
let L′ = 〈{c1, c2}, {p, q}〉. Then, M = 〈id , {p(c1)}, {p(c1), q(c1)}〉 is a QHT-model
of Γ overL on U = {c1, c2}. However,M ′ = 〈id , {p(c1), q(c2)}, {p(c1), p(c2), q(c1),
q(c2)}〉 is not a QHT-model of Γ on U , although M ′|L = M is totality preserving.

Moreover, it is indeed necessary that the reduction is totality preserving. For instance,
M = 〈id , {p(c1), q(c2)}, {p(c1), p(c2), q(c2)}〉 is a non-total QHT-countermodel, but
M |L = 〈id , {p(c1)}, {p(c1)}〉 is a QHT-model of Γ . �

5 Non-ground Logic Programs

In this section we apply the characterizations obtained for first-order theories to non-
ground logic programs under various extended semantics—compared to the traditional

110 M. Fink

semantics in terms of Herbrand interpretations. For a proper treatment of these issues,
further background is required and introduced (succinctly, but at sufficient detail) below.

In non-ground logic programming, we restrict to a function-free first-order signature
L = 〈F ,P〉 (i.e., F contains object constants only) without equality. A program Π
(over L) is a set of rules (over L) of the form (1). A rule r is safe if each variable occur-
ring in H(r) ∪ B−(r) also occurs in B+(r); a rule r is ground, if all atoms occurring
in it are ground. A program is safe, respectively ground, if all of its rules enjoy this
property.

Given Π over L and a universe U , let LU be the extension of L as before. The
grounding of Π wrt. U and an interpretation I|LF of LF on U is defined as the set
grdU (Π, I|LF) of ground rules obtained from r ∈ Π by (i) replacing any constant c in
r by cε such that I|LF (c) = ε, and (ii) all possible substitutions of elements in CU for
the variables in r.

Adapted from [6], the reduct of a program Π with respect to a first-order interpreta-
tion I = 〈I|LF , I|CU 〉 on universe U , in symbols grdU(Π, I|LF)I , is given by the set
of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm,

obtained from rules in grdU(Π, I|LF) of the form (1), such that I |= ai for all k < i ≤ l
and I �|= bj for all m < j ≤ n.

A first-order interpretation I satisfies a rule r, I |= r, iff I |= Γr, where Γr =
∀x(βr → αr), x are the free variables in r, αr is the disjunction of H(r), and βr is the
conjunction of B(r). It satisfies a programΠ , symbolically I |= Π , iff it satisfies every
r ∈ Π , i.e., if I |= ΓΠ , where ΓΠ =

⋃
r∈Π Γr.

A first-order interpretation I is called a generalized answer set of Π iff it satisfies
grdU (Π, I|LF)I and it is subset minimal among the interpretations of L on U with this
property.

Traditionally, only Herbrand interpretations are considered as the answer sets of a
logic program. The set of all (object) constants occurring in Π is called the Herbrand
universe of Π , symbolically H. If no constant appears in Π , then H = {c}, for an
arbitrary constant c. A Herbrand interpretation is any interpretation I of LH = 〈H,P〉
on H interpreting object constants by identity, id , i.e., I(c) = id(c) = c for all c ∈ H.
A Herbrand interpretation I is an ordinary answer set of Π iff it is subset minimal
among the interpretations of LH on H satisfying grdH(Π, id)I .

Furthermore, an extended Herbrand interpretation is an interpretation of L on U ⊇
F interpreting object constants by identity. An extended Herbrand interpretation I is an
open answer set [8] of Π iff it is subset minimal among the interpretations of L on U
satisfying grdU (Π, id)I .

Note that since we consider programs without equality, we semantically resort to the
logic QHTs, which results from QHTs

= by dropping the axioms for equality. Concern-
ing Kripke models, however, in slight abuse of notation, we reuse QHT-models as de-
fined for the general case. A QHT-interpretationM = 〈I, J,K〉 is called an (extended)
QHT Herbrand interpretation, if 〈I,K〉 is an (extended) Herbrand interpretation. Given
a program Π , 〈I,K〉 is a generalized answer set of Π iff 〈I,K,K〉 is a QEL-model
of ΓΠ , and 〈I,K〉 is an open, respectively ordinary, answer set of Π iff 〈I,K,K〉 is
an extended Herbrand, respectively Herbrand, QEL-model of ΓΠ . Notice that the static

Equivalences in Answer-Set Programming by Countermodels 111

interpretation of constants introduced by Item (i) of the grounding process is essential
for this correspondences in terms of QHTs. In slight abuse of notation, we further on
identify Π and ΓΠ .

As already mentioned for propositional programs, uniform equivalence is usually
understood wrt. sets of ground facts (i.e., ground atoms). Obviously, uniform equiva-
lence wrt. factual theories implies uniform equivalence wrt. ground atoms. We show the
converse direction (lifting Theorem 2 in [21]).

Proposition 5. Given two programsΠ1, Π2, thenΠ1 ≡u Π2 iff (Π1∪A) ≡a (Π2∪A),
for any set of ground atoms A.

Thus, there is no difference whether we consider uniform equivalence wrt. sets of
ground facts or factual theories. Since one can also consider sets of clauses, i.e. disjunc-
tions of atomic formulas and their negations, which is a more suitable representation of
facts according to the definition of program rules in this paper, we adopt the following
terminology. A rule r is called a fact if B(r) = ∅, and a factual program is a set of facts.
Then, by our result Π1 ≡u Π2 holds for programs Π1, Π2 iff (Π1 ∪Π) ≡a (Π2 ∪Π),
for any factual program Π .

5.1 Uniform Equivalence under Herbrand Interpretations

The results in the previous section generalize the notion of uniform equivalence to pro-
grams under generalized open answer-set semantics and provide alternative characteri-
zations for other notions of equivalence. They apply to programs under open answer-set
semantics and ordinary answer-set semantics, when QHT-interpretations are restricted
to extended Herbrand interpretations and Herbrand interpretations, respectively. For
programsΠ1 and Π2 and e ∈ {c, a, s, u}, we use Π1 ≡E

e Π2 and Π1 ≡H
e Π2 to denote

(classical, answer-set, strong, or uniform) equivalence under open answer-set semantics
and ordinary answer-set semantics, respectively.

Corollary 3. Given two programs Π1 and Π2, it holds that

– Π1 ≡E
e Π2, CE

e (Π1) = CE
e (Π2), and EE

e (Π1) = EE
e (Π2) are equivalent; and

– Π1 ≡H
e Π2, CH

e (Π1) = CH
e (Π2), and EH

e (Π1) = EH
e (Π2) are equivalent;

where e ∈ {c, a, s, u}, and superscript H (E) denotes the restriction to (extended)
Herbrand interpretations.

For safe programs the notions of open answer set and ordinary answer set coincide [10].
Note that a fact is safe if it is ground. We obtain that uniform equivalence coincides
under the two semantics even for programs that are not safe. Intuitively, the potential
addition of arbitrary facts accounts for the difference in the semantics since it requires
to consider larger domains than the Herbrand universe.

Theorem 7. Let Π1, Π2 be programs over L. Then, Π1 ≡E
u Π2 iff Π1 ≡H

u Π2.

Finally, we turn to the practically relevant setting of finite, possibly unsafe, programs
under Herbrand interpretations, i.e., ordinary (and open) answer-set semantics. For fi-
nite programs, uniform equivalence can be characterized by HT-models of the ground-
ing, also for infinite domains. In other words, the problems of “infinite chains” as in
Example 1 cannot be generated by the process of grounding.

112 M. Fink

Theorem 8. Let Π1, Π2 be finite programs over L. Then, Π1 ≡H
u Π2 iff Π1 and Π2

have the same (i) total and (ii) maximal, non-total extended Herbrand QHT-models.

6 Conclusion

Countermodels in equilibrium logic have recently been used in [22] to show that propo-
sitional disjunctive logic programs with negation in the head are strongly equivalent
to propositional theories, and in [23] to generate a minimal logic program for a given
propositional theory.

By means of Quantified Equilibrium Logic, in [13], the notion of strong equivalence
has been extended to first-order theories with equality, under the generalized notion of
answer set we have adopted. QEL has also been shown to capture open answer-sets [8]
and generalized open answer-sets [9], and is a promising framework to study hybrid
knowledge bases providing a unified semantics, since it encompasses classical logic as
well as disjunctive logic programs under the answer-set semantics [10].

Our results complete the picture by making uniform equivalence, which so far has
only been dealt with for finite programs under ordinary answer-set semantics, amenable
to these generalized settings without any finiteness restrictions, in particular on the do-
main. Thus, we arrived at a uniform model-theoretic characterization of the notions of
equivalence studied in ASP. We have also shown that for finite programs, i.e., those
programs solvers are able to deal with, infinite domains do not cause the problems ob-
served for infinite propositional programs, when dealing with uniform equivalence in
terms of HT-models of the grounding.

The combination of ontologies and nonmonotonic rules is an important issue in
knowledge representation and reasoning for the Semantic Web. Therefore, the study of
optimizations and correspondences under an appropriate semantics, such as the gener-
alizations of answer-set semantics characterized by QEL, constitute an interesting topic
for further research of relevance in this application domain. Like for Datalog, uniform
equivalence may serve investigations on query equivalence and query containment in
these hybrid settings. The simplified treatment of extended signatures for countermod-
els and equivalence interpretations is expected to be of avail, in particular for the study
of relativized notions of equivalence and correspondence [24].

On the foundational level, our results raise the interesting question whether exten-
sions of intuitionistic logics that allow for a direct characterization of countermodels,
would provide a more suitable formal apparatus for the study of (at least uniform) equiv-
alence in ASP.

Acknowledgements. I am grateful for suggestions by the anonymous reviewers to
improve presentation. This work was partially supported by the Austrian Science Fund
(FWF) under grants P18019 and P20841.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

2. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM TOCL 7(3), 499–562 (2006)

Equivalences in Answer-Set Programming by Countermodels 113

3. Janhunen, T., Niemelä, I.: GnT - A solver for disjunctive logic programs. In: Lifschitz, V.,
Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 331–335. Springer, Heidelberg (2003)

4. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artif.
Intell. 157(1-2), 115–137 (2004)

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set
solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp.
260–265. Springer, Heidelberg (2007)

6. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385 (1991)

7. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Veloso, M.M. (ed.)
IJCAI 2007, pp. 372–379 (2007)

8. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Open answer set programming for the se-
mantic web. J. Applied Logic 5(1), 144–169 (2007)

9. Heymans, S., de Bruijn, J., Predoiu, L., Feier, C., Nieuwenborgh, D.V.: Guarded hybrid
knowledge bases. CoRR abs/0711.2155 (2008) (to appear in TPLP)

10. de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: Quantified equilibrium logic and hybrid
rules. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp.
58–72. Springer, Heidelberg (2007)

11. Pearce, D., Valverde, A.: Quantified equilibrium logic an the first order logic of here-and-
there. Technical Report MA-06-02, Univ. Rey Juan Carlos (2006)

12. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and Uniform Equivalence in Answer-
Set Programming: Characterizations and Complexity Results for the Non-Ground Case. In:
Veloso, M.M., Kambhampati, S. (eds.) AAAI 2005, pp. 695–700. AAAI Press, Menlo Park
(2005)

13. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for logic
programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS,
vol. 4483, pp. 188–200. Springer, Heidelberg (2007)

14. Woltran, S.: A common view on strong, uniform, and other notions of equivalence in answer-
set programming. TPLP 8(2), 217–234 (2008)

15. Faber, W., Konczak, K.: Strong order equivalence. AMAI 47(1-2), 43–78 (2006)
16. Inoue, K., Sakama, C.: Equivalence of logic programs under updates. In: Alferes, J.J., Leite,

J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 174–186. Springer, Heidelberg (2004)
17. Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-ground answer-

set programming. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) KR 2006, pp. 340–351.
AAAI Press, Menlo Park (2006)

18. Lin, F., Chen, Y.: Discovering classes of strongly equivalent logic programs. JAIR 28, 431–
451 (2007)

19. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive sta-
ble models. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp.
175–187. Springer, Heidelberg (2007)

20. Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of equivalences
in answer set programming. ACM TOCL 8(3) (2007)

21. Pearce, D., Valverde, A.: Uniform equivalence for equilibrium logic and logic programs. In:
Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 194–206. Springer,
Heidelberg (2003)

22. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic programs.
TPLP 7(6), 745–759 (2007)

23. Cabalar, P., Pearce, D., Valverde, A.: Minimal logic programs. In: Dahl, V., Niemelä, I. (eds.)
ICLP 2007. LNCS, vol. 4670, pp. 104–118. Springer, Heidelberg (2007)

24. Oetsch, J., Tompits, H., Woltran, S.: Facts do not cease to exist because they are ignored:
Relativised uniform equivalence with answer-set projection. In: AAAI, pp. 458–464. AAAI
Press, Menlo Park (2007)

Dynamic Programming Algorithms
as Products of Weighted Logic Programs

Shay B. Cohen, Robert J. Simmons, and Noah A. Smith

School of Computer Science
Carnegie Mellon University

{scohen,rjsimmon,nasmith}@cs.cmu.edu

Abstract. Weighted logic programming, a generalization of bottom-up logic
programming, is a successful framework for specifying dynamic programming
algorithms. In this setting, proofs correspond to the algorithm’s output space,
such as a path through a graph or a grammatical derivation, and are given a
weighted score, often interpreted as a probability, that depends on the score of the
base axioms used in the proof. The desired output is a function over all possible
proofs, such as a sum of scores or an optimal score. We describe the PROD-
UCT transformation, which can merge two weighted logic programs into a new
one. The resulting program optimizes a product of proof scores from the original
programs, constituting a scoring function known in machine learning as a “prod-
uct of experts.” Through the addition of intuitive constraining side conditions,
we show that several important dynamic programming algorithms can be derived
by applying PRODUCT to weighted logic programs corresponding to simpler
weighted logic programs.

1 Introduction

Weighted logic programming has found a number of applications in fields such as
natural language processing, machine learning, and computational biology as a tech-
nique for declaratively specifying dynamic programming algorithms. Weighted logic
programming is a generalization of bottom-up logic programming, with the numerical
scores for proofs often interpreted as probabilities, implying that the weighted logic
program implements probabilistic reasoning.

We describe a program transformation, PRODUCT, that is of special interest in
weighted logic programming. PRODUCT transforms two weighted logic programs
into a new one that implements probabilistic inference under an unnormalized prob-
ability distribution built as a product of the input programs’ distributions, known in
machine learning as a “product of experts.” While this property has been exploited in a
variety of ways in applications, there has not, to our knowledge, been a formal analysis
or generalization in terms of the weighted logic programming representation.

The contribution of this paper is a general, intuitive, formal setting for dynamic pro-
gramming algorithms that process two or more conceptually distinct structured inputs.
Indeed, we show that many important dynamic programming algorithms can be derived
using simpler “factor” programs and the PRODUCT transformation.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 114–129, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Dynamic Programming Algorithms as Products 115

reachable(Q) :- initial(Q). (1)

reachable(Q) :- reachable(P), edge(P, Q). (2)

Fig. 1. A simple bottom-up logic program for graph reachability

a b

c d

initial(a) = T

edge(a, c) = T

edge(a, d) = T

edge(b, b) = T

edge(c, a) = T

edge(c, d) = T

edge(d, b) = T

edge(d, c) = T

edge(d, d) = T

Fig. 2. A directed graph and the corresponding initial database

The paper is organized as follows. In §2 we give an overview of weighted logic
programming. In §3 we describe products of experts, a concept from machine learning
that motivates our framework. In §4 we describe our framework and its connection to
product of experts. In §5 we give derivations of several well-known algorithms using
our framework.

2 Weighted Logic Programming

To motivate weighted logic programming, we begin with a logic program for single-
source connectivity on a directed graph, shown in Fig. 1. In the usual bottom-up inter-
pretation of this program, an initial database would describe the edge relation and one
(or more) roots as axioms of the form initial(a) for some a, and repeated forward
inference would be applied on the two rules above to find the least database closed un-
der those rules. However, in traditional logic programming this program can only be
understood as a program calculating connectivity over a graph. Solving a different but
structurally similar problem, such as a single-source shortest path, requires a rather dif-
ferent program to be written, and most solutions that have been presented require some
form of non-deterministic committed choice [1,2].

Traditional logic programming is interpreted over Boolean values. A proof is a tree
of valid inferences, and a valid proof is one where all of the leaves of the proof tree
are axioms which are known to be true, and a true atomic proposition is one that
has at least one valid proof. In weighted logic programming we generalize this no-
tion to axioms, proofs, and atomic propositions “having values” rather than just “being
true/valid.” A Boolean logic program takes the value of a proof to be the conjunction
of the value of its axioms (so the proof has value “true” as long as all the propositions
at the leaves are true-valued axioms), and takes the value of a proposition to be the
disjunction of the values of its proofs (so an atomic proposition has value “true” if it
has one true-valued proof). The single-source connectivity program would describe the
graph in Fig. 2 by assigning T as the value of all the existing edges and the proposition
initial(a).

116 S.B. Cohen, R.J. Simmons, and N.A. Smith

a b

c d

8

20

4
9

16

15 2

6

initial(a) = 0
edge(a, c) = 4
edge(a, d) = 20
edge(b, b) = 8
edge(c, a) = 9

edge(c, d) = 15
edge(d, b) = 6
edge(d, c) = 16
edge(d, d) = 2

Fig. 3. A cost graph and the corresponding initial database

a b

c d

0.2

0.3
0.4

0.6
0.8

0.5

0.9

0.2

initial(a) = 1
edge(a, c) = 0.2
edge(a, d) = 0.8
edge(b, b) = 0.9
edge(c, a) = 0.6

edge(c, d) = 0.4
edge(d, b) = 0.2
edge(d, c) = 0.3
edge(d, d) = 0.5

Fig. 4. A probabilistic graph and the corresponding initial database. With stopping probabilities
made explicit, this would encode a Markov model.

2.1 Non-boolean Programs

With Weighted logic programming, the axioms and propositions can be understood as
having non-Boolean values. In Fig. 3, axioms of the form edge(X, Y) are given a value
corresponding to the cost along the edge in the graph, and the axiom initial(a) is
given the value 0. If we take the value or “score” of a proof to be the the sum of the
values of its axioms, and then take the value of a proposition to be the minimum score
over all possible proofs, then the program from Fig. 1 describes single-source shortest
path. We replace the operators :- (disjunction) and , (conjunction) with min = and +,
respectively, and interpret the program over the non-negative numbers. With a specific
execution strategy, the result is Dijkstra’s single-source shortest path algorithm.

Whereas Fig. 3 describes a cost graph, in Fig. 4 weights on edges are to be interpreted
as probabilities, so that the graph can be seen as a Markov model or probabilistic finite-
state network over which random walks are well-defined.1 If we replace :- (disjunction)
and , (conjunction) with max = and ×, then the value of reachable(X) for any X is
the probability of the most likely path from a to X. For instance, reachable(a) ends
up with the value 1, and reachable(b) ends up with value 0.16, corresponding to the
path from a→ d→ b, whose weight is initial(a)× edge(a, d)× edge(d, b).

If we keep the initial database from Fig. 4 but change our operators from max= and
× to += and×, the result is a program for summing over the probabilities of all distinct
paths that start in a and lead to X, for each vertex X. This quantity is known as the “path
sum” [3]. The path sum for b, for instance, is 10—this is not a probability, but rather a
sum of probabilities of many paths, some of which are prefixes of each other.

1 For each vertex, the out-going edges’ weights must be non-negative and sum to a value less
than or equal to one. Remaining probability mass is assumed to go to a “stopping” event, as
happens with probability 0.1 in vertex b in Fig. 4.

Dynamic Programming Algorithms as Products 117

reachable(Q) ⊕= initial(Q). (3)

reachable(Q) ⊕= reachable(P) ⊗ edge(P, Q). (4)

Fig. 5. The logic program from Fig. 1, rewritten to emphasize that it is generalized to an arbitrary
semiring

These three related weighted logic programs are useful generalizations of the reach-
ability logic program. Fig. 5 gives a generic representation of all four algorithms in the
Dyna language [4]. The key difference among them is the semiring in which we inter-
pret the weights.2 Reachability uses the Boolean semiring 〈{T, F},∨,∧, F, T〉, single-
source shortest path uses 〈R≥0 ∪ {∞},min,+,∞, 0〉, the most-probable path variant
uses 〈[0, 1],max,×, 0, 1〉, and the probabilistic path-sum variant uses 〈R≥0 ∪ {∞},+,
×, 0, 1〉. The formalism we describe here requires semirings that are closed under finite
products and infinite sums—in our running example, this corresponds to the idea that
there may be infinite paths through a graph, all with finite length.

Weighted logic programming arose in the computational linguistics community [5]
after it was argued by Shieber, Schabes, and Pereira [6] and Sikkel [7] that many parsing
algorithms for non-deterministic grammars could be represented as deductive logic pro-
grams, and McAllester [8] showed that this representation facilitates reasoning about
asymptotic complexity. Other developments include a connection between weighted
logic programs and hypergraphs [9], optimal A∗ search for maximizing programs [10],
semiring-general agenda-based implementations [11], improved k-best algorithms [12],
and program transformations to improve efficiency [13].

2.2 Formal Definition

A weighted logic program is a set of “Horn equations” [13] describing a set of declara-
tive, usually recursive equations over an abstract semiring:

consequent(U)⊕= antecedent1(W1)⊗ . . .⊗ antecedentn(Wn).

Here U and the Wi are sequences of variables X1, . . . , Xk. If U ⊆
⋃n

i=1 Wi for
every rule, then the program is range-restricted or fully grounded.

A weighted logic program is specified on an arbitrary semiring, and can be inter-
preted in any semiring 〈K,⊕,⊗,0,1〉, as previously described.

Typically the proof and value of a specific theorem are desired. We assume that this
theorem is called goal and takes zero arguments. A computationally uninteresting but
perfectly intuitive way to present a weighted logic program is

goal⊕= axiom1(W1)⊗ ...⊗ axiomn(Wn).

The value of the proposition/theorem goal is a semiring-sum over all of its proofs,
starting from the axioms, where the value of any single proof is the semiring-product of

2 An algebraic semiring consists of five elements 〈K,⊕,⊗,0, 1〉, where K is a domain closed
under ⊕ and ⊗, ⊕ is a binary, associative, commutative operator, ⊗ is a binary, associative
operator that distributes over ⊕, 0 ∈ K is the ⊕-identity, and 1 ∈ K is the ⊗-identity.

118 S.B. Cohen, R.J. Simmons, and N.A. Smith

the axioms involved. This is effectively encoded using the inference rules as a sum of
products of sums of products of ... sums of products, exploiting distributivity and shared
substructure for efficiency. Dynamic programming algorithms, useful for problems with
a large degree of shared substructure, are often encoded as weighted logic programs.

In many practical applications, as in our reachability example in Section 2.1, values
are interpreted as probabilities to be maximized or summed or costs to be minimized.

3 Products of Experts

In machine learning, probability models learned from example data are often used to
make predictions. For example, to predict the value of a random variable Y (ranging
over values denoted y in a domain denoted Y; here, Y corresponds to the set of proofs)
given that random variable X has an observed value x ∈ X (here, X ranges over initial
databases, i.e., sets of axioms), the Bayes decision rule predicts:

ŷ = argmax
y∈Y

p(Y = y | X = x) = argmax
y∈Y

p(Y = y,X = x)
p(X = x)

(5)

In other words, the prediction ŷ should be the element of Y that maximizes p(Y =
y | X = x), the likelihood of the event Y = y given that the event X = x has
happened. By the definition of conditional probability, this quantity is equivalent to the
ratio of the joint probability that X = x ∧ Y = y to the marginal probability that
X = x. Dynamic programming algorithms are available for solving many of these
maximization problems, such as when Y ranges over paths through a graph or grammar
derivations.

Of recent interest are probability models p that take a factored form, for example:

p(X = x, Y = y) ∝ p1(X = x, Y = y)× . . .× pn(X = x, Y = y) (6)

where ∝ signifies “proportional to” and suppresses the means by which the probability
distribution is re-normalized to sum to one. This kind of model is called a product of
experts [14]. Intuitively, the probability of an event under p can only be large if “all the
experts concur,” i.e. if the probability is large under each of the pi. Any single expert can
make an event arbitrarily unlikely (even impossible) by giving it very low probability.

The attraction of such probability distributions is that they modularize complex sys-
tems [15,16]. They can also offer computational advantages when solving Eq. 5 [17].
Further, the expert factors can often be trained (i.e., estimated from data) separately,
speeding up expensive but powerful machine learning methods [18,19].

This idea is still useful even when not dealing with probabilities. Suppose each expert
pi is a function X × Y → {0, 1} that returns 1 if and only if the arguments x and y
satisfy some constraints; it implements a relation. Then the “product” relation is just
the intersection of all pairs 〈x, y〉 for which all the expert factors’ relations hold.

To the best of our knowledge, there has been no attempt to formalize the following in-
tuitive idea about products of experts: algorithms for summing and maximizing mutually-
constrained pairs of product-proof values should resemble the individual algorithms for
each of the two separate proofs’ values. Our formalization is intended to aid in algorithm

Dynamic Programming Algorithms as Products 119

reachable1(Q1) ⊕= initial1(Q1). (7)

reachable1(Q1) ⊕= reachable1(P1)⊗ edge1(P1, Q1). (8)

reachable2(Q2) ⊕= initial2(Q2). (9)

reachable2(Q2) ⊕= reachable2(P2)⊗ edge2(P2, Q2). (10)

Fig. 6. Two identical “experts” for generalized graph reachability, duplicates of the program in
Fig. 5

reachable1◦2(Q1, Q2) ⊕= initial1(Q1)⊗ initial2(Q2). (11)

reachable1◦2(Q1, Q2) ⊕= reachable2(P2)⊗ edge2(P2, Q2)⊗ initial1(Q1). (12)

reachable1◦2(Q1, Q2) ⊕= reachable1(P1)⊗ edge1(P1, Q1)⊗ initial2(Q2). (13)

reachable1◦2(Q1, Q2) ⊕= reachable1◦2(P1, P2)⊗ edge1(P1, Q1)⊗ edge2(P2, Q2). (14)

Fig. 7. Four rules that, in addition to the rules in Fig. 6, define the product of experts of
reachable1 and reachable2

developmentasnewkindsof randomvariablesarecoupled,withakeypracticaladvantage:
the expert factors are known because they fundamentally underlie the main algorithm. In-
deed, we call our algorithms “products” because they are derived from “factors.”

4 Products of Weighted Logic Programs

In this section, we will motivate products of weighted logic programs in the context of
the running example of generalized graph reachability. We will then define the PROD-
UCT transformation precisely and describe the process of specifying new algorithms
as constrained versions of product programs.

Fig. 6 defines two “experts,” copies of the graph reachability program from Fig. 5.
We are interested in a new predicate reachable1◦2(Q1, Q2), which for any particular X
and Y should be equal to the product of reachable1(X) and reachable2(Y). We could
define the predicate by adding the following rule to the program in Fig. 6:

reachable1◦2(Q1, Q2) ⊕= reachable1(Q1)⊗ reachable2(Q2).

This program is a bit simplistic, however; it merely describes calculating the “experts”
independently and then combining them at the end. The key to the PRODUCT transfor-
mation is that the predicate of reachable1◦2 can alternatively be calculated by adding
the following four rules to Fig. 6:

reachable1◦2(Q1, Q2) ⊕= initial1(Q1)⊗ initial2(Q2).
reachable1◦2(Q1, Q2) ⊕= initial1(Q1)⊗ reachable2(P2)⊗ edge2(P2, Q2).
reachable1◦2(Q1, Q2) ⊕= reachable1(P1)⊗ edge1(P1, Q1)⊗ initial2(Q2).
reachable1◦2(Q1, Q2) ⊕= reachable1(P1)⊗ edge1(P1, Q1)⊗

reachable2(P2)⊗ edge2(P2, Q2).

Then, because reachable1◦2(Q1, Q2) was defined above to be the product of
reachable1(Q1) and reachable2(Q2), it should be clear that the last rule can be

120 S.B. Cohen, R.J. Simmons, and N.A. Smith

rewritten to obtain the factored program in Fig. 7. This program computes over pairs of
paths in two graphs.

4.1 The PRODUCT Transformation

The PRODUCT program transformation is shown in Fig. 8. For each desired product
of experts, where one “expert,” the predicate p, is defined by n rules and the other expert
q by m rules, the transformation defines the product of experts for p◦q with n×m new
rules, the cross product of inference rules from the first and second experts. The value
of a coupled proposition p◦q in P′ will be equal to the semiring product of p’s value
and q’s value in P (or, equivalently, in P′).

Input: A logic program P and a set S of pairs of predicates (p, q).
Output: A program P′ that extends P, additionally computing the product predicate p◦q for

every pair (p, q) ∈ S in the input.
1: P′ ← P

2: for all pairs (p, q) in S do
3: for all rules in P, of the form p(W)⊕= A1 ⊗ . . .⊗An do
4: for all rules in P, of the form q(X)⊕=B1 ⊗ . . .⊗Bm do
5: let r ← [p◦q(W,X)⊕=A1 ⊗ . . .⊗ An ⊗B1 ⊗ . . .⊗Bm]
6: for all pairs of antecedents in r (s(Y), t(Z)) such that (s, t) ∈ S do
7: remove the antecedents s(Y) and t(Z) from r
8: insert the antecedent s◦t(Y,Z) to r
9: end for

10: add r to P′

11: end for
12: end for
13: end for
14: return P′

Fig. 8. This figure describes PRODUCT, a non-deterministic program transformation that adds
new rules to WLP P that compute the product of experts of predicates from the original program.
We implicitly rename variables to avoid conflicts between rules.

Note that lines 6–8 are non-deterministic under certain circumstances, because if the
antecedent of the combined program is a(X)⊗ a(Y)⊗ b(Z) and the algorithm is com-
puting the product of a and b, then the resulting antecedent could be either
a◦b(X, Z)⊗ a(Y) or a◦b(Y, Z)⊗ a(X). Our procedure arbitrarily selects one of the
possibilities.

4.2 Constraining the Product of Experts

Any program P′ that comes out after applying PRODUCT on P computes the product
of experts of p and q (where (p, q) ∈ S). More specifically, any ground instances of
p(X) and q(Y) have the same value in P and P′, and the value of p◦q(X,Y) in P′

is p(X) ⊗ q(Y).3 However, the same program could have been implemented more
straightforwardly by merely introducing a new inference rule for the goal.

3 The full proof can be found in [20].

Dynamic Programming Algorithms as Products 121

reachable1◦2(Q1, Q2) ⊕= initial1(Q1)⊗ initial2(Q2). (15)

reachable1◦2(Q1, Q2) ⊕= reachable1◦2(P1, P2)⊗ edge1(P1, Q1)⊗ edge2(P2, Q2). (16)

Fig. 9. By removing all but these two rules from the product of experts in Fig. 7, we require both
paths to have the same number of steps

reachable1◦2(Q) ⊕= initial1(Q)⊗ initial2(Q). (17)

reachable1◦2(Q) ⊕= reachable1◦2(P)⊗ edge1(P, Q)⊗ edge2(P, Q). (18)

Fig. 10. By further constraining the program in Fig. 9 to require that the Q1 = Q2 at all points, we
require both paths to be identical

Yet, the output of the PRODUCT transformation is a starting point for describ-
ing dynamic programming algorithms that do two similar actions—traversing a graph,
scanning a string, parsing a sentence—at the same time and in a coordinated fashion.
Exactly what “coordinated fashion” means depends on the problem, and answering that
question determines how the problem is constrained.

If we return to the running example of generalized graph reachability, the program
as written has eight rules, four from Fig. 6 and four from Fig. 7. Two examples of
constrained product programs are given in Fig. 9 and Fig. 10. In the first example in
Fig. 9, the only change is that all but two rules have been removed from the program in
Fig. 7. Whereas in the original product program reachable1◦2(Q1, Q2) corresponded
to the product of the weight of the “best” path from the initial state or states of graph 1
to Q1 and the weight of the “best” path from the initial state or states of graph 2 to Q2,
the new program computes the best paths from the two origins to the two destinations
with the additional requirement that the paths be the same length—the rules that were
deleted allowed for the possibility of a prefix on one path or the other.

If our intent is for the two paths to not only have the same length but to visit ver-
tices in the same sequence, then we can further constrain the program to only de-
fine reachable1◦2(Q1, Q2) where Q1 = Q2, at which point it might as well be written
reachable1◦2(Q). This is what is done in Fig. 10.

The choice of paired predicates S is important for the final WLP which PROD-
UCT returns and it also limits the way we can add constraints to derive a new WLP.
Automatically deriving S from data in a machine learning setting is an open question
for future research. When PRODUCT is applied on two copies of the same WLP (con-
catenated together to a single program), a natural schema for selecting paired predicates
arises, in which we pair a predicate from one program with the same predicate from the
other program. This natural pairing leads to the derivation of several useful, known
algorithms, to which we turn in Section 5.

5 Examples

In this section, we describe three classes of algorithms that can be understood as con-
strained products of simpler weighted logic programs.

122 S.B. Cohen, R.J. Simmons, and N.A. Smith

dist(P) ⊕= start(P). (19)

dist(P) ⊕= dist(P) ⊗ staycost. (20)

dist(P + 1) ⊕= dist(P) ⊗ s(C, P). (21)

Fig. 11. A program for scanning over a string

dist1◦2(P1, P2) ⊕= start1(P1)⊗ start2(P2). (22)

dist1◦2(P1, P2 + 1) ⊕= start1(P1)⊗ dist2(P2)⊗ s(C2, P2). (23)

dist1◦2(P1 + 1, P2) ⊕= dist1(P1)⊗ s(C1, P1)⊗ start2(P2). (24)

dist1◦2(P1, P2 + 1) ⊕= dist1◦2(P1, P2)⊗ s2(C2, P2)⊗ staycost1 . (25)

dist1◦2(P1 + 1, P2) ⊕= dist1◦2(P1, P2)⊗ s1(C1, P1)⊗ staycost2 . (26)

dist1◦2(P1 + 1, P2 + 1) ⊕= dist1◦2(P1, P2)⊗ s2(C1, P1)⊗ s2(C2, P2) if C1 = C2. (27)

Fig. 12. Edit distance derived from the PRODUCT transformation on two copies of Fig. 11, with
a side condition (boxed)

5.1 Edit Distance

Edit distances [21] are important measures of the difference between two strings, and
they underlie many algorithms in computational biology and computational linguistics.
The DNA fragment “ACTAGCACTTAG” can be encoded as a set of axioms s(a, 1),
s(c, 2), s(t, 3), . . . , s(g, 12), and we can describe a specification of the dynamic pro-
gram for edit distance by using the product of a trivial “cursor” program that scans over
a string, described in Fig. 11.

We generally interpret Fig. 11 over the the “cost minimization” semiring, replacing
⊕= with min = and⊗with +. The value of all the axioms of the form start(P) (giving
the starting position) or s(C, P) (indicating the position of a character) is 0, but the value
of staycost is some finite, nonzero value representing the penalty if the cursor stays in
one place. Note that under this semiring interpretation, the rule (20) will never be used;
the value of staycost only becomes relevant when the PRODUCT of the scanning
program with itself is determined.

The output of PRODUCT on two copies of the scanning program is shown in
Fig. 12, though three rules are removed.4 One important change is made to clause 27,
the addition of the side condition C1 = C2, which requires that when both P1 and P2
advance, the character at position P1 in string 1 and the character at position P2 in string
two must be identical. This captures the essential requirement of the edit distance calcu-
lation: changing a symbol in one string to an identical symbol in the other string incurs
no “edit” and no cost. It is worth noting that the clause 27 could have equivalently been
written by unifying C1 with C2:

dist1◦2(P1 + 1, P2 + 1) ⊕= dist1◦2(P1, P2)⊗ s2(C, P1)⊗ s2(C, P2).

4 The three removed rules are the two different combinations of clause 19 and clause 20 in
Fig. 11, as well as the combination of clause 20 with itself. These three rules are redundant if
we are computing in the minimum-cost semiring.

Dynamic Programming Algorithms as Products 123

The first and last clauses in the edit distance program (22 and 27) are the essen-
tial ones; the other five clauses essentially describe extensions to edit distance that can
be added, turned off, or modified to obtain different edit distances. Clause 23 allows
a penalty-free prefix to be added to the second string, for instance matching string 1,
“BOVIK” against string 2, “HARRY BOVIK,” and clause 24 allows a penalty-free pre-
fix to be deleted from to the first string. Clause 25 describes that insertions can be made
with cost staycost1, for instance in matching string one “H. BOVIK” against “H. Q.
BOVIK”, and clause 26 describes deletions from the first string to reach the second.

5.2 Finite-State Algorithms

Specifications of weighted finite-state automata (WFSAs) and transducers (WFSTs)
are superficially similar to the reachability problem of Sec. 1, but with edge relations
(edge(P, Q)) augmented by symbols (WFSAs: arc(P, Q, A)) or pairs of input-output
symbols (WFSTs: arc(P, Q, A, B)). Weighted finite-state machines are widely used in
speech and language processing [22].

Weighted Finite State Automata. Fig. 13 describes an algorithm for recognizing paths
in a weighted finite state automaton. (With the appropriate semirings, it finds the most
probable path or the path-sum.) If the PRODUCT of that algorithm with itself is taken,
we can follow similar steps in Sec. 4.2 and add a constraint to clause 33 that requires the
two paths’ symbols to be identical, we get the recognizer for the (weighted) intersection
of the two WFSAs (itself a WFSA). Weighted intersection generalizes intersection, and
can be used, for example, to determine whether a specific string (itself an FSA) is in the
regular language of the FSA and, in the probabilistic case, its associated probability.

Weighted Finite-State Transducers. Suppose we take the PRODUCT transformation of
the WFST recognition algorithm (not shown, but similar to Fig. 13 but using
arc(P, Q, A, B) as arc axioms) with itself and constrain the result by removing all but
the three interesting rules (as before) and requiring that B1 (the “output” along the first
edge) always be equal to A2 (the “input” along the second edge). The result is shown

goal ⊕= path(Q) ⊗ final(Q). (28)

path(Q) ⊕= initial(Q). (29)

path(Q) ⊕= path(P) ⊗ arc(P, Q, A). (30)

Fig. 13. The weighted logic program describing (weighted) recognition in a probabilistic finite
state automaton

goal1◦2 ⊕= path1◦2(Q1, Q1)⊗ final1(Q2)⊗ final2(Q2). (31)

path1◦2(Q1, Q2) ⊕= initial1(Q1)⊗ initial2(Q2). (32)

path1◦2(Q1, Q2) ⊕= path1◦2(P1, P2)⊗ arc1(P1, Q1, A1)⊗ arc2(P2, Q2, A2) if A1 = A2. (33)

Fig. 14. The weighted logic program describing (weighted) recognition by an intersection of two
finite state automata, derived from Fig. 13 in the manner of Fig. 9

124 S.B. Cohen, R.J. Simmons, and N.A. Smith

goal1◦2 ⊕= path1◦2(Q1, Q1)⊗ final1(Q2)⊗ final2(Q2). (34)

path1◦2(Q1, Q2) ⊕= initial1(Q1)⊗ initial2(Q2). (35)

path1◦2(Q1, Q2) ⊕= path1◦2(P1, P2) ⊗arc1(P1, Q1, A1, B1)⊗ arc2(P2, Q2, A2, B2) if B1 = A2.

Fig. 15. The weighted logic program describing a composition of two finite state transducers,
derived from Fig. 13 in the manner of Fig. 9 and Fig. 14

in Fig. 15; this is the recognition algorithm for the WFST resulting from composition
of two WFSTs. Composition permits small, understandable components to be cascaded
and optionally compiled, forming complex but efficient models over strings.

5.3 Context-Free Parsing

Parsing natural languages is a difficult, central problem in computational linguistics
[23]. Consider the sentence “Shay saw Robert with binoculars.” One analysis (the most
likely in the real world) is that Shay had the binoculars and saw Robert through them.
Another is that Robert had the binoculars, and Shay saw the binocular-endowed Robert.
Fig. 16 shows syntactic parses into noun phrases (NP), verb phrases (VP), etc., corre-
sponding to these two meanings. It also shows part of a context-free grammar describing
English sentences in Chomsky normal form [24],5 and an encoding of the grammar and
string using axioms. A proof corresponds to a CF derivation of the string.

In [6], the authors show that parsing with CFGs (and other grammars) can be formal-
ized as a logic program, and in [5] this framework is extended to the weighted case. If
weights are interpreted as probabilities, then these two semiring interpretations can ei-
ther find the “weight” of the parse with maximum weight or the total weight of all parse
trees (a measure of the “total grammaticality” of a sentence). In this section, we give
the specification of the weighted CKY algorithm [25], which is a dynamic program-
ming algorithm for parsing using a context-free grammar in Chomsky normal form.
The CKY algorithm is shown in Fig. 17. We show that fundamental algorithms for
weighted (probabilistic) parsing can be derived as constrained PRODUCTs of CKY.

The unconstrained PRODUCT of CKY with itself (Fig. 18) is not inherently in-
teresting. It is worth noting, however, that clause 43 there was a choice as to how to
merge the c1 and c2 possibilities. The choice would not have existed if, instead of the
presentation of CKY in Fig. 17, a common binarized variant of the algorithm, which
introduces a new predicate in order to have at most two antecedents per Horn equation,
had been fed to PRODUCT. The choice that we made in pairing was consistent with
the choice that is forced in the binarized CKY program.

Product of Grammars. Fig.19describesamore interesting constrainedversionofFig.18.
In particular, in all cases the constraints I1 = I2, J1 = J2, K1 = K2, N1 = N2 are added,
so that instead of writing c1◦2(X1, I1, J1, X2, I2, J2) we just write c1◦2(X1, X2, I, J). This
program simultaneously parses two different sentences using two different grammars, but

5 Chomsky normal form (CNF) means that the rules in the grammar are either binary with two
nonterminals or unary with a terminal. We do not allow ε rules, which in general are allowed
in CNF grammars.

Dynamic Programming Algorithms as Products 125

Shay saw Robert with binoculars

NPV P NP

PPVP
VP

NP

S

NPV P NP

PP

NP
VP

NP

S

NP → Shay unary(np, “Shay′′)
NP → Robert unary(np, “Robert′′)
P → with unary(p, “with′′)
.
S → NP VP binary(s, np, vp)
VP → V NP binary(vp, v, np)
PP → P NP binary(pp, p, np)
NP → NP PP binary(np, np, pp)
.

Fig. 16. An ambiguous sentence that can be parsed two ways in English (left), some of the
Chomsky normal form rules for English grammar (center), and the corresponding axioms (right).
There would also need to be five axioms of the form string(“Shay”, 1), string(“saw”, 2),
etc.

goal ⊕= start(S) ⊗ length(N) ⊗ c(S, 0, N). (36)

c(X, I− 1, I) ⊕= unary(X, W)⊗ string(W, I). (37)

c(X, I, K) ⊕= binary(X, Y, Z) ⊗ c(Y, I, J)⊗ c(Z, J, K). (38)

Fig. 17. CKY: a weighted logic program implementing weighted CKY for algorithms involving
weighted context free grammars in Chomsky normal form. Strictly speaking, CKY refers to a
naı̈ve bottom-up evaluation strategy for this program.

goal1◦2 ⊕= length1(N1)⊗ length2(N2) ⊗ (39)

start1(S1)⊗ start2(S2)⊗ c1◦2(S1, 0, N1, S2, 0, N2).

c1◦2(X1, I1 − 1, I1, X2, I2 − 1, I2) ⊕= unary1(X1, W1)⊗ string1(W1, I1) ⊗ (40)

unary2(X2, W2)⊗ string2(W2, I2).

c1◦2(X1, I1 − 1, I1, X2, I2, K2) ⊕= unary1(X1, W1)⊗ string1(W1, I1) ⊗ (41)

binary2(X2, Y2, Z2)⊗ c2(Y2, I2, J2)⊗ c2(Z2, J2, K2).

c1◦2(X1, I1, K1, X2, I2 − 1, I2) ⊕= unary2(X2, W1)⊗ string2(W2, I2) ⊗ (42)

binary1(X1, Y1, Z1)⊗ c1(Y1, I1, J1)⊗ c1(Z1, J1, K1).

c1◦2(X1, I1, K1, X2, I2, K2) ⊕= binary1(X1, Y1, Z1)⊗ binary2(X2, Y2, Z2) ⊗ (43)

c1◦2(Y1, I1, J1, Y2, I2, J2)⊗ c1◦2(Z1, J1, K1, Z2, K2, J2).

Fig. 18. The full output of the PRODUCT transformation on two copies of CKY in Fig. 17

both parses must have the same structure. This constraint, then, can be compared to the
constraints placed on the product of two graph-reachability programs to ensure that both
paths have the same length.

Lexicalized CFG Parsing. An interesting variant of the previous rule involves lexical-
ized grammars, which are motivated in Fig. 20. Instead of describing a grammar using
nonterminals denoting phrases (e.g., NP and VP), we can define a (context-free) de-
pendency grammar [26] that encodes the syntax of a sentence in terms of parent-child
relationships between words. In the case of the example of Fig. 20, the arrows below

126 S.B. Cohen, R.J. Simmons, and N.A. Smith

goal1◦2 ⊕= length(N) ⊗ start1(S1)⊗ start2(S2)⊗ c1◦2(S1, S2, 0, N).(44)

c1◦2(X1, X2, I− 1, I) ⊕= unary1(X1, W1)⊗ string1(W1, I) ⊗ (45)

unary2(X2, W2)⊗ string2(W2, I).

c1◦2(X1, X2, I, K) ⊕= binary1(X1, Y1, Z1)⊗ binary2(X2, Y2, Z2) ⊗ (46)

c1◦2(Y1, Y2, I, J) ⊗ c1◦2(Z1, Z2, J, K).

Fig. 19. The program in Fig. 18 constrained to require parsing two different sentences with the
same parse tree

Shay saw Robert with binoculars

NPV P NP

PPVP
VP

NP

S

NP → Shay
P → with
S → NP VP
VP → V NP

Shay saw Robert with binoculars

Robertsaw with binoculars

withsaw
Shay

saw
saw

Shay → Shay
with → with
saw → Shay saw
saw → saw Robert

Shay saw Robert with binoculars

NP-RobertV-saw P-with NP-binoculars

PP-withVP-saw

NP-Shay

S-saw

VP-saw

NP-Shay → Shay
P-with → with
S-saw → NP-Shay VP-saw
VP-saw → V-saw NP-Robert

Fig. 20. On the left, the grammar previously shown. In the middle, a context-free dependency
grammar, whose derivations can be seen as parse trees (above) or a set of dependencies (below).
On the right, a lexicalized grammar. Sample rules are given for each grammar.

goal1◦2 ⊕= length(N) ⊗ start1(S1)⊗ start2(S2)⊗ c1◦2(S1, S2, 0, N).(47)

c1◦2(X1, X2, I− 1, I) ⊕= unary1(X1, W1)⊗ unary2(X2, W2)⊗ string(W, I). (48)

c1◦2(X1, X2, I, K) ⊕= binary1(X1, Y1, Z1)⊗ binary2(X2, Y2, Z2) ⊗ (49)

c1◦2(Y1, Y2, I, J) ⊗ c1◦2(Z1, Z2, J, K).

Fig. 21. Constraining Fig. 18 to simultaneously parse the same sentence with two grammars

the sentence in the middle establish “saw” as the root of the sentence; the word “saw”
has three children (arguments and modifiers), one of which is the word “with,” which
in turn has the child “binoculars.”

The simplest approach to describing a dependency grammar is to define it as a Chom-
sky normal form grammar where the nonterminal set is equivalent to the set of terminal
symbols (so that the terminal “with” corresponds to a unique nonterminal with, and so
on) and where all rules have the form P → P C, P → C P, and W → w (where X is
the nonterminal version of terminal x).

Fig. 21 describes a further constrained program that, instead of parsing two unique
strings in two different grammars with the same structure, parses a single string in two
different grammars with the same structure. This new grammar recognizes a string if
and only if both of the original grammars recognize it with isomorphic trees—a kind of
“derivation intersection.” (This is not to be confused with intersections of context-free
languages, which are not in general context-free languages [24].)

Dynamic Programming Algorithms as Products 127

If we encode the regular grammar in the unary1 and binary1 relations and en-
code a dependency grammar in the unary2 and binary2 relations, then the product
is a lexicalized grammar, like the third example from Fig. 20. In particular, it de-
scribes a lexicalized context-free grammar with a product of experts probability model
[15], because the weight given to the production A-X → B-X C-Y, for instance, is
the semiring-product of the weight given to the production A → B C and the weight
given to the dependency based production X → X Y. If, instead of the axioms of
the form binary1(X1, Y1, Z1) and binary2(X2, Y2, Z2) there were axioms of the form
binary1◦2(X1, X2, Y1, Y2, Z1, Z2) and clause 46 was changed accordingly, then the result
would be a general lexicalized CKY [27].

Synchronous Parsing. Another extension to context-free parsing, synchronous pars-
ing, can be derived using PRODUCT from two instances of CKY. Here two strings
are parsed, each in a different alphabet with a different grammar (e.g., a French sen-
tence and its English translation). A synchronous derivation consists of two trees and
a correspondence between their nodes; different degrees of isomorphism may be im-
posed (e.g., in natural language, reordering is common, but dependencies tend to be
mirrored through word-level translation). Constraining the PRODUCT of CKY with
itself with side conditions to impose a one-to-one correspondence of nonterminals leads
to a weighted logic program for a formalism known as inversion transduction grammar
[28]. Constraining the PRODUCT of a more general CKY that includes empty unary
rules “X → ε” and leaving rules that pair unary with binary antecedents removes the
requirement that the sentences have the same length. In addition, the PRODUCT of
the lexicalized CKY with itself leads to WLPs for more complex parsers like those
described in [29] and [30] for more expressive formalisms.6

6 Conclusion

We have described a general framework for dynamic programming algorithms whose
solutions correspond to proof values in two mutually constrained weighted logic pro-
grams. Our framework includes a program transformation, PRODUCT, which com-
bines the two weighted logic programs that compute over two structures into a single
weighted logic program for a joint proof. Appropriate constraints, encoded intuitively
as variable unifications or side conditions in the WLP, are then added manually. The
framework naturally captures many existing algorithms.

Acknowledgments

The authors acknowledge helpful comments from three anonymous ICLP reviewers,
Jason Eisner, Frank Pfenning, David Smith, and Sylvia Rebholz. This research was
supported by an NSF graduate fellowship to the second author and NSF grant IIS-
0713265 and an IBM faculty award to the third author.

6 To derive the general synchronous parser described in [28] we have to perform another step of
axiom generalization, described in [20]. In the current form, the axioms are factored as well.

128 S.B. Cohen, R.J. Simmons, and N.A. Smith

References

1. Greco, S., Zaniolo, C.: Greedy algorithms in Datalog. Theory Pract. Log. Program 1(4),
381–407 (2001)

2. Ganzinger, H., McAllester, D.A.: Logical algorithms. In: Stuckey, P.J. (ed.) ICLP 2002.
LNCS, vol. 2401, pp. 209–223. Springer, Heidelberg (2002)

3. Tarjan, R.E.: A unified approach to path problems. Journal of the ACM 28(3), 577–593
(1981)

4. Eisner, J., Goldlust, E., Smith, N.A.: Dyna: A declarative language for implementing dy-
namic programs. In: Proc. of ACL (companion volume) (2004)

5. Goodman, J.: Semiring parsing. Computational Linguistics 25(4), 573–605 (1999)
6. Shieber, S.M., Schabes, Y., Pereira, F.C.N.: Principles and implementation of deductive pars-

ing. Journal of Logic Programming 24(1–2), 3–36 (1995)
7. Sikkel, K.: Parsing Schemata: A Framework for Specification and Analysis of Parsing Algo-

rithms. Springer-Verlag New York, Inc., Secaucus, NJ, USA (1997)
8. McAllester, D.A.: On the complexity analysis of static analyses. In: Cortesi, A., Filé, G.

(eds.) SAS 1999. LNCS, vol. 1694, pp. 312–329. Springer, Heidelberg (1999)
9. Klein, D., Manning, C.D.: Parsing and hypergraphs. New developments in parsing technol-

ogy, 351–372 (2004)
10. Felzenszwalb, P.F., McAllester, D.: The generalized A∗ architecture. Journal of Artificial

Intelligence Research 29, 153–190 (2007)
11. Eisner, J., Goldlust, E., Smith, N.A.: Compiling comp ling: practical weighted dynamic pro-

gramming and the dyna language. In: HLT 2005: Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language Processing, Morristown,
NJ, USA, pp. 281–290. Association for Computational Linguistics (2005)

12. Huang, L., Chiang, D.: Better k-best parsing. In: Proceedings of the Ninth International
Workshop on Parsing Technologies (IWPT 2005), Vancouver, Canada (2005)

13. Eisner, J., Blatz, J.: Program transformations for optimization of parsing algorithms and other
weighted logic programs. In: Wintner, S. (ed.) Proceedings of FG 2006: The 11th Conference
on Formal Grammar, pp. 45–85. CSLI Publications (2007)

14. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural
Comput. 14(8), 1771–1800 (2002)

15. Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural language
parsing. In: Advances in Neural Information Processing Systems, pp. 3–10. MIT Press, Cam-
bridge (2002)

16. Liang, P., Klein, D., Jordan, M.: Agreement-based learning. In: Platt, J., Koller, D., Singer, Y.,
Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 913–920.
MIT Press, Cambridge (2008)

17. Chiang, D.: Hierarchical phrase-based translation. Comput. Linguist. 33(2), 201–228 (2007)
18. Cohen, S.B., Smith, N.A.: Joint morphological and syntactic disambiguation. In: Proceedings

of EMNLP-CoNLL 2007, pp. 208–217 (2007)
19. Sutton, C., McCallum, A.: Piecewise training for undirected models. In: Proceedings of the

21th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2005), Arlington,
Virginia, p. 568. AUAI Press (2005)

20. Cohen, S.B., Simmons, R.J., Smith, N.A.: Products of weighted logic programs. Technical
Report CMU-LTI-08-009, Carnegie Mellon University (2008)

21. Levenshtein, V.: Binary codes capable of correcting spurious insertions and deletions of ones.
Problems of Information Transmission 1, 8–17 (1965)

22. Mohri, M.: Finite-state transducers in language and speech processing. Comput. Lin-
guist. 23(2), 269–311 (1997)

Dynamic Programming Algorithms as Products 129

23. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT
Press, Cambridge (1999)

24. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading (1979)

25. Cocke, J., Schwartz, J.T.: Programming languages and their compilers: Preliminary notes.
Technical report, Courant Institute of Mathematical Sciences, New York University (1970)

26. Gaifman, H.: Dependency systems and phrase-structure systems. Information and Control 8
(1965)

27. Eisner, J., Satta, G.: Efficient parsing for bilexical context-free grammars and head automaton
grammars. In: Proceedings of the 37th annual meeting of the Association for Computational
Linguistics on Computational Linguistics, Morristown, NJ, USA, pp. 457–464. Association
for Computational Linguistics (1999)

28. Wu, D.: Stochastic inversion transduction grammars and bilingual parsing of parallel corpora.
Computational Linguistics 23(3), 377–404 (1997)

29. Melamed, I.D.: Multitext grammars and synchronous parsers. In: NAACL 2003: Proceedings
of the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology, Morristown, NJ, USA, pp. 79–86. Association
for Computational Linguistics (2003)

30. Zhang, H., Gildea, D.: Stochastic lexicalized inversion transduction grammar for alignment.
In: ACL 2005: Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, Morristown, NJ, USA, pp. 475–482. Association for Computational Linguistics
(2005)

Detecting Inconsistencies in Large Biological Networks
with Answer Set Programming�

Martin Gebser1, Torsten Schaub1, Sven Thiele1, Björn Usadel2, and Philippe Veber1

1 University of Potsdam, Institute for Informatics, August-Bebel-Str. 89, D-14482 Potsdam
2 Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam

Abstract. We introduce an approach to detecting inconsistencies in large bio-
logical networks by using Answer Set Programming. To this end, we build upon
a recently proposed notion of consistency between biochemical/genetic reactions
and high-throughput profiles of cell activity. We then present an approach based
on Answer Set Programming to check the consistency of large-scale data sets.
Moreover, we extend this methodology to provide explanations for inconsisten-
cies in the data by determining minimal representations of conflicts. In practice,
this can be used to identify unreliable data or to indicate missing reactions.

1 Introduction

Molecular biology has seen a technological revolution with the establishment of high-
throughput methods in the last years. These methods allow for gathering multiple orders
of magnitude more data than was procurable before. Furthermore, there is an increas-
ing number of biological repositories on the web, such as KEGG, AraCyc, EcoCyc,
RegulonDB, and others, incorporating thousands of biochemical reactions and genetic
regulations. For combining huge amounts of experimental data with the knowledge
gathered in these repositories, one needs appropriate and powerful knowledge repre-
sentation tools that allow for modeling complex biological systems and their behavior.

In this paper, we deal with the analysis of high-throughput measurements in molecu-
lar biology, like microarray data or metabolic profiles [1]. Up to now, it is still a common
practice to use expression profiles merely for detecting over- or under-expressed genes
under specific conditions, leaving the task of making biological sense out of tens of
gene identifiers to human experts. However, many efforts have also been made these
years to make a better use of high-throughput data, in particular, by integrating them
into large-scale models of transcriptional regulation or metabolic processes [2,3].

One possible approach consists in investigating the compatibility between the ex-
perimental measurements and the knowledge available in reaction databases. This can
be done by using formal frameworks, for instance, those developed in [4] and [5]. A
crucial feature of this methodology is its ability to cope with qualitative knowledge
(for instance, reactions lacking kinetic details) and noisy data. In this work, we rely
on the so-called Sign Consistency Model (SCM) due to Siegel et al. [4]. SCM imposes

� A preliminary version of this paper was presented at the Workshop on Constraint Based Meth-
ods for Bioinformatics (WCB’08).

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 130–144, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Detecting Inconsistencies in Large Biological Networks 131

constraints between experimental measurements and a graph representation of cellular
interactions, called an influence graph [6].

Building on SCM, we develop declarative techniques based on Answer Set Pro-
gramming (ASP) [7,8,9] to detect and explain inconsistencies in large data sets. This
approach has several advantages. First, it allows us to formulate biological problems
in a declarative way, thus easing the communication with biological experts. Second,
although we do not detail it here, the rich modeling language facilitates integrating
different knowledge representation and reasoning techniques, like abduction, planning,
explanation, prediction, etc., in a uniform and transparent way. And finally, modern ASP
solvers are based on advanced Boolean constraint solving technology and thus provide
us with highly efficient inference engines. Apart from modeling the aforementioned bi-
ological problems in ASP, our major concern lies with the scalability of the approach.
To this end, we do not only illustrate our application domain on an example but, more-
over, design an artificial yet biologically meaningful benchmark suite indicating that an
ASP-based approach scales well on the considered class of applications.

To begin with, we introduce SCM in Section 2. Section 3 briefly describes ASP,
providing the syntax and semantics used in our application. In Section 4, we develop
an ASP formulation of checking the consistency between experimental profiles and
influence graphs. We further extend this approach in Section 5 to identifying minimal
representations of conflicts if the experimental data is inconsistent with an influence
graph. Section 6 is dedicated to an empirical evaluation of our approach along with
an exemplary case study illustrating our application domain. Section 7 concludes this
paper with a brief discussion and an outlook on future work.

2 Influence Graphs and Sign Consistency Constraints

Influence graphs [6] are a common representation for a wide range of dynamical sys-
tems. In the field of genetic networks, they have been investigated for various classes
of systems, ranging from ordinary differential equations [10] to synchronous [11] and
asynchronous [12] Boolean networks. Influence graphs have also been introduced in the
field of qualitative reasoning [13] to describe physical systems where a detailed quan-
titative description is not available. This has also been the main motivation for using
influence graphs for knowledge representation in the context of biological systems.

An influence graph is a directed graph whose vertices are the input and state variables
of a system and whose edges express the effects of variables on each other. An edge
j→ i means that the variation of j in time influences the level of i. Every edge j→ i of
an influence graph is labeled with a sign, either + or –, denoted by σ(j, i), where + (–)
indicates that j tends to increase (decrease) i. An example influence graph is given in
Figure 1; it represents a simplified model for the operon lactose in E. coli.

In SCM, experimental profiles are supposed to come from steady state shift exper-
iments where, initially, the system is at steady state, then perturbed using control pa-
rameters, and eventually, it settles into another steady state. It is assumed that the data
measures the differences between the initial and the final state. Thus, for genes, pro-
teins, or metabolites, we know whether the concentration has increased or decreased,
while quantitative values are unavailable, unessential, or unreliable. By µ(i), we denote

132 M. Gebser et al.

Le

Li

G

LacY

LacZ

LacI

A

cAMP-CRP

Fig. 1. Simplified model of operon lactose in E. coli, represented as an influence graph. The
vertices represent either genes, metabolites, or proteins, while the edges indicate the regulations
among them. Green edges with an arrow stand for positive regulations (activations), while red
edges with a tee head stand for negative regulations (inhibitions). Vertices G and Le are consid-
ered to be inputs of the system, that is, their signs are not constrained via their incoming edges.

the sign, again either + or –, of the variation of a species i between the initial and the
final condition. One can easily enhance this setting by also considering null (or more
precisely, non-significant) variations, by exploiting the concept of sign algebra [13].

Given an influence graph (as a representation of cellular interactions) and a label-
ing of its vertices with signs (as a representation of experimental profiles), we now
describe the constraints that relate both. Informally, for every non-input vertex i, the
observed variation µ(i) should be explained by the influence of at least one predeces-
sor j of i in the influence graph. Thereby, the influence of j on i is given by the sign
µ(j)σ(j, i) ∈ {+, –}, where the multiplication of signs is derived from that of numbers.
Sign consistency constraints can then be formalized as follows.

Definition 1 (Sign Consistency Constraints). Let (V,E, σ) be an influence graph,
where V is the set of vertices, E the set of edges, and σ : E → {+, –} a labeling of the
edges. Furthermore, let µ : V → {+, –} be a vertex labeling.

Then, for every non-input vertex i ∈ V , the sign µ(i) of i is consistent, if there is
some edge j→ i in E such that µ(i) = µ(j)σ(j, i).

The notion of (sign) consistency is extended to whole influence graphs in the natural
way, requiring the sign of each non-input vertex to be consistent. In practice, influence
graphs and experimental profiles are likely to be partial. Thus, we say that a partial
labeling of the vertices is consistent with a partially labeled influence graph, if there is
some consistent extension of vertex and edge labelings to all vertices and edges.

Table 1 shows four different vertex labelings for the influence graph given in Fig-
ure 1. Total labeling µ1 is consistent with the influence graph: the variation of each ver-
tex (except for input vertex Le) can be explained by the effect of one of its regulators.

Detecting Inconsistencies in Large Biological Networks 133

Table 1. Some vertex labelings (reflecting measurements of two steady states) for the influence
graph depicted in Figure 1; unobserved values are indicated by a question mark ‘?’

Species Le Li G LacY LacZ LacI A cAMP-CRP
µ1 – – – – – + – +
µ2 + + – + – + – –
µ3 + ? – ? ? + ? ?
µ4 ? ? ? – + ? ? +

For instance, in µ1, LacY receives a positive influences from cAMP-CRP as well as a
negative influence from LacI, the latter accounting for the decrease of LacY. The second
labeling, µ2, is not consistent: this time LacY receives only negative influences from
cAMP-CRP and LacI, and its increase cannot be explained. Furthermore, partial vertex
labeling µ3 is consistent with the influence graph in Figure 1, as setting the signs of Li,
LacY, LacZ, A, and cAMP-CRP to +, –, –, –, and +, respectively, extendsµ3 to a consis-
tent total labeling. In contrast, µ4 cannot be extended consistently.

3 Answer Set Programming

This section provides a brief introduction to ASP (see [9] for details), a declarative
paradigm for knowledge representation and reasoning, offering a rich modeling lan-
guage [14,15] along with highly efficient inference engines based on Boolean constraint
solving technology [16,17,18,19]. The basic idea of ASP is to encode a problem as a
logic program such that its answer sets represent solutions to the original problem.

In view of our application, we take advantage of the elevated expressiveness of dis-
junctive programs, being able to capture problems at the second level of the polynomial
hierarchy [20,21]. A disjunctive logic program over an alphabetA is a finite set of rules
of the form

a1; . . . ; al ← bl+1, . . . , bm,not cm+1, . . . ,not cn , (1)

where ai, bj , ck are atoms for 0 < i ≤ l < j ≤ m < k ≤ n. A literal is an atom a
or its (default) negation not a. A rule r as in (1) is called a fact, if l = n = 1, and
an integrity constraint, if l = 0. Let head(r) = {a1, . . . , al} be the head of r and
body(r) = {bl+1, . . . , bm,not cm+1, . . . ,not cn} be the body of r. Given a set L of
literals, let L+ = {a ∈ A | a ∈ L} and L− = {a ∈ A | not a ∈ L}.

An interpretation is represented by the set of atoms that are true in it. A model of a
program P is an interpretation in which all rules in P are true according to the stan-
dard definition of truth in propositional logic (while treating rules and default negation
as implications and classical negation, respectively). Note that the (empty) head of an
integrity constraint is false wrt every interpretation, while the empty body is true wrt
every interpretation. Answer sets of P are particular models of P satisfying an addi-
tional stability criterion. Roughly, a set X of atoms is an answer set, if for every rule
of form (1), X contains a minimum of atoms among a1, . . . , al whenever bl+1, . . . , bm
belong to X and no cm+1, . . . , cn belongs to X . However, note that the disjunction in
heads of rules, in general, is not exclusive. Formally, an answer set X of a program P
is a ⊆-minimal model of

134 M. Gebser et al.

{head(r) ← body(r)+ | r ∈ P, body(r)− ∩X = ∅} .

For example, program {a; b←. c; d← a,not b.← b.} has answer sets {a, c} and {a, d}.
Although answer sets are usually defined on ground (i.e., variable-free) programs,

the rich modeling language of ASP allows for non-ground problem encodings, where
schematic rules stand for their ground instantiations. Grounders, like gringo [22] and
lparse [15], are capable of combining a problem encoding and an instance (typically a
set of ground facts) into an equivalent ground program, processed by some ASP solver.
We follow this methodology and provide encodings for the problems considered below.

4 Checking Consistency

We now come to the first main question addressed in this paper, namely, how to check
whether an experimental profile is consistent with a given influence graph. Note that, if
the profile provides us with a sign for each vertex of the influence graph, the task can be
accomplished simply by checking whether each non-input vertex receives at least one
influence matching its variation. However, as soon as the experimental profile has miss-
ing values (which is very likely in practice), the problem becomes NP-hard [23]. In fact,
a Boolean satisfiability problem over clauses {C1, . . . , Cm} and variables {x1, . . . , xn}
can be reduced as follows: introduce unlabeled input vertices x1, . . . , xn, non-input
vertices C1, . . . , Cm labeled +, and edges xj →Ci labeled + (–) if xj occurs positively
(negatively) in Ci. It is not hard to check that the labeling of C1, . . . , Cm by + is con-
sistent with the obtained influence graph iff {C1, . . . , Cm} is satisfiable.

We next provide a logic program such that each of its answer sets matches a con-
sistent extension of vertex and edge labelings. Our encodings as well as instances are
available at [24]. For clarity, we here present them in a simplified manner and omit
some convenient but unessential encoding optimizations. Our program is composed of
three parts, described in the following subsections.

4.1 Problem Instance

An influence graph as well as an experimental profile are given by ground facts. For
each species i, we introduce a fact vertex(i), and for each edge j→ i, a fact edge(j, i).
If s ∈ {+, –} is known to be the variation of a species i or the sign of an edge j→ i,
it is expressed by a fact observedV(i, s) or observedE(j, i, s), respectively. Finally, a
vertex i is declared to be input via a fact input(i).

For example, negative regulation LacI→LacY in the influence graph shown in Fig-
ure 1 and observation + for LacI (as with µ3 in Table 1) give rise to the following facts:

vertex(LacI).
vertex(LacY).
edge(LacI,LacY).
observedV(LacI,+).
observedE(LacI,LacY, –).

(2)

Detecting Inconsistencies in Large Biological Networks 135

Note that the absence of a fact of form observedV(LacY, s) means that the variation of
LacY is unobserved (as with µ3). In (2), we use LacI and LacY as names for constants
associated with the species in Figure 1, but not as first-order variables. Similarly, for
uniformity of notations, + and – are written in (2) for constants identifying signs.

4.2 Generating Solution Candidates

As mentioned above, our goal is to check whether an experimental profile is consistent
with an influence graph. If so, it is witnessed by total labelings of the vertices and edges,
which are generated via the following rules:

labelV(V,+); labelV(V, –) ← vertex(V).
labelE(U, V,+); labelE(U, V, –) ← edge(U, V). (3)

Moreover, the following rules ensure that known labels are respected by total labelings:

labelV(V, S) ← observedV(V, S).
labelE(U, V, S) ← observedE(U, V, S). (4)

Note that the stability criterion for answer sets demands that a known label derived via
rules in (4) is also derived via rules in (3), thus, excluding the opposite label. In fact,
the disjunctive rules used in this section could actually be replaced with non-disjunctive
rules via “shifting” [25], given that our first encoding results in a so-called head-cycle-
free (HCF) [26] ground program. However, the disjunctive rules in (3) will be reused
in Section 5 where they cannot be compiled away. Also note that HCF programs, for
which deciding answer set existence stays in NP, are recognized as such by disjunctive
ASP solvers [19,27,28]. Hence, the purely syntactic use of disjunction is not harmful.

The following ground rules are obtained by combining the schematic rules in (3)
and (4) with the facts in (2):

labelV(LacI,+); labelV(LacI, –) ← vertex(LacI).
labelV(LacY,+); labelV(LacY, –) ← vertex(LacY).

labelE(LacI,LacY,+); labelE(LacI,LacY, –) ← edge(LacI,LacY).
labelV(LacI,+) ← observedV(LacI,+).

labelE(LacI,LacY, –) ← observedE(LacI,LacY, –).

(5)

One can check that the program consisting of the facts in (2) and the rules in (5) admits
two answer sets, the first one including labelV(LacY,+) and the second one including
labelV(LacY, –). On the remaining atoms, both answer sets coincide by containing the
atoms in (2) along with labelV(LacI,+) and labelE(LacI,LacY, –).

4.3 Testing Solution Candidates

We now check whether generated total labelings satisfy the sign consistency constraints
stated in Definition 1, requiring an influence of sign s for each non-input vertex i with
variation s. We thus define receive(i, s) to indicate that i receives an influence of sign s:

receive(V,+) ← labelE(U, V, S), labelV(U, S).
receive(V, –) ← labelE(U, V, S), labelV(U, T), S �= T.

(6)

136 M. Gebser et al.

Inconsistent labelings, where a non-input vertex does not receive any influence match-
ing its variation, are then ruled out by integrity constraints of the following form:

← labelV(V, S),not receive(V, S),not input(V). (7)

Note that the schematic rules in (6) and (7) are given in the input language of grounder
gringo [22], available at [29]. This allows us to omit an explicit listing of some (domain)
predicates in the bodies of rules, which would be necessary when using lparse [15].
At [24], we provide encodings both for gringo and also more verbose ones for lparse.

Starting from the answer sets described in the previous subsection, the included
atoms labelE(LacI,LacY, –) and labelV(LacI,+) allow us to derive receive(LacY, –)
via a ground instance of the second rule in (6), while receive(LacY,+) is underivable.
After adding receive(LacY, –), the solution candidate containing labelV(LacY, –) satis-
fies the ground instances of the integrity constraint in (7) obtained by substituting LacY
for V . Assuming LacI to be an input, as it can be declared via fact input(LacI), we
thus obtain an answer set containing labelV(LacY, –), expressing a decrease of LacY.
In contrast, since receive(LacY,+) is underivable, the solution candidate containing
labelV(LacY,+) violates the following ground instance of (7):

← labelV(LacY,+),not receive(LacY,+),not input(LacY).

That is, the solution candidate with labelV(LacY,+) does not pass the consistency test.

5 Identifying Minimal Inconsistent Cores

In view of the usually large amount of data, it is crucial to provide concise explanations,
whenever an experimental profile is inconsistent with an influence graph (i.e., if the
logic program given in the previous section has no answer set). To this end, we adopt a
strategy that was successfully applied on real biological data [30]. The basic idea is to
isolate minimal subgraphs of an influence graph such that the vertices and edges cannot
be labeled consistently. This task is closely related to extracting Minimal Unsatisfiable
Cores (MUCs) [31] in the context of Boolean satisfiability (SAT) [16]. In allusion, we
call a minimal subgraph of an influence graph whose vertices and edges cannot be
labeled consistently a Minimal Inconsistent Core (MIC). Note that identifying a MUC
is DP-complete [31,32], which is why we use disjunctive programs to encode MICs.

For illustration, consider the influence graph and the MIC shown in Figure 2. One
can check that the observed simultaneous increase of B and D is not consistent with the
influence graph, but the reason for this might not be apparent at first glance. However,
once the depicted MIC is extracted, we immediately see that the increase of B implies
an increase of A, so that the observed increase of D cannot be explained.

We next provide an encoding for identifying MICs, where a problem instance, that
is, an influence graph along with an experimental profile, is represented by facts as
specified in Section 4.1. The encoding then consists of three parts: the first generating
MIC candidates, the second asserting inconsistency, and the third verifying minimality.
The generating part comprises the rules in (3) and (4), and in addition, it includes:

active(V); inactive(V) ← vertex(V),not input(V). (8)

Detecting Inconsistencies in Large Biological Networks 137

A

B

C

D
E

A

B

D

Fig. 2. A partially labeled influence graph and a contained MIC

This additional rule permits guessing non-input vertices to be marked as active. The
subgraph of the influence graph consisting of the active vertices, their regulators, and
the connecting edges forms a MIC candidate, tested via the two encoding parts below.

5.1 Testing for Inconsistency

By adapting a methodology used in [21], the following subprogram makes sure that
the active vertices belong to a subgraph that cannot be labeled consistently, while all
possible labelings of the residual vertices and edges are (implicitly) taken into account:1

opposite(U, V) ← labelE(U, V, –), labelV(U, S), labelV(V, S).
opposite(U, V) ← labelE(U, V,+), labelV(U, S), labelV(V, T), S �= T.

bottom ← active(V), opposite(U, V) : edge(U, V).
← not bottom.

labelV(V,+) ← bottom, vertex(V).
labelV(V, –) ← bottom, vertex(V).

labelE(U, V,+) ← bottom, edge(U, V).
labelE(U, V, –) ← bottom, edge(U, V).

In this (part of the) encoding, opposite(U, V) indicates that the influence of regulatorU
on V is opposite to the variation of V . If all regulators of an active vertex V have
such an opposite influence, the sign consistency constraint for V is violated, in which
case atom bottom along with all labels for vertices and edges are derived. Note that the
stability criterion for an answer set X imposes that bottom and all labels belong to X
only if the active vertices cannot be labeled consistently. Finally, integrity constraint
←not bottom necessitates the inclusion of bottom in any answer set, thus, stipulating
an inevitable sign consistency constraint violation for some active vertex.

Reconsidering our example in Figure 2, the ground instances of (8) permit guessing
active(A) and active(D). When labeling A with + (or assuming labelV(A,+) to be
true), we derive opposite(A,D) and bottom, producing in turn all labels for vertices and
edges. Furthermore, setting the sign of A to – (or labelV(A, –) to true) makes us derive

1 In the language of gringo (and lparse [15]), the expression opposite(U, V) : edge(U, V) used
below refers to the conjunction of all ground atoms opposite(j, i) for which edge(j, i) holds.

138 M. Gebser et al.

opposite(B,A), which again gives bottom and all labels for vertices and edges. We have
thus verified that the sign consistency constraints for A and D cannot be jointly satisfied,
given the observed increases of B and D. That is, active vertices A and D are sufficient
to explain the inconsistency between the observations and the influence graph.

5.2 Testing for Minimality

It remains to be verified whether the sign consistency constraints for all active vertices
are necessary to identify an inherent inconsistency. This test is based on the idea that,
excluding any active vertex, the sign consistency constraints for the other active vertices
should be satisfied by appropriate labelings. This can be implemented as follows:

labelV’(W,V,+); labelV’(W,V, –) ← active(W), vertex(V).
labelE’(W,U, V,+); labelE’(W,U, V, –) ← active(W), edge(U, V).

labelV’(W,V, S) ← active(W), observedV(V, S).
labelE’(W,U, V, S) ← active(W), observedE(U, V, S).

receive’(W,V,+) ← labelE’(W,U, V, S), labelV’(W,U, S).
receive’(W,V, –) ← labelE’(W,U, V, S), labelV’(W,U, T), S �= T.

← labelV’(W,V, S), active(V), V �= W,not receive’(W,V, S).

This subprogram is similar to the consistency check encoded via the rules in (3), (4), (6),
and (7). However, sign consistency constraints are only checked for active vertices, and
they must be satisfiable for all but an arbitrary active vertex W . As W ranges over all
(non-input) vertices of an influence graph, each active vertex is taken into consideration.

For the influence graph in Figure 2, it is easy to see that the sign consistency con-
straint for A is satisfied by setting the sign of A to +, expressed by atom labelV’(D,A,+)
in the ground rules obtained from the above encoding. In turn, the sign consistency
constraint for D is satisfied by setting the sign of A to –. This is reflected by atom
labelV’(A,A, –), allowing us to derive receive’(A,D,+), so that the ground instance of
the above integrity constraint containing labelV’(A,D,+) is satisfied.

6 Empirical Evaluation and Application

For assessing the scalability of our approach, we start by conceiving a parameteriz-
able set of artificial yet biologically meaningful benchmarks. After that, we present
a typical application stemming from real biological data, illustrating the exertion in
practice.

6.1 Checking Consistency

We first evaluate the efficiency of our approach on randomly generated instances, aim-
ing at structures similar to those found in biological applications. Instances are com-
posed of an influence graph, a complete labeling of its edges, and a partial labeling of
its vertices. Our random generator takes three parameters: (i) the number α of vertices
in the influence graph, (ii) the average degree β of the graph, and (iii) the proportion γ

Detecting Inconsistencies in Large Biological Networks 139

Table 2. Run-times for consistency checking with claspD, cmodels, dlv, and gnt

claspD claspD claspD cmodels dlv gnt
α Berkmin VMTF VSIDS
500 0.14 0.11 0.11 0.16 0.46 0.71
1000 0.41 0.25 0.25 0.35 1.92 3.34
1500 0.79 0.38 0.38 0.53 4.35 7.50
2000 1.33 0.51 0.51 0.71 8.15 13.23
2500 2.10 0.66 0.66 0.89 13.51 21.88
3000 3.03 0.80 0.79 1.07 20.37 31.77
3500 3.22 0.93 0.92 1.15 21.54 34.39
4000 4.35 1.06 1.06 1.36 30.06 46.14

of observed variations for vertices. To generate an instance, we compute a random graph
with α vertices (the value of α varying from 500 to 4000) under the model by Erdős-
Rényi [33]. Each pair of vertices has equal probability to be connected via an edge,
whose label is chosen independently with probability 0.5 for both signs. We fix the
average degree β to 2.5, which is considered to be a typical value for biological net-
works [34]. Finally, &γα' vertices are chosen with uniform probability and assigned a
label with probability 0.5 for both signs. For each number α of vertices, we generated
50 instances using five different values for γ, viz., 0.01, 0.02, 0.033, 0.05, and 0.1. All
instances can be found at [24].

We used gringo [22,29] (version 2.0.0) for combining the generated instances and
the encoding given in Section 4 into equivalent ground logic programs. For deciding
consistency by computing an answer set (if it exists), we ran disjunctive ASP solvers
claspD [19] (version 1.1) with “Berkmin”, “VMTF”, and “VSIDS” heuristics, cmod-
els [17,27] (version 3.75) using zchaff [35], dlv [28] (build BEN/Oct 11), and gnt [36]
(version 2.1). All runs were performed on a Linux machine equipped with an AMD
Opteron 2 GHz processor and a memory limit set to 2GB RAM.

Table 2 shows the average run-times over 50 instances per number α of vertices
in seconds, including grounding times of gringo and solving times. We checked that
grounding times of gringo increase linearly with the number α of vertices, and they
do not vary significantly over γ. For all solvers, run-times also increase linearly in α.2

In fact, for fixed α values, we found two clusters of instances: consistent ones where
total labelings were easy to compute and inconsistent ones where inconsistency was
detected from preassigned labels only. This tells us that the influence graphs gener-
ated as described above are usually (too) easy to label consistently, and inconsistency
only happens if it is explicitly introduced via fixed labels. However, such constellations
are not unlikely in practice (cf. Section 6.3), and isolating MICs from them, as done
in the next subsection, turned out to be hard for most solvers. Finally, greater values
for γ led to an increased proportion of inconsistent instances, without making them
much harder.

2 Longer run-times of claspD with “Berkmin” in comparison to the other heuristics are due
to a more expensive computation of heuristic values in the absence of conflict information.
Furthermore, the time needed for performing “Lookahead” slows down dlv as well as gnt.

140 M. Gebser et al.

Table 3. Run-times for grounding with gringo and solving with claspD

gringo claspD claspD claspD
α Berkmin VMTF VSIDS
50 0.24 1.16 (0) 0.65 (0) 0.97 (0)
75 0.55 39.11 (1) 1.65 (0) 3.99 (0)
100 0.87 41.98 (1) 3.40 (0) 4.80 (0)
125 1.37 15.47 (0) 47.56 (1) 10.73 (0)
150 2.02 54.13 (0) 48.05 (0) 15.89 (0)
175 2.77 30.98 (0) 116.37 (2) 23.07 (0)
200 3.82 42.81 (0) 52.28 (1) 24.03 (0)
225 4.94 99.64 (1) 30.71 (0) 41.17 (0)
250 5.98 194.29 (3) 228.42 (5) 110.90 (1)
275 7.62 178.28 (2) 193.03 (4) 51.11 (0)
300 9.45 241.81 (2) 307.15 (7) 124.31 (0)

6.2 Identifying Minimal Inconsistent Cores

We now investigate the problem of finding a MIC within the same setting as in the
previous subsection. Because of the elevated size of ground instantiations and problem
difficulty, we varied the number α of vertices from 50 to 300, thus, using considerably
smaller influence graphs than before. We again use gringo for grounding, now taking
the encoding given in Section 5. As regards solving, we restrict our attention to claspD
because all three of the other solvers showed drastic performance declines.

Table 3 shows average run-times over 50 instances per number α of vertices in sec-
onds for grounding with gringo and solving with claspD using “Berkmin”,“VMTF”,
and “VSIDS” heuristics. Timeouts, indicated in parentheses, are taken as maximum
time of 1800 seconds. We observe a quadratic increase in grounding times of gringo,
which is in line with the fact that ground instantiations for our MIC encoding grow
quadratically with the size of influence graphs. In fact, the schematic rules in Sec-
tion 5.2 give rise to α copies of an influence graph. Considering solving times spent by
claspD for finding one MIC (if it exists), we observe that they are relatively stable, in
the sense that they are tightly correlated to grounding times. This regularity again con-
firms that, though it is random, the applied generation pattern tends to produce rather
uniform influence graphs. Finally, we observed that unsatisfiable instances, i.e., consis-
tent instances without any MIC, were easier to solve than the ones admitting answer
sets. We conjecture that this is because consistent total labelings provide a disproof of
inconsistency as encoded in Section 5.1.

As our experimental results demonstrate, computing a MIC is computationally harder
than just checking consistency. This is not surprising because the related problem of
identifying a MUC is DP-complete [31,32]. With our declarative technique, we spot the
quadratic space blow-up incurred by the MIC encoding in Section 5 as a bottleneck. It
is an interesting open question whether more economical encodings can be found.

6.3 Biological Case Study

In the following, we present the results of applying our approach to real-world data of
genetic regulations in yeast. We tested the gene-regulatory network of yeast provided

Detecting Inconsistencies in Large Biological Networks 141

YDR207C

YGL073W

YDR207C

YHR152W

YDR207C

YDR123C

YBR049C

YMR186W

YDR207C

YOL006C

YBR049C

YNL216W

YDR207C

YOL006C

YBR049C

YOL004W

YDR207C

YOL006C

Fig. 3. Some exemplary MICs obtained by comparing the regulatory network in [37] with a ge-
netic profile from [38]

in [37] against genetic profile data of SNF2 knock-outs [38] from the Saccharomyces
Genome Database. The regulatory network of yeast contains 909 genetic or biochemical
regulations, all of which have been established experimentally, among 491 genes.

Comparing the yeast regulatory network with the genetic profile of SNF2, we found
the data to be inconsistent with the network, which was easily detected using the ap-
proach from Section 4. Applying our diagnosis technique from Section 5, we obtained
a total of 19 MICs. While computing the first MIC took only about 2.5 seconds us-
ing gringo and claspD, the computation of all MICs was considerably harder, taking 3
minutes and 38 seconds with claspD using “VMTF” embedded into a wrapper script
that excludes already computed MICs via integrity constraints. In fact, the minimality
encoding in Section 5.2 admits multiple answer sets corresponding to the same MIC
because the variations of vertices not connected to the MIC can be chosen freely, thus
producing copies of the same solution. Even though the encodings available at [24] al-
ready address this redundancy, they do not yet establish a one-to-one correspondence
between MICs and answer sets since the determined consistent labelings of the sub-
graphs of a MIC are not necessarily unique. For achieving one-to-one correspondence,
this redundancy must also be eliminated, which is a subject to future work.

Six of the computed MICs are exemplarily shown in Figure 3. While the first three
of them are pretty obvious, we also identified more complex topologies. However, our
example demonstrates that the MICs obtained in practice are still small enough to be un-
derstood easily. For finding suitable corrections to the inconsistencies, it is often even
more helpful to display the connections between several overlapping MICs. Observe
that all six MICs in Figure 3 are related to gene YDR207C, and in Figure 4, we show
the subgraph of the yeast regulatory network obtained by connecting them. In this rep-
resentation, one can see that the observed increase of YDR207C is not compatible with
the variation of any of its four targets, but the variation of YDR207C itself can be ex-
plained by its direct and indirect regulators. This suggests to first check the correctness

142 M. Gebser et al.

YBR049C

YMR186W YNL216W YOL004W

YDR207C

YDR123C YGL073W YHR152W YOL006C

Fig. 4. Subgraph obtained by connecting the six MICs given in Figure 3

of the observation that YDR207C has increased, and depending on the result, to con-
sider additional regulations that might be missing in the yeast regulatory network. In
fact, potential uses of our diagnosis technique applied to real-world data include iden-
tifying unreliable data and missing reactions in a systematic and more targeted way.

7 Discussion

We have provided an approach based on ASP to investigate the consistency between
experimental profiles and influence graphs. In case of inconsistency, the concept of a
MIC can be exploited for identifying concise explanations, pointing to unreliable data
or missing reactions. The problem of finding MICs is closely related to the extraction of
MUCs in the context of SAT. From a knowledge representation point of view, however,
we argue for our ASP-based technique, as it allows for an elegant declarative way to
describe problems in terms of a uniform encoding and specific instances.

By now, a variety of efficient ASP tools are available, both for grounding and for
solving logic programs. Our empirical assessment of them (on random as well as real
data) has in principle demonstrated the scalability of the approach. As elegance and
flexibility in problem modeling are major advantages of ASP, our investigation might
make it attractive also for related biological questions, beyond the ones addressed in
this paper. For instance, natural extensions of the presented techniques allow for ac-
complishing prediction and repair. In the future, it will also be interesting to explore
how far the performance of ASP tools can be tuned by varying and optimizing the
given encodings, e.g., in order to compute all MICs more effectively. In turn, chal-
lenging applications like the one presented here might contribute to the further im-
provement of ASP tools, as they might be geared towards efficiency in such application
domains.

Acknowledgments. Philippe Veber was supported by a grant from DAAD. This work
was partially funded by the GoFORSYS project (http://www.goforsys.org/; Grant
0313924). The authors would like to thank Roland Kaminski for fruitful comments
on our encoding and Carito Guziolowski for providing the data on yeast.

Detecting Inconsistencies in Large Biological Networks 143

References

1. Joyce, A., Palsson, B.: The model organism as a system: Integrating ‘omics’ data sets. Nature
Reviews Molecular Cell Biology 7(3), 198–210 (2006)

2. Klamt, S., Stelling, J.: Stoichiometric and constraint-based modelling. In: System Modeling
in Cellular Biology: From Concepts to Nuts and Bolts, pp. 73–96. MIT Press, Cambridge
(2006)

3. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze ex-
pression data. Journal of Computational Biology 7(3-4), 601–620 (2000)

4. Siegel, A., Radulescu, O., Le Borgne, M., Veber, P., Ouy, J., Lagarrigue, S.: Qualitative
analysis of the relation between DNA microarray data and behavioral models of regulation
networks. Biosystems 84(2), 153–174 (2006)

5. Gutierrez-Rios, R., Rosenblueth, D., Loza, J., Huerta, A., Glasner, J., Blattner, F., Collado-
Vides, J.: Regulatory network of Escherichia coli: Consistency between literature knowledge
and microarray profiles. Genome Research 13(11), 2435–2443 (2003)

6. Soulé, C.: Graphic requirements for multistationarity. Complexus 1(3), 123–133 (2003)
7. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.

In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer, Hei-
delberg (1999)

8. Niemelä, I.: Logic programs with stable model semantics as a constraint programming para-
digm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)

9. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

10. Soulé, C.: Mathematical approaches to differentiation and gene regulation. Comptes Rendus
Biologies 329, 13–20 (2006)

11. Remy, É., Ruet, P., Thieffry, D.: Graphic requirements for multistability and attractive cycles
in a Boolean dynamical framework. Advances in Applied Mathematics (to appear, 2008)

12. Richard, A., Comet, J.: Necessary conditions for multistationarity in discrete dynamical sys-
tems. Discrete Applied Mathematics 155(18), 2403–2413 (2007)

13. Kuipers, B.: Qualitative reasoning: Modeling and simulation with incomplete knowledge.
MIT Press, Cambridge (1994)

14. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

15. Syrjänen, T.: Lparse 1.0 user’s manual,
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

16. Mitchell, D.: A SAT solver primer. Bulletin of the European Association for Theoretical
Computer Science 85, 112–133 (2005)

17. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

18. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set
solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp.
260–265. Springer, Heidelberg (2007)

19. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:
Conflict-driven disjunctive answer set solving. In: Proceedings of the Eleventh International
Conference on Principles of Knowledge Representation and Reasoning (KR 2008), pp. 422–
432. AAAI Press, Menlo Park (2008)

20. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. Freeman and Co., New York (1979)

21. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Proposi-
tional case. Annals of Mathematics and Artificial Intelligence 15(3-4), 289–323 (1995)

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

144 M. Gebser et al.

22. Gebser, M., Schaub, T., Thiele, S.: GrinGo: A new grounder for answer set programming.
In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 266–271.
Springer, Heidelberg (2007)

23. Veber, P., Le Borgne, M., Siegel, A., Lagarrigue, S., Radulescu, O.: Complex qualitative
models in biology: A new approach. Complexus 2(3-4), 140–151 (2004)

24. http://www.cs.uni-potsdam.de/wv/bioasp
25. Gelfond, M., Lifschitz, V., Przymusinska, H., Truszczyński, M.: Disjunctive defaults. In: Pro-

ceedings of the Second International Conference on Principles of Knowledge Representation
and Reasoning (KR 1991)., pp. 230–237. Morgan Kaufmann, San Francisco (1991)

26. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals
of Mathematics and Artificial Intelligence 12(1-2), 53–87 (1994)

27. Lierler, Y.: cmodels – SAT-based disjunctive answer set solver. In: Baral, C., Greco, G.,
Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp. 447–451. Springer,
Heidelberg (2005)

28. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (2006)

29. http://sourceforge.net/projects/potassco
30. Guziolowski, C., Veber, P., Le Borgne, M., Radulescu, O., Siegel, A.: Checking consistency

between expression data and large scale regulatory networks: A case study. Journal of Bio-
logical Physics and Chemistry 7(2), 37–43 (2007)

31. Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable core ex-
traction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 36–41. Springer,
Heidelberg (2006)

32. Papadimitriou, C., Yannakakis, M.: The complexity of facets (and some facets of complex-
ity). In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing
(STOC 1982), pp. 255–260. ACM Press, New York (1982)

33. Erdős, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)
34. Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.: The large-scale organization of

metabolic networks. Nature 407, 651–654 (2000)
35. http://www.princeton.edu/∼chaff/zchaff.html
36. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.: Unfolding partiality and disjunc-

tions in stable model semantics. ACM Transactions on Computational Logic 7(1), 1–37
(2006)

37. Guelzim, N., Bottani, S., Bourgine, P., Képès, F.: Topological and causal structure of the
yeast transcriptional regulatory network. Nature Genetics 31, 60–63 (2002)

38. Sudarsanam, P., Iyer, V., Brown, P., Winston, F.: Whole-genome expression analysis of
snf/swi mutants of Saccharomyces cerevisiae. Proceedings of the National Academy of Sci-
ences of the United States of America 97(7), 3364–3369 (2000)

http://www.cs.uni-potsdam.de/wv/bioasp
http://sourceforge.net/projects/potassco
http://www.princeton.edu/~chaff/zchaff.html

A Logic Programming Approach to Home
Monitoring for Risk Prevention in Assisted

Living

Alessandra Mileo1, Davide Merico2, and Roberto Bisiani2

1 QUA SI Research Center, NOMADIS Research Lab., Università degli Studi di
Milano-Bicocca, viale dell’Innovazione 110, I–20125 Milano

2 Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi
di Milano-Bicocca, viale Sarca 336/14, I–20126 Milano

Abstract. Monitoring a patient in his home environment is necessary to
ensure continuity of care in home settings, but this activity must not be
too much invasive and a burden for clinicians. For this reason we proto-
typed a system called SINDI (Secure and INDependent lIving), focused
on i) collecting a limited amount of data about the person and the en-
vironment through Wireless Sensor Networks (WSN), and ii) reasoning
about these data both to contextualize them and to support clinicians
in understanding patients’ well being as well as in predicting possible
evolutions of their health. Our hierarchical logic-based model of health
combines data from different sources, sensor data, tests results, com-
monsense knowledge and patient’s clinical profile at the lower level, and
correlation rules between aspects of health (items) across upper levels.
The logical formalization and the reasoning process are based on Answer
Set Programming. The expressive power of this logic programming para-
digm allows efficient reasoning to support prevention, while declarativity
simplifies rules specification by clinicians and allows automatic encoding
of knowledge. This paper describes how these issues have been targeted
in the application scenario of the SINDI system.

1 Background and Motivations

In the last twenty years there has been a significant increase of the average age of
the population in most western countries and the number of senior citizens has
been and will be constantly growing. Living independently in their own homes
is a key factor for these people in order to improve their quality-of-life and to
reduce the costs for the community. For this reason there has been a strong devel-
opment of computer technology applied to specific fields of medical sciences for
the delivery of clinical care outside of hospitals. For example, Telemedicine and
Clinical Decision Support Systems have been used to collect and transmit com-
plex clinical data and to implement diagnosis at-a-distance. We have designed a
system, called SINDI (Secure and INDependent lIving), that complements these
techniques by taking into account the health evolution of patients over long pe-
riods of time and the contextual setting, so as to identify what is best for the
patient in his specific context [1].

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 145–159, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

146 A. Mileo, D. Merico, and R. Bisiani

We address those elderly that are clinically stable although they might be
affected by chronic diseases and physical decline (more than 90% of the popu-
lation over 65 has more than one chronic desease). Since their health condition
does not require constant monitoring of complex biomedical parameters, these
patients do not need, and are less tolerant of, invasive sensors.

Many user-centered systems that analyse user’s behavior and detect emer-
gencies have been developed. They often cater to the identification of predefined
patterns of behavior rather than to the assessment of health in general, and they
are mainly based on statistical analysis of data, thus needing substantial training
to be adapted to a particular patient.

We use monitoring to support prevention, causal diagnosis and emergency de-
tection in the same framework and provide a global representation and reason-
ing model for general health assessment, combining medical knowledge, patient’s
clinical profile and context evaluation through sensor data.

In particular, we want to address the fact that clinicians need to be supported
in i) understanding patients’ physical, mental and social settings as they evolve,
ii) predicting what could follow with respect to particular changes in one or more
aspects of the patients’ general health and iii) identifying correlated aspects that
may be the cause for a negative change in the patient’s general health.

The first aspect is related to the contextualization of worsenings of the gen-
eral health status of the patient at hand, not only with respect to similar clinical
cases, but giving more importance to aspects that turn out to be important for
that specific patient. The second aspect refers to prediction, i.e. the identifica-
tion of items which might be indicators of a negative event; this would allow
to act before major symptoms and to plan appropriate short- and long-term
interventions, thus reducing risks. The third aspect is more similar to diagnosis,
but it is a local process rather than a case-based one, in that it takes into ac-
count patient’s clinical and environmental settings when causal correlations are
identified.

The need of making the system user-centered and medically sound lead us
to include some medical knowledge in the reasoning phase. In this way it is
possible to trace general habits and their correlation with the patient’s well-
being according to the evaluation methods of clinical practice.

To perform these reasoning tasks and encode the relative knowledge into a
common model, we believe Answer Set Programming (ASP) constitutes a pow-
erful declarative framework for knowledge representation and reasoning because:

1. the effectiveness of the implementation makes it possible to express deduc-
tions, default reasoning, constraints, choices and qualitative preferences;

2. declarativity allows the automatic encoding of medical knowledge, thus mak-
ing the system easily extensible and medically sound;

3. the use of contextual information and the way new knowledge can be taken
into account, makes it possible to deal with incomplete information and
enhance context-awareness.

In our framework, dynamic data about the person and the environment are
unobtrusively captured and aggregated by the Wireless Sensors Network (WSN).

A Logic Programming Approach to Home Monitoring for Risk Prevention 147

Inference results
to be used for
prevention and

monitoring

Data Flow

Data Aggregation Module
(Context aggregation and interpretation)

Wireless Sensor Network Data

Logical Framework

Knowledge
Representation

Inference

Patient's
clinical profile

Commonsense
rules

Medical Evaluation
Scales Encoding

Fig. 1. Data flow

At higher level, these data are combined and interpreted by an inference engine
to help caregivers detect patients’ physical, mental and social status as it evolves.

Figure 1 shows a very high-level overview of the architecture of our system
and the correlation between its components.

This variety of information makes it possible to both automatically adapt the
results of the reasoning process when new information is available and deal with
user and context-specific constraints.

Medical soundness and context-awareness improve the reliability of the system
because the combination of different sources of information (sensors, medical
knowledge, clinical profile, user defined constraints) that change over time make
the system more reliable (i.e. much better able to disambiguate situations, thus
reducing false positives) and adaptive (e.g. easily extended on the face of new
available information).

We did not consider the introduction of robots for assisted living as in other
approaches [2] because, besides their high costs of set up and maintenance, their
presence is rather intrusive and the help they can provide is marginal.

We implemented communication facilities based on a set-top box that han-
dles TV programming, communication with the outside world and an agenda
through the TV remote control, since it is a widely accessible tool. Real-time
emergency detection has also been considered in the implementation of the
system.

Section 2 describes the design and implementation of the Wireless Sensor Net-
works supporting SINDI’s intelligence. We then introduce the logical framework
and describe the Hierarchical Knowledge Representation model in Section 3,
while details about the implementation of the model are presented in Section 4.

148 A. Mileo, D. Merico, and R. Bisiani

Section 5 contains preliminary evaluations, while considerations about future
developments of SINDI are given in Section 6.

2 Home Monitoring: Context Aggregation and
Interpretation

Wireless Sensor Networks (WSNs) [3] consist of nodes that are capable of in-
teracting with the environment by sensing and controlling physical parameters;
the nodes use packet radio communication to exchange data. These networks are
typically used to collect data for long periods of time without assistance. Spe-
cific scenarios for WSNs include habitat monitoring, industrial control, embed-
ded sensing, medical data collection, building automation, fire detection, traffic
monitoring, etc.

In the last few years, many interesting systems were developed in the area
of WSNs for assisted living and healthcare [4,5]. Similarly to these systems, the
WSN of SINDI monitors environmental and physiological data of individuals in
their residences. In order to fulfill the requirements of SINDI’s monitoring, we
had to address some specific aspects of WSNs such as (i) hierarchical organization
and topology control, enabling more reliable localization and data routing, as
well as lower power consumption, (ii) dynamic network configuration providing
enough flexibility to deal with heterogeneous sensors and (iv) data aggregation
to avoid redundant messages.

The SINDI Wireless Sensor Network (SINDI-WSN) is composed by (i) a ref-
erence node in every zone (typically a room), always active and connected to
household power, used for network coordination but also with sensing capabili-
ties (ii) battery-powered nodes used for sensing the environment data or capture
particular events and (iii) a wearable monitoring device called Inertial MeasUre-
ment Device (IMUD), (iv) a master processor. The wearable monitoring device
is used for the user’s localization and movement detection. The master processor
is the coordinator node of the network. It is the gateway of the network and it
has storage, processing power and main memory capabilities in the ballpark of
an average PC.

The network is organized hierarchically, as follows. The environment in which
the user lives is divided into zones and every zone is controlled by one base node.
Moreover, every zone can be divided into several sensing areas where one or more
environment nodes operate. The master processor manages the entire network
applying topology-control mechanisms and routing algorithms.

The configuration of the environment nodes can be easily managed and single
activities turned on or off by a base node for its zone or by the master proces-
sor node for the whole network. The presence of an always active base node in
every zone simplifies data routing because the environmental nodes are guaran-
teed to always find a listening node. Therefore, they can simply send a message
with the proper sensor data and quickly enter in sleep-mode without wasting
precious energy. Data aggregation is another crucial feature since it remarkably
reduces the traffic in the network and eliminates redundant data [6]. Semantic

A Logic Programming Approach to Home Monitoring for Risk Prevention 149

aggregations have been investigated in several papers among, e.g. [7] and [8]. In
our system, data aggregation is supported by the possibility of defining simple
aggregation rules at zone level in order to avoid redundant messages to be sent
over the network, e.g. when nobody is detected in a zone (or in particular areas),
data from the nodes in that particular zone can be aggregated. A middleware
environment that provides dynamic topology-control, hierarchical routing [9],
localization, data aggregation, and communication services has been designed
and developed in order to carry the data captured by SINDI-WSN and to feed
the reasoning system.

Wenowgive some formalnotions about the logical frameworkofSINDI, and then
concentrate on the Health Care Knowledge Representation and Reasoning model.

3 The Logic-Based Model of Health

3.1 Preliminary Notions

In order to allow the system to perform reasoning tasks, data collected by the
WSN and knowledge about the home healthcare domain must be represented
in a formal way. The declarative logical framework we use is that of Answer
Set Programming (ASP), based on the stable model semantics for Logic Pro-
grams proposed by Gelfond and Lifschitz [10]. Thanks to its expressiveness and
to the availability of efficient implementations [11,12], ASP started to play a rel-
evant role in decision problem solving and it has been widely used in planning,
diagnosis and, more generally, Knowledge Representation and Reasoning [13].

We want to recall some basic definitions. In ASP a given problem is repre-
sented by a logic program whose results are given in terms of answer sets.

An answer set for a logic program is a minimal (in the sense of set-inclusion)
set of literals satisfying the logic rules included in the program.

A rule r is an expression of the form

r : L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln . (1)

where Li (i = 0..n) are literals, not is a logical connective called negation as
failure and n ≥ m ≥ 0. We define L0 = head(r) as the head of rule r, and
body(r) = L1, . . . , Lm, not Lm+1, . . . , not Ln as the body of r. Rules r with
head(r) = ∅ are called integrity constraints, while if body(r) = ∅, we refer to r
as a fact. Rules with variables (upper case names) are taken as a shorthand for
the sets of all their ground instantiations.

3.2 Hierarchical Model of Health Care: Knowledge Representation

A careful analysis of health care in home settings suggested us that health-related
items can be classified into three levels which hierarchically influence each other:
Functionality level, Activities of Daily Living (ADL) level and Risk Assessment
level. Significant aspects of health assessment at each level (referred to as items)
have been identified according to the medical practice in health assessment of
the elderly [14] and encoded in our declarative framework in form of logic facts.

150 A. Mileo, D. Merico, and R. Bisiani

Table 1. Logical encoding of patient’s profile: static description and dynamic
evaluation

Static Predicates Description Dynamic Predicates Description
test(Name,Value) test results lev(L,I) association items-level

drug(Name) list of drugs obs(I,Vi,T) evaluation of an item
pathol(Name) list of pathologies obsind(Ind,Vi,T) evaluation of an indicator

profile(X,Name,V) X={drug,pathol} link(I,Ind) association item-indicator
V={yes,no} range(Ind,Vi) range of values

ord(Ind, Vi,Num) order of values

A lower layer (State level) contains aggregated context data as well as sta-
tic and dynamic evaluations of significant aspects of patient’s clinical settings
(referred to as indicators).

Predicates used for static description and dynamic evaluation are listed in
table 1, where I represents an item, L is a level, Vi are values, Ind represents
indicators, Num is an ordinal1 for V and T is a timestamp.

At higher level, each indicator can be associated with one or more items. Items
are thus characterized by an initial evaluation (predicate obs() in table 1), and a
set of indicators used for differential evaluation (predicate obsind() in table 1).

Every time the inference process is run, the system compares the values of
indicators from the previous inference with the actual values to detect wors-
enings in health status through differential evaluations. Results of differential
evaluations make it possible to detect indicators subjected to worsenings and to
identify critical items: the higher is the number of worsenings associated with
an item, the more the item is critical.

Logic rules used to detect worsenings by differential evaluation are detailed
in section 4.

The reasoning process takes also into account medical knowledge about causal
correlations between items and combines it with results of differential evaluations
to show how the patient’s health can evolve in terms of functional disability
(Functionality level), dependencies in performing daily activities (ADL level)
and risks assessment (Risk Assessment level).

In the following subsections we give details about items at each level and
indicators (at the state level) associated to them. Our choice has been guided by
geriatric practitioners we are collaborating with to set the real testing phase of
SINDI. Details about causal correlations and reasoning are presented in section 4.

State Level. Static aspects of the clinical profile include results of specific
tests, pathologies and drug intake, while dynamic aspects are represented by
indicators. Context-dependent information considered at this level includes:

1. personal details: biomedical parameters such as temperature and weight;
2. environmental properties: average light value, humidity, temperature, pres-

ence of stairs or carpets in a given room or area of interest;
1 Higher numbers correspond to worse health evaluation for the item.

A Logic Programming Approach to Home Monitoring for Risk Prevention 151

3. basic activities: movement activity can be easily captured by the wearable
sensor, and we consider it as characterized by motion (walking, standing
still), position (sit, lay, stand) and orientation (straight, turning);

4. localization: how the patient moves from one room/area to another;
5. interaction with objects: we consider two kinds of binary interaction accord-

ing to sensors associated with the specific object, i.e. pressure (chair and bed
objects) and switch (doors, windows and devices); interaction modes can be
easily extended by adding appropriate declarative descriptions.

The encoding of context-related data in form of logic predicates is used by the
logic component of the aggregation middleware to infer values of those indicators
that are not directly available from aggregated sensors data.

Example 1. As an example, consider the indicator quality of sleep. To understand
the quality of sleep it is necessary to reason about the night activity, thus this
indicator is evaluated by applying a set of logic rules that take into account
contextual information (i.e. localization, state of bed object, movement, etc.)
and some auxiliary predicates (start/end of night time, restless night, insomnia,
etc.). A simplified version of the ASP code to infer quality of sleep follows:2

nighstart(T) :- is_in(bedroom,bed,T),
wearable_device(off,T).

nightend(T0) :- exitbed(T0), wearable_device(on,T),
nightime(T1), not exitbed(T2),
T1<T0<T, T0<T2<T.

break(T) :- nightime(T1), nightend(T2), exitbed(T),
T1<T<T2.

exitbed(T) :- bed(mobile,T1), bed(empty,T),
not bed(mobile,T2), T1<T2<T.

Functionality Level. The system considers the following functional disabilities:

1. balance and gait, initially evaluated through the appropriate part of the
Tinetti-POMA [15] medical scale; indicators are represented by aspects of
the scale that can be easily captured and evaluated through the wearable
sensor, i.e. standing, sitting, turning and walking;

2. nutrition, initially evaluated by means of the Mini Nutritional Assess-
ment [16] test; the indicator is the Body Mass Index (BMI), stored every
hour;

3. vision, initially evaluated through specific tests; indicators are the level of
light during the day and at the sunset (artificial light may indicate a prob-
lem), evaluated and stored every hour;

4. mental and cognitive capabilities, evaluated by means of the Mini Mental [17]
and Clock Drawing [18] tests; indicators are represented by i) a computer
aided questionnaire and counting ability, evaluated and stored once a week,
and ii) the quality of sleep, daily evaluated and stored;

2 Note that symbol “:-” in the encoding corresponds to “←” in logic ASP rules.

152 A. Mileo, D. Merico, and R. Bisiani

5. insomnia, initially evaluated by means of a questionnaire; the indicator is
again the quality of sleep;

6. emotional stability, initially evaluated by means of the GDS test [19]; the
indicator is a computer-aided version of the GDS test.

ADL Level. At this level we consider the Activities of Daily Living (ADL) as
evaluated in the Katz scale [20], in particular:

1. transfer (mobility) has the same indicators as balance and gait;
2. dressing has the same indicators as balance and visual functionalities;
3. feeding has the same indicators as nutrition functionality;
4. toileting has no indicators in the current version.

We want to point out that reasoning at this level is not aimed at activity
recognition as in other approaches to monitoring [21]. We rather concentrate
on possible inter-dependencies that may arise in performing ADL, according to
correlations with items at other levels, because this is crucial for prevention.

Risk Assessment Level. The risks we consider in the SINDI system are rep-
resented by the potentially most dangerous situation for elderly people at home,
namely:

1. risk of falls, initially evaluated according to the Tinetti POMA scale; it has
the same indicators as balance and gait functionalities;

2. risk of depression, initially evaluated according to the GDS scale [19]; the
indicators are nutrition, balance, gait and sleep functionalities;

3. frailty, initially evaluated through a combination of GDS test, Mini Mentale
test and Katz evaluation; the indicators are the same as those of nutrition,
balance, gait, vision and emotional functionalities plus some additional ones
like walk speed, age, number of pathologies, number of drugs and number of
activities in which the patient needs help;

4. risk of dependency, evaluated according to the Katz index; it has as indicator
the number of ADL’s that cannot be easily performed;

5. malnutrition, evaluated by means of the Mini Nutritional Assessment test
with BMI as indicator;

6. isolation: the indicators are the number of visitors and the time spent out
of the house.

4 The Reasoning Capabilities

In our system we describe a home healthcare scenario by a declarative repre-
sentation of the domain at different levels. Inference is also performed at each
level by separate logic programs to detect i) functional disabilities, every hour,
ii) dependencies in performing Activities of Daily Living, every day and iii) risk
assessment, every day.

In order to deal with emergencies, SINDI can be configured to detect some
triggers. Such triggers can either generate a direct action (e.g. emergency call)

A Logic Programming Approach to Home Monitoring for Risk Prevention 153

or rely on the reasoning system. As an example, temperature over 45 ◦C is set
as a trigger for an emergency call, while an opening window needs to be contex-
tualized using specific rules, to check whether it is an intrusion.

Besides domain knowledge encoded as illustrated in the previous section, two
further aspects are necessary for the reasoning process: differential evaluations
and correlation rules. Differential evaluation of an item I at level L through the
indicators Indi is possible by comparing the value V 0

i of each associated indica-
tor at the beginning of the previous inference (time T = 0) and the (eventually
aggregated) value V 1

i of the same indicator at the temporal interval being eval-
uated (time T = 1). For some indicators such as standing and sitting, several
evaluations may be available for the time interval (hour or day) considered in the
inference process. Given that a single value has to be provided for each indicator
in a given interval, the data extraction module taking data from the database
and passing them to the ASP engine is in charge of computing the most frequent
value for that interval. This choice is the result of a discussion with geriatrics
experts and can be motivated by the fact that the slow trend of physical and
cognitive decline of the elderly makes evaluations uniform in a short period of
time such as an hour or a day, and isolated values that are far from te most
frequent one can be due to occasional awkward movements rather than to a
disability. The logic rules to detect worsenings look like those in equation 2.

worse(L, I, Indi) ← obsind(Indi, V
0
i , 0), obsind(Ind, V 1

i , 1),
link(I, Indi), lev(L, I),
ord(Indi, V

1
i , N1), ord(Indi, V

0
i , N), N < N1.

(2)

Although differential evaluations can also indicate improvements, we only
consider worsenings, as they are much more relevant with respect to risk pre-
vention. The reasoning system can easily be extended to consider also health
improvements and use them to evaluate response to medical treatments.

Do not forget that a negative differential evaluation can also be obtained via
specific tests periodically submitted to the patient (every three or six month
when no critical situations are identified). In this case, the new observation
obs(L, I, V, T + 1) is compared with the last complete observation available
obs(L, I, V, T).

Correlation rules concern dependencies among a cause (I1) and an effect (I).
Different dependencies are allowed in our model:

1. negative/positive influence of an item I on another item I1;
2. directly proportional influence of an item I on another item I1;
3. inversely proportional influence of an item I on another item I1;

Each of these correlations can be strict or possible. In the first release of the
system we concentrated on strict and possible negative influence, since they are
more relevant for our purposes. All other dependencies can be easily introduced
and encoded in the system, and we are considering this in the implementation
of the following prototype of SINDI.

154 A. Mileo, D. Merico, and R. Bisiani

Correlation rules can be specified by clinicians and are automatically mapped
into ASP to express negative/possibly-negative influence of an item Ik on another
item Ij , respectively encoded by predicate r neg(Ij , Ik) and poss r neg(Ij , Ik)
respectively.

Consider the structure of items and correlation rules as an oriented graph
stratified into levels.

Each item Ij at a level L, Ij(L), can be connected to another item Ik(L′) in
two different ways:

1. an oriented arc from Ij(L) to Ik(L′): if Ij(L) gets worse, this has a negative
influence on Ik(L′);

2. an oriented dotted arc from Ij(L) to Ik(L′): if Ij(L) gets worse, this may
have a negative influence on Ik(L′).

In addition, the layered structure is used to avoid possibly infinite propagation
of dependencies when the reasoning process investigates the search space.

As already mentioned, the inference process considers items of each level sep-
arately. No matter which level is being evaluated, the system first characterizes
every item in the graph as being either stable (none of the indicators got worse
for that item) or unstable (one or more indicators got worse for that item in the
interval being evaluated), represented respectively by predicates n stable(L, I)
and stable(L, I), that are inferred by applying default rules in equations 3.

n stable(L, I)← worse(L, I, Ind), lev(L, I) .
stable(L, I) ← not n stable(L, I), lev(L, I) . (3)

This distinction is crucial to determine the behaviour of the system when it
reasons about each Ij(L) at the specific level L:

a) if Ij(L) is stable, the system performs the following reasoning task:
• it predicts the amount of risk for Ij(L) to get unstable, as follows:

* it investigates the direct connections determined by correlations
rules, to identify items Ik(L′) that may influence Ik(L);

* it check each Ik(L′) to see whether it is unstable and, in this case,
guess that Ij(L) could be at risk in the near future due to its corre-
lation to Ik(L′);

b) if Ij(L) is unstable, the system performs three different reasoning tasks:
• it identifies possible negative effects of the worsening of Ij(L) on other

items Ik(L′) according to correlation rules, represented by oriented arcs
from Ij(L) to Ik(L′); 3

• it performs local diagnosis, detecting causes of the worsening of Ij(L)
among the directly correlated items that have been marked as unstable;

3 Propagation of negative effects is not considered since the layered structure of the
graph allows to identify them simply by investigating results of the inference for
Ik(L′) when items at level L′ are evaluated.

A Logic Programming Approach to Home Monitoring for Risk Prevention 155

drug1(0)State (level 0)

Functionality
(level 1)

ADL (level 2)

Risk Assessment
(level 3)

balance(1)

dress(2)

depression(3)

disease1(0) light(0)
disease2(0)

cognition(1) vision(1) bmi(1)

eat(2)

fragility(3)

Fig. 2. Graph of correlations for example 2

• it contextualizes the worsening of Ij(L) providing values of all correlated
items (both stable and unstable ones); in order to select items that are
more likely related to Ij(L), the search goes either up in the hierarchy
of levels, or down to lower levels in a monotonic way.

To conclude this section, we present a simple example of how the reasoning
system can support clinicians in understanding the evolution of health state of
the patients monitored.

Example 2. Consider the graph in figure 2. Suppose that the reasoning system
is investigating ADL’s (level 2) and no item is unstable at this level. Suppose
also that when evaluating indicators the system identifies visual functionality as
unstable. Results of the inference process with respect to prediction indicates
that ADLs dress and eat are both at risk due to the visual functionality, but in
one case (for the eat ADL) the risk is only possible.

Suppose now that, in the same setting, appropriate tests show that ADL eat is
unstable (i.e. there is an increasing level of dependency in performing eat) and
the visual functionality is still unstable due to light indicators. The inference
process returns the following results, summarized in table 2:

1. prediction: risk of fragility and nutrition functionality have to be monitored
carefully since they may get worse due to eat dependency;

2. local diagnosis: dependency for eat may be due to a functional disability in
vision;

3. contextualization: upwards in the hierarchical model, risk of depression is
identified as being correlated to ADL eat, while downwards we have cog-
nition and vision; vision is in turn correlated to the analysis of lights level
indicators; values of all these items are provided to clinicians through ap-
propriate interfaces, helping contextualization of the worsening of ADL eat.

In a more complex schema of dependencies, multiple paths can make reasoning
a hard task. For this reason we keep the graph structure hierarchical: each level

156 A. Mileo, D. Merico, and R. Bisiani

Table 2. Results of reasoning tasks for example 2: ADL analysis

Item’s stability Prediction Local diagnosis Contextualization
stable(adl,dress) risky(risk,frag,adl,eat) p cause(adl,eat,func,vis) ctx(adl,eat,risk,depr)
n stable(adl,eat) risky(func,bmi,adl,eat) ctx(adl,eat,func,cog)
n stable(func,vis) ctx(adl,eat,func,vis)

ctx(adl,eat,state,light)

is considered separately with respects to items of all other levels. The expressive
power of ASP can also helps because it makes it possible to deal with complex
graphs maintaining the computational complexity rather low.

5 Preliminary Evaluation

The SINDI system has been designed to preserve some properties that turn out
to be crucial in the assisted living context.

To preserve unobtrusiveness, we decided not to use cameras: dynamic data
about the person and the environment are captured by the WSN. The user-
friendly interaction with SINDI is based on a TV screen, controlled by a device
that is similar to a TV remote. Modularity and computational efficiency stem
from the declarative nature of ASP and the availability of efficient solvers, while
the use of off-the-shelf components in SINDI considerably reduces overall costs.

In the preliminary evaluation we did several tests on the WSN and on the
inference engine. As for the WSN, the localization algorithm recognizes the cor-
rect area 90% of the time without further filtering techniques, and movement
recognition is correct 95% of the time. With respect to the inference engine, we
evaluated ASP programs by using Lparse as grounder and the Clasp solver [12]
that supports constraints, choice rules and weight rules [22] and can solve com-
plex reasoning tasks very efficiently due to the heuristics used, combining ASP
expressivity with boolean constraint solving. In the testing phase of SINDI, we
used Clasp both to generate the backlog (a few months of data) and to test the
global performance of the system.

Time of execution on some selected instances are summarized in table 3,
where time is expressed in seconds. The worst cases have been observed for
instances where the number of correlations was more than 6 times the number
of items. This can be due to the high number of bidirectional correlations among
items, derived by the random generation of instances. According to geriatric
practitioners, similar cases are not common in real settings and, except for those
instances, the reasoning process scales well.

Context aggregation and interpretation at the state level remains the harder
task. In evaluating indicators, delegating part of the aggregation process to the
WSN nodes lowered the computational time up to 60% for instances of medium
complexity (i.e. for a person that is active from 30 to 40 per cent of the time
in a day). This of course does not include situations in which emergencies arise,
since they are detected almost immediately by triggering events.

A Logic Programming Approach to Home Monitoring for Risk Prevention 157

Table 3. ASP reasoning performance

Number of Items State Level Number of Correlations Upper Levels
WSN + ASP ASP only

20 140.05 205.07 30/70/130 0.69/1.01/2.03
30 169.71 481.22 120 1.03
50 201.32 589.03 200 1.37
70 241.11 603.16 250 1.68

6 Conclusions and Future Work

Our SINDI assistive monitoring system combines new WSN technologies and
efficient reasoning techniques to allow constant monitoring and health assessment
of people in a context-aware setting.

The context-dependent reasoning process is based on differential evaluations
and dependencies between health-related items. The combination of different
sources of information (sensors, medical knowledge, clinical profile, user defined
constraints) that change over time makes the system more reliable (i.e. much
better able to disambiguate situations, thus reducing false positives) and adap-
tive (e.g. easily extended on the face of new available information). Domain
knowledge is encoded into the ASP logical framework, thus enhancing unob-
trusiveness, modularity, declarativity and efficiency. The declarative approach
makes it easier for clinicians to specify dependencies in a general way and allows
automatic logical encoding.

Despite the potential of the SINDI system in supporting prevention in a home
healthcare scenario, there are still a few issues to be investigated. One of them
is related to the outputs (in terms of evaluation of risky situations) provided by
the system. One of the interesting aspects of using ASP semantics in this context
is that all possible correlations among factors of different levels are considered
equally important and valid. There are efficient techniques to enforce priorities
and ordering relations among solutions of an ASP program [23,24], and it would
be interesting to investigate how to apply these techniques in the healthcare
scenario. The graphical representation of dependencies and the results of the
reasoning tasks suggest that automatic methods can be applied to the analysis
of the history of inferences. We want to investigate these issues to include them
in the next release of the system.

Preliminary tests showed that SINDI could be a powerful and efficient tool
for clinicians to support prevention and to help understanding health evolution,
as well as for patients and their relatives for a better quality of life. Nonetheless,
we are aware of the fact that more detailed and extensive experimental results
are needed to evaluate the effectiveness of this approach in real contexts, and to
provide significant empirical data. All these aspects will be concretely taken into
account in the next few months in the context of a real deployment of SINDI in
a geriatrics hospital.

158 A. Mileo, D. Merico, and R. Bisiani

References

1. Tonelli, M.R.: The limits of evidence-based medicine. Respir Care 46(12), 1435–
1440 (2001)

2. Cesta, A., Pecora, F.: The robocare project: Intelligent systems for elder care. In:
AAAI Fall Symposium on Caring Machines: AI in Elder Care, Washington, DC,
USA (2005)

3. Akyildiz, I.F., Weilian, S., Sankarasubramaniam, Y., Cayirci, E.E.: A survey on
sensor networks. IEEE Communications Magazine 40(8), 102–114 (2002)

4. Malan, D., Fulford-Jones, T., Wesh, M., Moulton, S.: Codeblue: An ad hoc sensor
network infrastructure for emergency medical care. In: MobySys Workshop on Ap-
plications of Mobile Embedded Systems, Boston, Massachusetts, USA, pp. 12–14
(2004)

5. Wood, A., Virone, G., Doan, T., Cao, Q., Selavo, L., Wu, Y., Fang, L., He, Z.,
Lin, S., Stankovic, J.: Alarm-net: Wireless sensor networks for assisted-living and
residential monitoring. Technical Report CS-2006-11, Dep. of Computer Science,
University of Virginia (2006)

6. Krishnamachari, B., Estrin, D., Wicker, S.B.: The impact of data aggregation in
wireless sensor networks. In: 22nd International Conference on Distributed Com-
puting Systems, Washington, DC, USA, pp. 575–578. IEEE Computer Society, Los
Alamitos (2002)

7. Whitehouse, K., Zhao, F., Liu, J.: Semantic streams: A framework for composable
semantic interpretation of sensor data. In: Römer, K., Karl, H., Mattern, F. (eds.)
EWSN 2006. LNCS, vol. 3868, pp. 5–20. Springer, Heidelberg (2006)

8. Liu, J., Zhao, F.: Towards semantic services for sensor-rich information systems.
In: 2nd International Conference on Broadband Networks, pp. 44–51 (2005)

9. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communica-
tion protocol for wireless sensor networks. In: International Conference on System
Sciences, Washington, DC, USA, p. 8020. IEEE Computer Society, Los Alamitos
(2000)

10. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
International Conference on Logic Programming, Seattle, Washington, pp. 1070–
1080 (1988)

11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The dlv system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7(3), 499–562 (2006)

12. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven
answer set solver. In: Ninth International Conference on Logic Programming and
Nonmonotonic Reasoning, pp. 260–265. Springer, Heidelberg (2007)

13. Baral, C., Gelfond, M.: Logic programming and knowledge representation-the a-
prolog perspective. Artif. Intell. 138(1-2), 3–38 (2002)

14. Fleming, K.C., Evans, J.M., Weber, D.C., Chutka, D.S.: Practical functional assess-
ment of elderly persons: A primary-care approach. Mayo Clinic Proceedings 70(9),
890–910 (1995)

15. Tinetti, M., Williams, T., Mayewski, P.: Fall risk index for elderly patients based
on number of chronic disabilities. American Journal of Medicine 80, 429–434 (2002)

16. Guigoz, Y., Vellas, B., Garry, P.: Mini nutritional assessment: A practical assess-
ment tool for grading the nutritional state of elderly patients. Facts and Research
in Gerontology 2, 15–59 (1994)

A Logic Programming Approach to Home Monitoring for Risk Prevention 159

17. Folstein, M.F., Folstein, S.E., McHugh, P.R.: ”mini-mental state”. A practical
method for grading the cognitive state of patients for the clinician. Psychiatric
Research 12(3), 189–198 (1975)

18. Yamamoto, S., Mogi, N., Umegaki, H., Suzuki, Y., Ando, F., Shimokata, H., Iguchi,
A.: The clock drawing test as a valid screening method for mild cognitive impair-
ment. Dementia and Geriatric Cognitive Disordorders 18, 172–179 (2004)

19. Yesavage, J., Brink, T., Rose, T., Lum, O., Huang, V., Adey, M., Leirer, V.: De-
velopment and validation of a geriatric depression screening scale: A preliminary
report. Journal of Psychiatric Research 17(1), 37–49 (1982–1983)

20. Katz, S., Downs, H., Cash, H., Grotz, R.: Progress in development of the index of
adl. Gerontologist 10(1), 20–30 (1970)

21. Pollack, M.E.: Intelligent technology for an aging population: The use of ai to assist
elders with cognitive impairment. AI Magazine 26(2), 9–24 (2005)

22. Niemelä, I., Simons, P.: Extending the smodels system with cardinality and weight
constraints. In: Logic-based artificial intelligence, Norwell, MA, USA, pp. 491–521.
Kluwer Academic Publishers, Dordrecht (2001)

23. Brewka, G.: Logic programming with ordered disjunction. In: Eighteenth national
conference on Artificial intelligence, Menlo Park, CA, USA, pp. 100–105. American
Association for Artificial Intelligence (2002)

24. Brewka, G., Niemelä, I., Syrjänen, T.: Implementing ordered disjunction using an-
swer set solvers for normal programs. In: Logics in Artificial Intelligence - Journées
Européennes sur la Logique en Intelligence Artificielle, Cosenza, Italy, pp. 444–455.
Springer, Heidelberg (2002)

Automatic Composition of Melodic and Harmonic
Music by Answer Set Programming

Georg Boenn1, Martin Brain2, Marina De Vos2, and John ffitch2

1 Cardiff School of Creative & Cultural Industries
University of Glamorgan

Pontypridd, CF37 1DL, UK
gboenn@glam.ac.uk

2 Department of Computer Science
University of Bath

Bath, BA2 7AY, UK
{mjb,mdv,jpff}@cs.bath.ac.uk

Abstract. The composition of most styles of music is governed by rules. The
natural statement of these rules is declarative (“The highest and lowest notes in
a piece must be separated by a consonant interval”) and non deterministic (“The
base note of a key can be followed by any note in the key”). We show that by
approaching the automation and analysis of composition as a knowledge repre-
sentation task and formalising these rules in a suitable logical language, powerful
and expressive intelligent composition tools can easily be built. This paper de-
scribes the use of answer set programming to construct an automated system
that can compose both melodic and harmonic music, diagnose errors in human
compositions and serve as a computer-aided composition tool. The use of a fully
declarative language and an “off-the-shelf” reasoning engine allows the creation
of tools which are significantly simpler, smaller and more flexible than those
produced by existing approaches. It also combines harmonic and melodic com-
position in a single framework, which is a new feature in the growing area of
algorithmic composition.

1 Introduction

Music, although it seeks to communicate via emotions, is almost always governed by
complex and rigorous rules which provide the base from which artistic expression can
be attempted. In the case of musical composition, in most styles there are rules which
describe the progression of a melody, both at the local level (the choice of the next note)
and at the global level (the overall structure). Other rules describe the harmony, which
arises from the relationship between the melodic line and the supporting instruments.

These rules were developed to guide and support human composers working in the
style of their choice, but we wish to demonstrate here that by using knowledge repre-
sentation techniques, we can create a computer system that can reason about and apply
compositional rules. Such a system will provide a simple and flexible way of composing
music automatically, but, provided that the representation technology used is sufficiently
flexible to allow changes at the level of the rules themselves, it will also help the human
composer to understand, explore and extend the rules he is working with.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 160–174, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automatic Composition of Melodic and Harmonic Music 161

This paper describes ANTON, an automatic composition system based on an im-
plementation of one set of compositional rules, those governing tonal Western music,
using Answer Set Programming (ASP). The paper provides an overview of the musi-
cal context and the particular problems of algorithmic composition on both melodic
and harmonic forms. This is followed by a description of the ASP that we use, before
giving more details of our innovative system, its design, performance and outputs. We
conclude with directions for future work in both music research and the development
of our system.

2 Music

Creating melodies, that is sequences of pitched sounds, is not as easy as it looks. We
have cultural preferences for certain sequences of notes and preferences dictated by the
biology of how we hear. This may be viewed as an artistic (and hence not scientific) is-
sue, but most of us would be quick to challenge the musicality of a composition created
purely by random whim. Students are taught rules of thumb to ensure that their works
do not run counter to cultural norms and also fit the algorithmically definable rules of
pleasing harmony when sounds are played together.

“Western tonal” simply refers to what most people in the West think of as “classi-
cal music”, the congenial Bach through Brahms music which feels comfortable to the
modern western ear because of its adherence to familiar rules. Students of composition
in conservatoires are taught to write this sort of music as basic training. They learn to
write melodies and to harmonise given melodies in a number of sub-versions. If we con-
centrate on early music then the scheme often called “Palestrina Rules” is an obvious
example for the basis of this work. Similarly, harmonising Bach chorales is a common
student exercise, and has been the subject of many computational investigations using
a variety of methods.

In this paper, we take the somewhat arid technical rules and embed them within a
modern computational system, which enables us to contemplate many original ways
of exploiting the fact that they are simultaneously available; the rules themselves can
be explored, extended and refined, or student exercises can be evaluated to ensure that
they are indeed “valid”. We will be able to complete partial systems, such as producing
a melody consonant with a given harmony structure, as well as, more adventurously, to
create new melodies.

We have used the teaching at one conservatoire in Köln to provide the basic rules,
which were then refined in line with the general style taught. The point about generating
melodies is that the “tune” must be capable of being accompanied by one or more other
lines of notes, to create a harmonious whole. The requirement for the tune to be capable
of harmonisation is a constraint that turns a simple sequence (a monody) to a melody.

Our experience with this work is to realise how many acceptable melodies can be
created with only a few rules, and as we add rules, how much better the musical results
are. This concept is developed further in Section 5.

In this particular style of music complete pieces are not usually created in one go.
Composers create a number of sections of melody, harmonising them as needed, and

162 G. Boenn et al.

possibly in different ways, and then structuring the piece around these basic sections.
Composing between 4 bars and 16 bars is not only an appropriate task, it is actually
what the human would do, creating component form which the whole is constructed.
So although the system described here may be limited in its melodic scope, it has the
potential to become a useful tool across a range of sub-styles.

3 Automatic Composition

A common problem in musical composition can be summarised in the question “where
is the next note coming from?”. For many composers over the years the answer has been
to use some process to generate notes. It is clear that in many pieces from the Baroque
period that simple note sequences are being elaborated in a fashion we would now
call algorithmic. For this reason we can say that algorithmic composition is a subject
that has been around for a very long time. It is usual to credit Mozart’s Musikalisches
Würfelspiel (Musical Dice Game) [1] as the oldest classical algorithmic composition,
although there is some doubt if the game form is really his. In essence the creator
provides a selection of short sections, which are then assembled according to a few
rules and the roll of a set of dice to form a Minuet1. Two dice are used to choose the
16 minuet measures from a set of 176, and another die selects the 16 trio measures2,
this time from 96 possible. This gives a total number of 1.3 × 1029 possible pieces.
This system however, while using some rules, relies on the coherence of the individual
measures. It remains a fun activity, and recently web pages have appeared that allow
users to create their own original(ish) “Mozart” compositions.

More recent algorithmic composition systems have concentrated on the generation of
monody3, either from a mathematical sequence, chaotic processes, or Markov chains,
trained by consideration of acceptable other works. Frequently the systems rely on a
human to select which monodies should be admitted, based on judgement rather than
rules. Great works have been created this way, in the hands of great talents. Major
descriptions of mathematical note generators can be found for example in Formalized
Music [2]. Probably the best known of the Markov chain approach is Cope’s significant
corpus of Mozart pastiche [3].

In another variation on this approach, the accompanist, either knowing the chord
structure and style in advance, or using machine-listening techniques, infers a style of
accompaniment. The former of these approaches can be found in commercial products,
and the latter has been used by some jazz performers to great effect.

A more recent trend is to cast the problem as one of constraint satisfaction. For
example PWConstraints is an extension for IRCAM’s Patchwork, a Common-Lisp-
based graphical programming system for composition. It uses a custom constraint solver
employing backtracking over finite integer domains. OMSituation and OMClouds are
similar and were more recently developed for Patchwork’s successor OpenMusic. A
detailed evaluation of them can be found in [4], where the author gives an example
of a 1st-species counterpoint (two voices, note against note) after [5] developed with

1 A dance form in triple time, i.e. with 3 beats in each measure.
2 A Trio is a short contrasting section played before the minuet is repeated.
3 A monody is a single solo line, in opposition to homophony and polyphony.

Automatic Composition of Melodic and Harmonic Music 163

Strasheela, a constraint system for music built on the multi-paradigm language Oz. Our
musical rules however implement the melody and counterpoint rules described by [6],
which we find give better musical results.

One can distinguish between improvisation systems and composition systems. In the
former the note selection progresses through time, without detailed knowledge of what
is to come. In practice this is informed either by knowing the chord progression or
similar musical structures [7], or using some machine listening. In this paper we are
concerned with composition, so the process takes place out of time, and we can make
decisions in any order.

It should also be noted that these algorithmic systems compose pieces of this music
of this style in either a melodic or a harmonic fashion, and are frequently associated
with computer-based synthesis. We consider these two sub-problems separately.

3.1 Melodic Composition

In melodic generation a common approach is the use of some kind of probabilistic
finite state automaton or an equivalent scheme, which is either designed by hand (some
based on chaotic oscillators or some other stream of numbers) or built via some kind
of learning process. Various Markov models are commonly used, but there have been
applications of n-grams, genetic algorithms and neural nets. What these methods have in
common is that there is no guarantee that melodic fragments generated have acceptable
harmonic derivations. Our approach, described below is fundamentally different in this
respect, as our rules cover both aspects simultaneously.

In contrast to earlier methods, which rely on learning, and which are capable of giv-
ing only local temporal structure, a common criticism of algorithmic melody [8], we do
not rely on learning and hence we can aspire to a more global whole melody approach.
In addition we are no longer subject to the limitations of the kind of process which,
because it only works in time in one direction, is hard to use in a partially automated
fashion; for example operations like “fill in the 4 notes between these sections” is not a
problem for us.

We are also trying to move beyond experiments with random note generation, which
we have all tried and abandoned because the results are too lacking in structure. Pre-
dictably, the alternative of removing the non-determinism at the design stage (or replac-
ing with a probabilistic choice) runs the risk of ‘sounding predictable’! There have been
examples of good or acceptable melodies created like this, but the restriction inherent
in the process means it probably works best in the hands of geniuses.

3.2 Harmonic Composition

A common usage of algorithmic composition is to add harmonic lines to a melody;
that is notes played at the same time as the melody that are in general consonant and
pleasing. This is exemplified in the harmonisation of 4-part chorales, and has been the
subject of a number of essays in rule-based or Markov-chain systems. Perhaps a pin-
nacle of this work is [9] who used early expert system technology to harmonise in

164 G. Boenn et al.

the style of Bach, and was very successful. Subsequently there have been many other
systems, with a range of technologies. There is a review included in [10].

Clearly harmonisation is a good match to constraint programming based systems,
there being accepted rules4. It also has a history from musical education.

But these systems all start with a melody for which at least one valid harmonisation
exists, and the program attempts to find one, which is clearly soluble. This differs sig-
nificantly from our system, as we generate the melody and harmonisation together, the
requirement for harmonisation affecting the melody.

4 Answer Set Programming

Due to space constraints, only a brief overview of answer set semantics and Answer Set
Programming (ASP) is given here. The interested reader is referred to [11] for a more
in-depth coverage of the definitions and ideas presented in this section.

The answer set semantics is a model based semantics for normal logic programs. Fol-
lowing the notation of [11], we refer to the language over which answer set semantics
is defined as AnsProlog. Programs in AnsProlog are sets of rules of the form:

a← b, not c.

where a, b and c are atoms. Intuitively, this means “if b is known and c is not known,
then a is known”. The set of conditions of a rule (on the right hand side of the arrow)
are known as the body, written as B(r), and the atom that is the consequence of the
rule is referenced as the head of the rule, written H(r). The body is split further in two
sets of atoms, B+(r) and B−(r) depending on whether the atom appears positively or
negatively. Rules are satisfied with respect to a set of atoms if either the body is false
or the head is true. Rules with empty bodies are called facts; their head should always
true.

If a program Π contains no negated atoms (∀r ∈ Π � B−(Π) = ∅) its semantics
is unambiguous and can easily be computed as the fixed point of the Tp(the immediate
consequence) operator. Starting from the empty set, we check in each iteration which
rule bodies are true. The heads of those rules are added to the set for the next iteration.
This is a monotonic process, so we obtain a unique fixpoint. This fixpoint is called the
answer set. For example, given the following program:

a← b, c.

b← c.

c← .

d← e.

e← d.

the unique answer set is {a, b, c}, as Tp(∅) = {c}, Tp({c}) = {b, c}, Tp({b, c}) =
{a, b, c} and Tp({a, b, c}) = {a, b, c}. Note that d and e are not included in the model

4 For example see: http://www.wikihow.com/Harmonise-a-Chorale-in-the-
Style-of-Bach

http://www.wikihow.com/Harmonise-a-Chorale-in-the-
Style-of-Bach

Automatic Composition of Melodic and Harmonic Music 165

as their is no way of concluding e without knowing d and vice versa. This is different to
the classical interpretation of this program (via Clark’s completion) which would have
two models, one of which would contain d and e.

The natural mechanism for computing negation in logic programs in negation as
failure, which tends to be characterised as epistemic negation (“we do not known this
is true”), rather than classical negation (“we know that this is not true”). This corre-
spondence is motivated by the intuition that we should only claim to know things that
can be proven; thus anything that can not be proven is not known. To extend the se-
mantics to support this type of negation, the Gelfond-Lifschitz reduct is used. This takes
a set of proposed atoms and gives a reduced, positive program by removing any rule
which depends on the negation of any atom in the set and dropping all other negative
dependencies.

Definition 1. Given an AnsProlog program Π and a set of atoms A, the Gelfond-
Lifschitz transform of Π with respect to A is the following set of rules:

ΠA = {H(r) ← B+(r)|r ∈ Π,B−(r) ∩A = ∅} (1)

This allows us to define the concept of answer sets. Intuitively, these are sets of possi-
ble beliefs about the world which are consistent with all of the rules and have acyclic
support for every atom that is known, and thus in the set.

Definition 2. Given an AnsProlog program Π , A is an answer set of Π ⇐⇒ A is
the unique answer set of ΠA.

For example, the following program has two answer sets:

a← not b.
b← not a.
c← not d.
d← b.

d← e, not a.
e← d, not a.

{a, c} and {b, c, d, e}. Computing the reduct with respect to {a, c} gives:

a← .

c← .

d← b.

d← e.

e← d.

which results in T∞
p (∅) = {a, c}.

A given program will have zero or more answer sets and computing an answer set is
NP complete.

166 G. Boenn et al.

When used as a knowledge representation language,AnsProlog is enhanced to con-
tain constraints (e.g. : −b, not c) and choice rules (e.g. {a, b, c} : −b, not c). The former
are rules with an empty head, stating that a valid answer set should not make the body
true. The latter is a short hand notation for expression that a certain number of atoms
need to be true under certain circumstances. These are syntactic sugar and can be re-
moved with linear, modular transformations (see [11]). Variables and predicated rules
are also used and are handled, at the theoretical level and in most implementations, by
instantiation (referred to as grounding).

ASP is a programming paradigm in which a problem is represented as anAnsProlog
program in such a way that the answer sets correspond to solutions. A reasoning en-
gine is then used to produce the answer sets of the program. Typically these are com-
posed of two components, a grounder which removes the variables from the program
by instantiation and an answer set solver which compute answer sets of the proposi-
tional program. These answer sets are then interpreted to give solutions of the original
problem. GRINGO[12] and LPARSE[13] are the grounders most commonly used and
CLASP[14], SMODELS[15], CMODELS[16] and DLV[17] represent the state of the art of
solver development.

ASP has been used to tackle a variety of problems, including: planning and diagnosis
[18,19,20], modelling and rescheduling of the propulsion system of the NASA Space
Shuttle [20], multi-agent systems [21,22,23], Semantic Web and web-related technolo-
gies [24,25], superoptimisation [26], reasoning about biological networks [27], voting
theory [28] and investigating the evolution of language [29].

5 The ANTON System

What we are seeking to do, which is a new application in both music and computing,
is to apply ASP techniques to compositional rules to produce a system which can be
applied more widely and freely than has previously been possible. ASP is used to create
a description of the rules that govern the melodic and harmonic properties of correct
piece of music. The ASP program works as a model for music composition that can be
used to assist the composer by suggesting, completing and verifying short pieces.

Rather than create a procedural or probabilistic algorithm for producing music, AN-
TON takes the approach of representing the rules of what constitutes a valid piece
and then searching for pieces that meet this specification. The rules of composition are
modelled so that the AnsProlog program defines the requirements for a piece to be
valid, and thus every answer set corresponds to a valid piece. In generating a new piece,
the composition system simply has to generate an (arbitrary) answer set. Rather than
the traditional problem/solution mapping of answer set programming, this is using an
AnsProlog program to create a ‘random’ example of a complex, structured object.

Figure 1 presents a simplified fragment of the AnsProlog program used in ANTON.
The model is defined over a number of time steps, given by the variable T. The key
proposition is chosenNote(P,T,N) which represents the concept “At time T, part
P plays note N”. To encode the options for melodic progress (“the tune either steps
up or down one note in the key, or it leaps more than one note”), choice rules are used.

Automatic Composition of Melodic and Harmonic Music 167

% At every time step, every part either steps to the next note in the key
% or leaps to a further note in the key
1 { stepUp(P,T), stepDown(P,T), leapUp(P,T), leapDown(P,T) } 1 :- part(P), time(T).

% A leap can only be over a consonant interval (3,4,5,7 or 12 semitones)
1 { leapBy(P,T,I) : consonantInterval(I) } 1 :- leapUp(P,T).

% When a part leaps up by I, the note at time T+1 is I steps higher
% than the current note
choosenNote(P,T+1,N+I) :- choosenNote(P,T,N), leapBy(P,T,I).

% Every note must be in the chosen mode (major, minor, etc.)
:- choosenNote(P,T,N), mode(M), not inMode(N,M).

% The interval between parts must not be dissonant (non consonant)
:- choosenNote(P1,T,N1), choosenNote(P2,T,N2),
interval(N1,N2,C), not consonantInterval(C).

Fig. 1. A simplified ANTON fragment

To encode the melodic limits on the pattern of notes and the harmonic limits on which
combinations of notes may be played at once, constraints are included.

To allow for verification and diagnosis, each rule is given an error message:

% No tri-tones
% No note can be within two notes of a tritone (a note +/- 6 semitones)
#const err tt="Tri-tone".
reason(err tt).
error(P,T,err tt) :- choosenNote(P,T,N1), choosenNote(P,T+2,N1+6).
error(P,T,err tt) :- choosenNote(P,T,N1), choosenNote(P,T+2,N1-6).

Depending on how you want to use the system, composition or diagnosis, you will
either be interested in those pieces that do not results into errors or in an answer set
that mentions the error messages. For the former we simply specify the constraint :-
error(P,T,R). For the latter we include the rules: errorFound:-error(P,T,R).
and :- not errorFound..

By adding constraints on which notes can be included, it is possible to specify part
or all of a melody, harmony or complete piece. This allows ANTON to be used for a
number of other tasks beyond automatic composition. By fixing the melody it is possible
to use it as an automatic harmonisation tool. By fixing part of a piece, it can be used as
computer aided composition tool. By fixing a complete piece, it is possible to check its
conformance to the rules, for marking student compositions or harmonisations.

The complete system consists of three major phases; building the program, running
the ASP program and interpreting the results. As a simple example suppose we wish to
create a 4 bar piece in E major one would write

programBuilder.pl --task=compose --mode=major --time=16 > program

which builds the ASP program, giving the length and mode. Then

lparse -W all < program | ./shuffle.pl 6298 | smodels 1 > tunes

168 G. Boenn et al.

keyMode(lydian).
choosenNote(1,1,25).
choosenNote(1,2,24).
choosenNote(1,8,19).
choosenNote(1,9,20).
choosenNote(1,10,24).
choosenNote(1,14,29).
choosenNote(1,15,27).
choosenNote(1,16,25).
#const t=16.
configuration(solo).
part(1).

Fig. 2. musing.lp: An example of a partial piece

runs the ASP phase and generates a representation of the piece. We provide a number
of output formats, one of which is a CSOUND [30] program with a suitable selection of
sounds.

$ parse.pl --fundamental=e --output=csound < tunes > tunes.csd

generates the Csound input from the generic format, and then

$ csound tunes.csd -o dac

plays the melody. We provide in addition to Csound, output in text, ASP facts or the
Lilypond score language, with MIDI under development. Naturally we provide scripts
for all main ways of using the system.

Alternatively we could request the system to complete part of a piece. In order to do
so, we provide the system with a set of ASP facts expressing the keyMode, the notes
which are already fixed, the number of notes in your piece, the configuration and the
number of parts. Figure 2 contains an example of such file. The format is the same as
the one returned from the system except that all the notes in the piece will have been
assigned.

We then run the system just as before with the exception of adding --piece=musing.lp
when we run programBuilder.pl. The system will then return all possible valid composi-
tion that satisfy the criteria set out in the partial piece.

The AnsProlog programs used in ANTON contains just 191 lines (not including
comments and empty lines) and encodes 28 melodic and harmonic rules. Once instan-
tiated, the generated programs range from 3,500 atoms and 13,400 rules (a solo piece
with 8 notes) to 11,000 atoms and 1,350,000 rules (a 16 note duet). Scripts are provided
to convert the answer sets generated into output for the CSOUND synthesis system and
the LILYPOND notation tool. The system is licensed under the GPL and is available,
along with example pieces, from http://www.cs.bath.ac.uk/∼mjb/ . Fig-
ure 3 contains an extract from a series of simple duets produced by the system.

It should be noted that the 500 lines of code here contrast with the 8000 lines in
Strasheela[4] and 88000 in Bol[31]. For this reason we claim that our representation of
the musical problem is easily read and understood.

http://www.cs.bath.ac.uk/~mjb/

Automatic Composition of Melodic and Harmonic Music 169

6 Evaluation of ANTON

6.1 Practical Use

To assess the practicality of using answer set programming to create a composition
system a number of tests were performed. Table 1 contains the times taken by a number
of answer set solvers (SMODELS [15], SMODELS-IE [32], SMODELSCC [33], CMODELS

[16] and CLASP [14]) in composing a single piece of a given length. Likewise Table 2
contains the times taken to compose a two part piece of a given length. LPARSE [13]
was used to ground the programs and its run time, typically around 30-60 seconds, is
omitted from the results.

All times where recorded using a 2.4GHz AMD Athlon X2 4600+ processor, running
a 64 bit version of OpenSuSE 10.3. All solvers were built in 32 bit mode. Each run was
limited to 20 minutes of CPU time and 2Gb of RAM. The AnsProlog programs used
are available from http://www.cs.bath.ac.uk/∼mjb/ .

These results show that the system, when using the more powerful solvers, is fast
enough to be used as a component in an interactive composition tool. Further work
would be needed to support real time generation of music. It is also interesting to note
that the only solvers able to generate longer sequences using two parts all implement
clause learning strategies, suggesting that the problem is particularly susceptible to this
kind of technique.

Table 1. Time taken (in seconds) for a number of solvers generating a solo piece

smodels 2.32 smodels-ie 1.0.0 smodelscc 1.08 cmodels 3.75 clasp 1.0.5
Length Default Restarts Default Restarts No lookahead w/ zchaff w/ MiniSAT Default

4 1.02 1.03 0.09 0.09 1.17 0.33 0.39 0.22
6 2.43 2.43 0.38 0.38 2.58 0.64 0.85 0.46
8 5.16 5.16 1.03 1.04 4.94 1.06 1.62 1.01

10 12.25 11.72 2.58 2.59 8.55 1.54 2.63 1.33
12 28.25 46.13 8.08 15.14 11.36 2.42 4.04 2.27
14 40.62 140.00 10.50 43.54 18.78 3.14 6.05 3.48
16 101.05 207.25 29.40 69.53 27.94 4.01 9.40 4.62

Table 2. Time taken (in seconds) for a number of solvers generating a duet

smodels 2.32 smodels-ie 1.0.0 smodelscc 1.08 cmodels 3.75 clasp 1.0.5
Length Default Restarts Default Restarts No lookahead w/ zchaff w/ MiniSAT Default

4 3.77 3.77 0.31 0.32 4.08 1.18 1.26 0.77
6 10.36 11.24 1.89 1.89 13.90 2.17 2.81 1.60
8 54.64 77.10 14.71 21.84 26.07 3.88 5.93 3.73

10 Time out Time out Time out 500.26 78.72 9.51 11.12 9.34
12 Time out Time out Time out Time out 103.81 14.50 18.14 16.84
14 Time out Time out Time out Time out 253.92 32.41 32.34 25.59
16 Time out Time out Time out Time out 452.38 82.64 49.29 29.63

http://www.cs.bath.ac.uk/~mjb/

170 G. Boenn et al.

Fig. 3. Part of a set of pieces composed by the system

6.2 Music Quality

The other way to evaluate the system is to judge the music it produces. This is less
certain process, involving personal values. However we feel that the music is acceptable,
at least of the quality of a student of composition, and at times capable of moments of
excitement. The first composition, part of which is shown in Figure 3, consisting of
twenty short melodies5 shows promise with real musical moments, but the only real
evaluation is for the reader to listen; the web site provides the sounds.

6.3 ASP as the Knowledge Representation Language

In constructing ANTON a number of advantages of using answer set programming have
become clear; as have a number of limitations.

Firstly, AnsProlog is very fast to write and very compact. As well as the obvious
benefits, this means it is possible to develop the system at the same time as undertaking
knowledge capture and to prototype features in the light of the advice of domain experts.
Part of the reason why it is so fast to use is that rules are fully declarative. Programming
thus focuses on expressing the concepts that are being modelled rather than having to
worry about which order to put things in - such as which rules should come first, which
concepts have higher priority, which choices should be made first. This also makes
incremental development easy as new constraints can be added one at a time, without
having to consider how they affect the search strategy.

5 We call this ANTON’s Opus 1: Twenty Short Pieces.

Automatic Composition of Melodic and Harmonic Music 171

Being able to add rules incrementally during development turns out to be extremely
useful from a software engineering view point. During the development of ANTON, we
experimented with a number of different development methodologies. The most effec-
tive approach was found to be first writing a script that translates answer sets to human
readable score or output for a synthesiser. Next the choice rules were added to the
AnsProlog program to create all possible pieces, valid or not. Finally the constraints
were incrementally added to restrict the output to only valid sequences. By building up
a library of valid pieces it was possible to perform regression testing at each step and
thus isolate bugs as soon as they were introduced.

Using answer set programming was not without issue. One persistent problem was
the lack of mature development support tools, particularly debugging tools. SPOCK
[34] was used but as its focus is on computing the reasons behind the error, rather than
the interface issues of explaining these reasons to the user, it was normally quicker
to find bugs by looking at the last changes made and which regression tests failed.
Generally, the bugs that where encountered where due to subtle mismatches between
the intended meaning of a rule and the declarative reading of the rule used. For example
the predicate stepUp(P,T) is used to represent the proposition “At time T, part P
steps up to give the note at time T+1”, however, it could easily be misinterpreted as
“At time T-1, part P steps up to give the note at time T”. Which of these is used is not
important, as long as the same declarative reading is used for all rules. With the first
“meaning” selected for ANTON, the rule:

chosenNote(P,T,N+S) :- chosenNote(P,T-1,N), stepUp(P,T),
stepBy(P,T,S).

would not encode the intended progression of notes. One possible way of supporting a
programmer in avoiding these subtle errors would be to develop a system that translated
rules into natural language, given the declarative reading of the propositions involved.
It should then be relatively straightforward to check that the rule encoded what was
intended.

7 Conclusions and Directions for Future Work

We have built a sophisticated composition system with adequate run time performance.
Using knowledge representation techniques it is possible to create an automatic

composition system that is significantly smaller, simpler and more expressive than the
current state of the art. The choice of using a pure declarative language, AnsProlog,
allows the system to be flexible enough to be used as a platform for research into the
rules of composition.

There are a number of possible lines of development for the ANTON system, both
in terms of the musical rules it contains and the supporting system.

7.1 Music Research

The system provides a platform for a novel approach to music research. We can learn
aspects of the rules, finding which are inconsistent or redundant, and can determine the

172 G. Boenn et al.

importance of rules. We hope that this will throw light on the compositional process.
We can see if there are any “unspoken” rules of composition, and also the related,
finding unknown rules of composition. One particularly interesting possibility is using
the system to generate a large set of pieces, acquiring human evaluations of the ‘quality’
of each and then using techniques such as inductive logic programming to infer rules
for composing ‘good’ pieces.

The work so far has been limited to a particular style of Western music. However
the framework should be applicable to other styles, especially formal ones. The rules
of Hindustani classical music are taught to pupils in a traditional, oral, fashion, but we
see no reason why this framework cannot capture these. Recent work [35] indicates that
there are indeed universal melodic rules, and the combination of the ASP methodology
with this musical insight is an intriguing one.

In real pieces some of the rules are sometimes broken. This could be simulated by
one of a number of extensions to answer set semantics (preferences [36], consistency
restoring rules, defensible rules, etc.). How to systematise the knowledge of when it is
acceptable to break the rules and in which contexts it is ‘better’ to break them is an open
problem.

One deliberate simplification of the current system is the lack of rhythm as the style
of composition we are implementing traditionally contain few explicit restrictions. So
all parts play all the time, with notes of equal duration. While usual in some styles, this
obviates a whole range of interesting variety. We have not yet considered rhythm, but
one of us is already researching rhythmic structures and performance gesture [37], so
in the longer term this may be incorporated.

7.2 Systems Development

The current system can write short melodies effectively and efficiently. Development
work is still needed to take this to entire pieces; we can start from these melodic
fragments but a longer piece needs a variety of different harmonisations for the same
melody, and related melodies with the same harmonic structure and a number of similar
techniques. We have not solved the difficult global structure problem but it does create
a starting point on which we can build a system that is hierarchical over time scales;
we have a mechanism for building syntactically correct sentences, but these need to be
built into paragraph and chapters, as it were.

The system performance currently seems to suggest that a real-time composition
system is possible, which would open up the possibility for performance and improvi-
sation. Profiling of the current system has indicated that some conceptually simple tasks
like parsing are taking a disproportionate fraction of the run-time, and some engineering
would assist in removing these problems. Clearly this is one of a number of system-like
issues that need to be addressed. Also, the availability of a parallel answer set solver
that implements clause learning would help in building this type of application.

An obvious extension to the composition of duets is to expand this to three and four
parts, by adding inner voices. It should perhaps be noted that inner voices obey different
rules, and these need to be implemented.

Automatic Composition of Melodic and Harmonic Music 173

References

1. Chuang, J.: Mozart’s Musikalisches Würfelspiel (1995),
http://sunsite.univie.ac.at/Mozart/dice/

2. Xenakis, I.: Formalized Music. Bloomington Press, Stuyvesant (1992)
3. Cope, D.: A Musical Learning Algorithm. Computer Music Journal 28(3), 12–27 (Fall, 2006)
4. Anders, T.: Composing Music by Composing Rules: Design and Usage of a Generic Music

Constraint System. Ph.D thesis, Queen’s University, Belfast, Department of Music (2007)
5. Fux, J.: The Study of Counterpoint from Johann Joseph Fux’s Gradus ad Parnassum. W.W.

Norton (1965, orig 1725)
6. Thakar, M.: Counterpoint. New Haven (1990)
7. Brothwell, A., Ffitch, J.: An Automatic Blues Band. In: Barknecht, F., Rumori, M. (eds.) 6th

International Linux Audio Conference, Kunsthochschule für Medien Köln, LAC 2008, pp.
12–17 (March 2008)

8. Leach, J.L.: Algorithmic Composition and Musical Form. Ph.D thesis, University of Bath,
School of Mathematical Sciences (1999)

9. Ebcioğlu, K.: An Expert System for Harmonization of Chorales in the Style of J.S. Bach.
Ph.D thesis, State University of New York, Buffalo, Department of Computer Science (1986)

10. Rohrmeier, M.: Towards modelling harmonic movement in music: Analysing properties and
dynamic aspects of pc set sequences in Bach’s chorales. Technical Report DCRR-004, Dar-
win College, University of Cambridge (2006)

11. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving, 1st edn.
Cambridge University Press, Cambridge (2003)

12. Gebser, M., Schaub, T., Thiele, S.: GrinGo: A New Grounder for Answer Set Programming.
In: Baral, C., Brewka, G., Schlipf, J.S. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 266–271.
Springer, Heidelberg (2007)

13. Syrjänen, T.: Lparse 1.0 User’s Manual. Helsinki University of Technology (2000)
14. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set Solving.

In: Proceeding of IJCAI 2007, pp. 386–392 (2007)
15. Syrjänen, T., Niemelä, I.: The Smodels System. In: Codognet, P. (ed.) ICLP 2001. LNCS,

vol. 2237. Springer, Heidelberg (2001)
16. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-tight

Programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 346–350.
Springer, Heidelberg (2003)

17. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: The KR System dlv: Progress
Report, Comparisons and Benchmarks. In: Cohn, A.G., Schubert, L., Shapiro, S.C. (eds.)
KR 1998: Principles of Knowledge Representation and Reasoning, pp. 406–417. Morgan
Kaufmann, San Francisco (1998)

18. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: The DLVK Planning System. In:
Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp.
541–544. Springer, Heidelberg (2002)

19. Lifschitz, V.: Answer set programming and plan generation. J. of Artificial Intelli-
gence 138(1-2), 39–54 (2002)

20. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: A A-Prolog Decision
Support System for the Space Shuttle. In: Answer Set Programming: Towards Efficient and
Scalable Knowledge Represenation and Reasoning. American Association for Artificial In-
telligence Press, Stanford (March 2001)

21. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Logic-based artificial
intelligence, pp. 257–279. Kluwer Academic Publishers, Dordrecht (2000)

http://sunsite.univie.ac.at/Mozart/dice/

174 G. Boenn et al.

22. Buccafurri, F., Caminiti, G.: A Social Semantics for Multi-agent Systems. In: Baral, C.,
Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp. 317–329.
Springer, Heidelberg (2005)

23. Cliffe, O., De Vos, M., Padget, J.: Specifying and Analysing Agent-based Social Institutions
using Answer Set Programming. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G.,
Matson, E., Ossowski, S., Sichman, J., Vazquez-Salceda, J. (eds.) ANIREM 2005 and OOOP
2005. LNCS, vol. 3913, pp. 99–113. Springer, Heidelberg (2006)

24. Polleres, A.: Semantic Web Languages and Semantic Web Services as Application Areas
for Answer Set Programming. In: Brewka, G., Niemelä, I., Schaub, T., Truszczyński, M.
(eds.) Nonmonotonic Reasoning, Answer Set Programming and Constraints, Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.
Dagstuhl Seminar Proceedings, vol. 05171 (2005)

25. Ruffolo, M., Leone, N., Manna, M., Saccà, D., Zavatto, A.: Exploiting ASP for Semantic
Information Extraction. In: De Vos, M., Provetti, A. (eds.) Answer Set Programming. CEUR
Workshop Proceedings, vol. 142, CEUR-WS.org (2005)

26. Brain, M., Crick, T., De Vos, M., Fitch, J.: TOAST: Applying Answer Set Programming to
Superoptimisation. In: International Conference on Logic Programming. LNCS. Springer,
Heidelberg (August 2006)

27. Grell, S., Schaub, T., Selbig, J.: Modelling biological networks by action languages via an-
swer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079,
pp. 285–299. Springer, Heidelberg (2006)

28. Konczak, K.: Voting Theory in Answer Set Programming. In: Fink, M., Tompits, H., Woltran,
S. (eds.) Proceedings of the Twentieth Workshop on Logic Programming (WLP 2006). Num-
ber INFSYS RR-1843-06-02, Technical Report Series, pp. 45–53. Technische Universität
Wien (2006)

29. Erdem, E., Lifschitz, V., Nakhleh, L., Ringe, D.: Reconstructing the Evolutionary History of
Indo-European Languages Using Answer Set Programming. In: Dahl, V., Wadler, P. (eds.)
PADL 2003. LNCS, vol. 2562, pp. 160–176. Springer, Heidelberg (2002)

30. Boulanger, R. (ed.): The Csound Book. MIT Press, Cambridge (2000)
31. Bel, B.: Migrating Musical Concepts: An Overview of the Bol Processor. Computer Music

Journal 22(2), 56–64 (1998)
32. Brain, M., De Vos, M., Satoh, K.: Smodels-ie: Improving the Cache Utilisation of Smod-

els. In: Costantini, S., Watson, R. (eds.) Proceedings of the 4th Workshop on Answer Set
Programming, pp. 309–314 (2007)

33. Ward, J., Schlipf, S.: Answer set programming with clause learning. In: Lifschitz, V.,
Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 302–313. Springer, Heidelberg (2003)

34. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: “That is illogical cap-
tain!” – The Debugging Support Tool spock for Answer-Set Programs: System Description.
In: De Vos, M., Schaub, T. (eds.) Proceedings of the Workshop on Software Engineering for
Answer Set Programming (SEA 2007), pp. 71–85 (2007)

35. Endrich, A.: Building Musical Relationships. In: Preparation (manuscript, 2008)
36. Brain, M., De Vos, M.: Implementing OCLP as a Front End for Answer Set Solvers: From

Theory to Practice. In: Proceedings of Answer Set Programming: Advances in Theory and
Implementation (ASP 2003), Ceur-WS (September 2003)

37. Boenn, G.: Composing Rhythms Based Upon Farey Sequences. In: Digital Music Research
Network Conference (July 2007)

On the Efficient Execution of ProbLog Programs

Angelika Kimmig1, Vı́tor Santos Costa2, Ricardo Rocha2, Bart Demoen1,
and Luc De Raedt1

1 Departement Computerwetenschappen, K.U. Leuven
Celestijnenlaan 200A - bus 2402, B-3001 Heverlee, Belgium

{Angelika.Kimmig, Bart.Demoen, Luc.DeRaedt}@cs.kuleuven.be
2 CRACS & Faculdade de Ciências, Universidade do Porto, Portugal

R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal
{vsc,ricroc}@dcc.fc.up.pt

Abstract. The past few years have seen a surge of interest in the field
of probabilistic logic learning or statistical relational learning. In this
endeavor, many probabilistic logics have been developed. ProbLog is a
recent probabilistic extension of Prolog motivated by the mining of large
biological networks. In ProbLog, facts can be labeled with mutually inde-
pendent probabilities that they belong to a randomly sampled program.
Different kinds of queries can be posed to ProbLog programs. We intro-
duce algorithms that allow the efficient execution of these queries, discuss
their implementation on top of the YAP-Prolog system, and evaluate
their performance in the context of large networks of biological entities.

1 Introduction

In the past few years, a multitude of different formalisms combining proba-
bilistic reasoning with logics, databases, or logic programming has been devel-
oped. Prominent examples include PHA [1], PRISM [2], SLPs [3], ProbView [4],
CLP(BN) [5], CP-logic [6], Trio [7], probabilistic Datalog (pD) [8], and prob-
abilistic databases [9]. Although these logics have been traditionally studied in
the knowledge representation and database communities, the focus is now often
on a machine learning perspective, which imposes new requirements. First, these
logics must be simple enough to be learnable and at the same time sufficiently ex-
pressive to support interesting probabilistic inferences. Second, because learning
is computationally expensive and requires answering long sequences of possibly
complex queries, inference in such logics must be fast, although inference in even
the simplest probabilistic logics is computationally hard.

In this paper, we study these problems in the context of a simple probabilistic
logic, ProbLog [10], which has been used for learning in the context of large
biological networks where edges are labeled with probabilities. Large and com-
plex networks of biological concepts (genes, proteins, phenotypes, etc.) can be
extracted from public databases, and probabilistic links between concepts can be
obtained by various prediction techniques [11]. ProbLog is essentially an exten-
sion of Prolog where facts are labeled with the probability that they belong to a

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 175–189, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

176 A. Kimmig et al.

randomly sampled program, and these probabilities are mutually independent.
A ProbLog program thus specifies a probability distribution over all its possible
non-probabilistic subprograms. The success probability of a query is defined as
the probability that it succeeds in such a random subprogram. The semantics of
ProbLog is not new: ProbLog programs define a distribution semantics [12]. This
is a well-known semantics for probabilistic logics that has been (re)defined mul-
tiple times in the literature; see for instance the works of [13,1,8,14,9]. However,
even though relying on the same semantics, in order to allow efficient inference,
systems such as PRISM [12] and PHA [1] additionally require all proofs of a
query to be mutually exclusive. Thus, they cannot easily represent the type of
network analysis tasks that motivated ProbLog.

We contribute exact and approximate inference algorithms for ProbLog. We
present algorithms for computing the success and explanation probabilities of
a query, and show how they can be efficiently implemented combining Prolog
inference with Binary Decision Diagrams (BDDs) [15]. In addition to an iterative
deepening algorithm that computes an approximation along the lines of [16], we
further adapt the Monte Carlo approach suggested by [13] and used also by [11] in
the context of biological network inference. These two approximation algorithms
compute an upper and a lower bound on the success probability. Furthermore,
we also contribute an approximation algorithm that computes a lower bound
only using the k-most likely proofs.

The key contribution of this paper is the tight integration of these algo-
rithms in the state-of-the-art implementation of the YAP-Prolog system. This
integration includes several improvements over the initial implementation used
in [10], which enable the use of ProbLog to effectively query Sevon’s Biomine
network [11] containing about 1,000,000 nodes and 6,000,000 edges, as will be
shown in the experiments.

This paper is organised as follows. After introducing ProbLog and its se-
mantics in Section 2, we present several algorithms for exact and approximate
inference in Section 3. Section 4 then discusses how these algorithms are imple-
mented in YAP-Prolog, and Section 5 reports on experiments that validate the
approach. Finally, Section 6 concludes and touches upon related work.

2 ProbLog

A ProbLog program consists of a set of labeled facts pi :: ci together with a set
of definite clauses. Each ground instance (that is, each instance not containing
variables) of such a fact ci is true with probability pi, where all probabilities
are assumed mutually independent. The definite clauses allow to add arbitrary
background knowledge (BK).

Figure 1(a) shows a small probabilistic graph that we shall use as running
example in the text. It can be encoded in ProbLog as follows:

0.8 :: edge(a, c). 0.7 :: edge(a, b). 0.8 :: edge(c, e).
0.6 :: edge(b, c). 0.9 :: edge(c, d). 0.5 :: edge(e, d).

On the Efficient Execution of ProbLog Programs 177

a b
0.7

c

0.8 0.6

d

0.9

e

0.8

0.5

(a)

cd

ce

1

ed

0

(b)

Fig. 1. (a) Example of a probabilistic graph: edge labels indicate the probability that
the edge is part of the graph. (b) Binary Decision Diagram encoding the DNF formula
cd ∨ (ce ∧ ed), corresponding to the two proofs of query path(c,d) in the graph. An
internal node labeled xy represents the Boolean variable for the edge between x and y,
solid/dashed edges correspond to values true/false.

Such a probabilistic graph can be used to sample subgraphs by tossing a coin
for each edge. A ProbLog program T = {p1 :: c1, · · · , pn :: cn} ∪ BK defines a
probability distribution over subprograms L ⊆ LT = {c1, · · · , cn}:

P (L|T) =
∏

ci∈L
pi

∏
ci∈LT \L

(1 − pi).

We extend our example with the following background knowledge:

path(X, Y) : − edge(X, Y).
path(X, Y) : − edge(X, Z), path(Z, Y).

We can then ask for the probability that there exists a path between two nodes,
say c and d, in our probabilistic graph, that is, we query for the probability that
a randomly sampled subgraph contains the edge from c to d, or the path from
c to d via e (or both of these). Formally, the success probability Ps(q|T) of a
query q in a ProbLog program T is defined as

Ps(q|T) =
∑

L⊆LT

P (q|L) · P (L|T) , (1)

where P (q|L) = 1 if there exists a θ such that L ∪ BK |= qθ, and P (q|L) = 0
otherwise. In other words, the success probability of query q is the probability
that the query q is provable in a randomly sampled logic program.

As a consequence, the probability of a specific proof, also called explanation,
is that of sampling a logic program L that contains all the facts needed in
that explanation or proof. The explanation probability Px(q|T) is defined as the
probability of the most likely explanation or proof of the query q

Px(q|T) = maxe∈E(q) P (e|T) = maxe∈E(q)

∏
ci∈e

pi, (2)

where E(q) is the set of all explanations for query q [17].

178 A. Kimmig et al.

?- path(c,d).

:- edge(c,d). :- edge(c,A),path(A,d).

cd

:- path(d,d).

cd ce

:- edge(d,d). :- edge(d,B),path(B,d).

:- path(e,d).

:- edge(e,d).

ed

:- edge(e,C),path(C,d).

:- path(d,d).

:- edge(d,d). :- edge(d,D),path(D,d).

ed

Fig. 2. SLD-tree for query path(c, d)

In our example, the set of all explanations for path(c, d) contains the edge from
c to d (with probability 0.9) as well as the path consisting of the edges from c to
e and from e to d (with probability 0.8 ·0.5 = 0.4). Thus, Px(path(c, d)|T) = 0.9.

The ProbLog semantics is essentially a distribution semantics [12]. Sato has
rigorously shown that this class of programs defines a joint probability distrib-
ution over the set of possible least Herbrand models of the program, that is, of
the background knowledge BK together with a subprogram L ⊆ LT ; for further
details we refer to [12]. The distribution semantics has been used widely in the
literature; see e.g. [13,1,8,14,9].

3 Inference in ProbLog

This section discusses algorithms for computing exactly and approximately the
success and explanation probabilities of ProbLog queries. It additionaly con-
tributes a new algorithm for Monte Carlo approximation of success probabilities.

3.1 Exact Inference

Calculating the success probability of a query using Equation (1) directly is
infeasible for all but the tiniest programs; [10] presents a method involving two
steps. The first step computes the proofs of the query q in the logical part of the
theory T , that is, in BK ∪ LT . This step is akin to that performed for pD by
[8]. The result will be a DNF formula. The second component employs Binary
Decision Diagrams [15] to compute the probability of this formula.

Following Prolog, we employ SLD-resolution to obtain all different proofs. As
an example, the SLD-tree for the query ?- path(c, d). is depicted in Figure 2. Each
successful proof in the SLD-tree uses a set of facts {pi1 :: ci1 , · · · , pik

:: cik
} ⊆ T .

These facts are necessary for the proof, and the proof is independent of other
probabilistic facts in T .

Let us now introduce a Boolean random variable bi for each clause pi :: ci ∈ T ,
indicating whether ci is in logic program, that is, bi has probability pi of being

On the Efficient Execution of ProbLog Programs 179

true. The probability of a particular proof involving clauses {pi1 :: ci1 , · · · , pik
::

cik
} ⊆ T is then the probability of the conjunctive formula bi1 ∧ · · · ∧ bik

. Since
a goal can have multiple proofs, the success probability of query q equals the
probability that the disjunction of these conjunctions is true. This yields

Ps(q|T) = P

⎛⎝ ∨
e∈E(q)

∧
bi∈cl(e)

bi

⎞⎠ (3)

where E(q) denotes the set of proofs or explanations of the goal q and cl(e)
denotes the set of Boolean variables representing ground facts used in the expla-
nation e. Thus, the problem of computing the success probability of a ProbLog
query can be reduced to that of computing the probability of a DNF formula.
The formula corresponding to our example query path(c, d) is cd ∨ (ce ∧ ed),
where we use xy as Boolean variable representing edge(x, y).

Computing the probability of DNF formulae is an NP-hard problem, as the
different conjunctions need not be independent. Indeed, even under the assump-
tion of independent variables used in ProbLog, the different conjunctions are not
mutually exclusive and may overlap. Various algorithms have been developed to
tackle this problem, which is known as the disjoint-sum-problem. The pD-engine
HySpirit [8] uses the inclusion-exclusion principle, which is reported to scale to
about ten proofs. For ICL, which extends PHA by allowing non-disjoint proofs,
[14] proposes a symbolic disjoining algorithm, but does not report scalability
results. Our implementation employs Binary Decision Diagrams (BDDs) [15],
an efficient graphical representation of a Boolean function over a set of variables
which scales to tens of thousands of proofs; see Section 4 for more details.

Calculating the explanation probability Px, however, can easily be realized
using a best-first search, guided by the probability of the current derivation,
through standard logic programming techniques based on the SLD-tree [18].

3.2 Approximative Inference

As the size of the DNF formula grows with the number of proofs, its evaluation
can become quite expensive, and finally infeasible. For instance, when searching
for paths in graphs or networks, even in small networks with a few dozen edges
there are easily O(106) possible paths between two nodes. ProbLog therefore
includes several approximation methods.

Bounded Approximation. The first approximation algorithm, similar to the one
proposed in [10], uses DNF formulae to obtain both an upper and a lower bound
on the probability of a query. It is related to work by [16] in the context of
PHA, but adapted towards ProbLog. The algorithm uses an incomplete SLD-
tree, i.e. an SLD-tree where branches are only extended up to a given probability
threshold1, to obtain DNF formulae for the two bounds. The lower bound for-
mula d1 represents all proofs with a probability above the current threshold.
1 Using a probability threshold instead of the depth bound of [10] has been found to

speed up convergence, as upper bounds are tighter on initial levels.

180 A. Kimmig et al.

The upper bound formula d2 additionally includes all derivations that have been
stopped due to reaching the threshold, as these still may succeed. The algo-
rithm proceeds in an iterative-deepening manner, starting with a high probabil-
ity threshold and successively multiplying this threshold with a fixed shrinking
factor until the difference between the current bounds becomes sufficiently small.
As d1 |= d |= d2, where d is the formula corresponding to the full SLD-tree of the
query, the success probability is guaranteed to lie in the interval [P (d1), P (d2)].

As an illustration, consider a probability bound of 0.9 for the SLD-tree in
Figure 2. In this case, d1 encodes the left success path while d2 additionally
encodes the path up to path(e, d), i.e. d1 = cd and d2 = cd ∨ ce, whereas the
formula for the full SLD-tree is d = cd ∨ (ce ∧ ed).

K-Best. Using a fixed number of proofs to approximate the probability allows
better control of the overall complexity, which is crucial if large numbers of
queries have to be evaluated e.g. in the context of parameter learning. [19] there-
fore introduce the k-probability Pk(q|T), which approximates the success proba-
bility by using the k best (that is, most likely) explanations instead of all proofs
when building the DNF formula used in Equation (3):

Pk(q|T) = P

⎛⎝ ∨
e∈Ek(q)

∧
bi∈cl(e)

bi

⎞⎠ (4)

where Ek(q) = {e ∈ E(q)|Px(e) ≥ Px(ek)} with ek the kth element of E(q)
sorted by non-increasing probability. Setting k = ∞ and k = 1 leads to the
success and the explanation probability respectively. Finding the k best proofs
can be realized using a simple branch-and-bound approach (cf. also [1]).

To illustrate k-probability, we consider again our example graph, but this time
with query path(a, d). This query has four proofs, represented by the conjunctions
ac∧cd, ab∧bc∧cd, ac∧ce∧ed and ab∧bc∧ce∧ed, with probabilities 0.72, 0.378,
0.32 and 0.168 respectively. As P1 corresponds to the explanation probability
Px, we obtain P1(path(a, d)) = 0.72. For k = 2, overlap between the best two
proofs has to be taken into account: the second proof only adds information if
the first one is absent. As they share edge cd, this means that edge ac has to
be missing, leading to P2(path(a, d)) = P ((ac ∧ cd) ∨ (¬ac ∧ ab ∧ bc ∧ cd)) =
0.72 + (1 − 0.8) · 0.378 = 0.7956. Similarly, we obtain P3(path(a, d)) = 0.8276
and Pk(path(a, d)) = 0.83096 for k ≥ 4.

Monte Carlo. As an alternative approximation technique without BDDs, we
propose a Monte Carlo method. In this algorithm, we repeatedly sample a logic
program from the ProbLog program and check for the existence of some proof
of the query of interest. The fraction of samples where the query is provable is
taken as an estimate of the query probability, and after each m samples the 95%
confidence interval is calculated. Although confidence intervals do not directly
correspond to the exact bounds used in our previous approximation algorithm,
we employ the same stopping criterion, that is, we run the Monte Carlo simula-
tion until the width of the confidence interval is at most δ. Such an algorithm

On the Efficient Execution of ProbLog Programs 181

Array
Library

ProbLog
Library

Trie
Library

BK

Facts

Generic
Library

YAP Engine CUDDQuery

ProbLog Program

Fig. 3. ProbLog Implementation: A ProbLog program (top-left) requires the ProbLog
library which in turn relies on functionality from the tries and array libraries. ProbLog
queries (bottom-left) are sent to the YAP engine, and may require calling the BDD
library CUDD.

(without the use of confidence intervals) was suggested already by Dantsin [13],
although he does not report on an implementation. It was also used in the con-
text of networks (not Prolog programs) by [11].

4 Implementation

This section discusses the main building blocks used to implement ProbLog on
top of the YAP Prolog system. An overview is shown in Figure 3. On the top-
left corner we show a typical ProbLog program, including ProbLog facts and
background knowledge (BK).

The implementation requires ProbLog programs to use the problog mod-
ule. Each program consists of a set of labeled ground facts and of unlabeled
background knowledge, a generic Prolog program. Labeled ground facts are pre-
processed as described below. Notice that the implementation currently only
supports labeled ground facts.

In contrast to standard Prolog queries, where one is interested in answer
substitutions, in ProbLog one is interested in a probability. As discussed before,
two common ProbLog queries are the most likely explanation and its probability,
and the probability of whether a query would have an answer substitution. We
have discussed two very different approaches to the problem:

– In k best and bounded approximation, the engine explicitly reasons about
probabilities of proofs. The challenge is how to compute the probability
of each individual proof, store a large number of proofs, and compute the
probability of sets of proofs.

– In Monte Carlo, the probabilities of facts are used to sample from ProbLog
programs. The challenge is how to compute a sample quickly, in a way that
inference can be as efficient as possible.

ProbLog programs execute from a ProbLog top-level query and proceed as
follows:

182 A. Kimmig et al.

– Initialise a new ProbLog query;
– While probabilistic inference did not converge:

• set environment for new query;
• call Prolog goal;
• instrument every ProbLog call in the current proof: for example, a proof

may be pruned immediately if its probability is lower than some bound;
• process success or exit substitution;

– Call external solver, if required;

Notice that the current ProbLog implementation relies on Prolog’s backtracking
to explore the search space. On the other hand, and in contrast to most other
probabilistic logic implementations, in ProbLog there is no clear separation be-
tween logical and probabilistic inference: in a fashion similar to constraint logic
programming, probabilistic inference can drive logical inference.

Implementing ProbLog poses a number of interesting challenges. First, labeled
facts have to be efficiently compiled to allow mutual calls between the Prolog
BK and the ProbLog engine. Second, for k best and bounded inference, sets
of proofs have to be manipulated and transformed into BDDs. Finally, Monte
Carlo simulation requires representing and manipulating samples. We discuss
these issues next.

Source-to-source transformation. We use the term expansion mechanism to al-
low Prolog calls to labeled facts, and for labeled facts to call the ProbLog engine.
As an example, the program:

0.715 :: edge(′PubMed 2196878′,′ MIM 609065′).
0.659 :: edge(′PubMed 8764571′,′ HGNC 5014′).

would be compiled as:

edge(A, B) : − problog edge(C,A,B,D),
add to proof(C,D).

problog edge(0,′ PubMed 2196878′,′ MIM 609065′,−0.3348).
problog edge(1,′ PubMed 8764571′,′ HGNC 5014′,−0.4166).

Thus, the internal representation of each fact contains an identifier, the original
arguments, and the logarithm of the probability. The add to proof procedure
updates the data structure representing the current path through the search
space and its probability. Compared to the original meta-interpreter based im-
plementation of [10], the main benefit of source-to-source transformation is faster
execution time, which in turn improves scalability.

Tries. Manipulating proofs is critical in ProbLog. We represent each proof as a
list containing the identifier of each different ground probabilistic fact used in
the proof, ordered by first use. When manipulating proofs, the key operation is
often insertion: we would like to add a proof to an existing set of proofs. Some
algorithms, such as exact inference or Monte Carlo, only manipulate complete

On the Efficient Execution of ProbLog Programs 183

proofs. Others, such as bounded approximation, require adding partial deriva-
tions too. The nature of the SLD-tree means that proofs tend to share both a
prefix and a suffix. Partial proofs tend to share prefixes only. This suggests using
tries to maintain the set of proofs. We use the YAP implementation of tries for
this task, based itself on XSB Prolog’s work on tries of terms.
Binary Decision Diagrams. To efficiently compute the probability of a DNF
formula representing a set of proofs, our implementation represents this formula
as a Binary Decision Diagram (BDD) [15]. Given a fixed variable ordering, a
Boolean function f can be represented as a full Boolean decision tree, where each
node on the ith level is labeled with the ith variable and has two children called
low and high. Leaves are labeled by the outcome of f for the variable assignment
corresponding to the path to the leaf, where in each node labeled x, the branch
to the low (high) child is taken if variable x is assigned 0 (1). Starting from
such a tree, one obtains a BDD by merging isomorphic subgraphs and deleting
redundant nodes until no further reduction is possible. A node is redundant if
the subgraphs rooted at its children are isomorphic. Figure 1(b) shows the BDD
for the existence of a path between c and d in our earlier example.

Our implementation uses the C++ interface of the BDD package CUDD2 to
construct and evaluate BDDs. More precisely, the trie representation of the DNF
is translated to C++ code that uses the CUDD primitives for building BDDs.
The program is executed via Prolog’s shell utility, and results are reported via
shared files. We currently work on a tighter integration of BDDs into Prolog.

During the generation of the code, it is crucial to exploit the structure sharing
(prefixes and suffixes) already in the trie representation of a DNF formula, oth-
erwise CUDD computation time becomes extremely long or memory overflows
quickly. Our translation starts by creating the C++ code for each single variable.
Since CUDD builds BDDs by joining smaller BDDs using logical operations, the
trie is traversed bottom-up to successively generate code for all its subtrees. Two
types of operations are used to combine nodes. First, all the children of a node
are combined as a disjunction resulting in a new child node. This child node is
then combined with the parent node as a conjunction. A subtree that occurs
multiple times in the trie is translated only once, and the resulting BDD is used
for all occurrences of that subtree. Because of the optimizations in CUDD, the
resulting BDD can have a very different structure than the trie.

After CUDD has generated the BDD, the probability of a formula is calculated
(also in C++) by traversing the BDD, in each node summing the probability
of the high and low child, weighted by the probability of the node’s variable
being assigned true and false respectively. Intermediate results are cached, and
the algorithm has a time and space complexity linear in the size of the BDD.

Monte Carlo. Monte Carlo execution is quite different from the approaches
discussed before. Instead of combining large numbers of proofs, we now need to
be able to manipulate large numbers of different programs or samples.

Generating complete samples and checking for a proof does not scale to large
databases, even if proofs are cached in a trie to skip inference on a new sample
2 http://vlsi.colorado.edu/∼fabio/CUDD

http://vlsi.colorado.edu/~fabio/CUDD

184 A. Kimmig et al.

by checking first whether a subsample is in the proof cache. In fact, already
representing and generating the whole sample is a challenge for large databases.
Within YAP, the efficient implementation of arrays offers the most compact way
of representing large numbers of nodes. On the other hand, quite often proofs
are local, i.e. we only need to verify whether facts from a small fragment of the
database are in the sample. We take advantage of independence between facts to
generate the sample lazily: we verify whether a fact is in the sample only when
we need it for a proof. Samples are thus represented as a three-valued array: 0
means sampling was not asked yet, 1 means in sample, 2 means not in sample.

5 Experiments

We experiment our implementation of ProbLog in the context of the biolog-
ical network obtained from the Biomine project [11]. We use two subgraphs
extracted around three genes known to be connected to the Alzheimer disease
(HGNC numbers 983, 620 and 582) as well as the full network. The smaller
graphs are obtained querying Biomine for best paths of length 2 (resulting in
graph Small) or all paths of length 3 (resulting in graph Medium) starting at
one of the three genes. Small contains 79 nodes and 144 edges, Medium 5220
nodes and 11532 edges. We use Small for a first comparison of our algorithms
on a small scale network where success probabilities can be calculated exactly.
Scalability is evaluated using both Medium and the entire Biomine network
with roughly 1,000,000 nodes and 6,000,000 edges. In all experiments, we query
for the probability that two of the gene nodes mentioned above are connected,
that is, we use queries such as path(’HGNC 983’,’HGNC 620’,Path). We use
the following definition of an acyclic path in our background knowledge:

path(X, Y, A) : − path(X, Y, [X], A),
path(X, X, A, A).
path(X, Y, A, R) : − X \ == Y, edge(X, Z),absent(Z, A),path(Z, Y, [Z|A], R).

As list operations to check for the absence of a node get expensive for long paths,
we consider an alternative definition for use in Monte Carlo. It provides cheaper
testing by using the internal database of YAP to store nodes on the current path
under key visited:

memopath(X, Y, A) : − eraseall(visited), memopath(X, Y, [X], A).
memopath(X, X, A, A).
memopath(X, Y, A, R) : − X \ == Y, edge(X, Z),recordzifnot(visited, Z,),

memopath(Z, Y, [Z|A], R).

All experiments were performed on Core 2 Duo 3 GHz machines running
Linux. All times reported are in msec and do not include the time to load the
graph into Prolog. The latter takes 32, 192 and 66772 msec for Small, Medium

and Biomine respectively. We report TP , the time spent by ProbLog to search

On the Efficient Execution of ProbLog Programs 185

Table 1. k-probability on Small

path 983− 620 983− 582 620− 582
k Tp TB P Tp TB P Tp TB P

1 16 - 0.07 4 - 0.03 4 - 0.42
2 0 1613 0.08 0 1686 0.05 4 1511 0.66
4 4 1758 0.10 0 1519 0.06 4 1676 0.86
8 0 1590 0.11 0 1643 0.06 4 1778 0.92
16 4 1744 0.11 4 1536 0.06 4 1719 0.92
32 8 1839 0.11 12 1676 0.07 4 1681 0.96
64 24 1891 0.11 20 1665 0.09 12 1590 0.99
128 52 2054 0.11 32 2130 0.10 48 2286 1.00
256 212 2141 0.11 128 2039 0.10 76 1942 1.00
512 436 13731 0.11 209 2280 0.11 300 2245 1.00
1024 1837 3349 0.11 1372 2195 0.11 581 4080 1.00
exact 641 8343 0.11 5629 2716 0.11 496 2288 1.00

for proofs, as well as TB, the time spent to compile and execute BDD programs
(whenever meaningful). We also report the estimated probability P . For approx-
imate inference using bounds, we report exact intervals for P , and also include
the number n of BDDs constructed. We set both the initial threshold and the
shrinking factor to 0.5. We compute k-probability for k = 1, 2, . . . , 1024. Note
that no BDDs are used for k = 1. In the bounding algorithms, we range the er-
ror interval between 10% and 1%. Monte Carlo recalculates confidence intervals
after m = 1000 samples. We also report the number S of samples used.

Small Sized Sample. We first compare our algorithms on Small. Table 1 shows
the results for k-probability and exact inference. Note that nodes 620 and 582
are close to each other, whereas node 983 is farther apart. Therefore, connections
involving the latter are less likely. In this graph, we obtain good approximations
using a small fraction of proofs (the queries have 13136, 155695 and 16048 proofs
respectively). Our results also show a significant increase in running times as
ProbLog explores more paths in the graph, both within the Prolog code and
within the BDD code. The BDD running times can vary widely, we may actually
have large running times for smaller BDDs, depending on BDD structure.

Table 2 gives corresponding results for bounded approximation. The algo-
rithm converges quickly, as few proofs are needed and BDDs remain small. Note
however that exact inference is competitive for this problem size. Moreover, we
observe large speedups compared to the implementation with meta-interpreters
used in [10], where total runtimes to reach δ = 0.01 for these queries were
46234, 206400 and 307966 msec respectively. Table 3 shows the performance of
the Monte Carlo estimator. On Small, Monte Carlo is the fastest approach.
Already within the first 1000 samples a good approximation is obtained.

The experiments on Small thus confirm that the implementation on top of
YAP-Prolog enables efficient probabilistic inference on small sized graphs.

186 A. Kimmig et al.

Table 2. Inference using bounds on Small

path 983− 620 983 − 582 620− 582
δ Tp TB n P Tp TB n P Tp TB n P

0.1 0 5051 3 [0.07,0.12] 0 4994 3 [0.06,0.12] 12 1690 1 [0.99,1.00]
0.05 0 6504 4 [0.07,0.12] 40 10907 6 [0.06,0.11] 12 1751 1 [0.99,1.00]
0.01 8 9897 6 [0.10,0.11] 68 12684 7 [0.10,0.11] 12 1968 1 [0.99,1.00]

Table 3. Monte Carlo Inference on Small

path 983− 620 983 − 582 620− 582
δ S Tp P S Tp P S Tp P

0.1 1000 19 0.10 1000 21 0.10 1000 63 1.00
0.05 1000 19 0.10 1000 23 0.11 1000 59 1.00
0.01 16000 898 0.11 16000 1418 0.11 1000 59 1.00

Medium Sized Sample. For graph Medium with around 11000 edges we impose
a limit of one hour on running times. On this graph, exact inference is no longer
feasible. Table 4 again shows results for the k-probability. Comparing these re-
sults with the corresponding values from Table 1, we observe that the estimated
probability is higher now: this is natural, as the graph has both more nodes and
is more connected, therefore leading to many more possible explanations. This
also explains the increase in running times. Approximate inference using bounds
only reached very loose bounds within the one hour timelimit, e.g. [0.33, 0.90] for
nodes 983 and 620. We found that this is due to the fact that BDDs representing
upper bounds get very complex easily.

The Monte Carlo estimator using the standard definition of path/3 on Medium

did not convergewithin the time limit. A detailed analysis shows that this is caused
by some queries backtracking too heavily. Table 5 therefore reports results using
the memorising version memopath/3. With this improved definition, Monte Carlo
performs well: it obtains a good approximation in a few seconds. Requiring tighter
bounds however can increase runtimes significantly.

Biomine Database. The Biomine Database covers hundreds of thousands of en-
titities and millions of links. On Biomine, we therefore restrict our experiments
to the approximations given by k-probability and Monte Carlo. Given the results
on Medium, we directly use memopath/3 for Monte Carlo. Tables 6 and 7 show
the results on the large network. We observe that on this large graph, the number
of possible paths is tremendous, which implies success probabilities practically
equal to 1. Still, we observe that ProbLog’s branch-and-bound search to find the
best solutions performs reasonably also on this size of network. However, run-
times for obtaining tight confidence intervals with Monte Carlo explode quickly
even with the improved path definition.

Altogether, the experiments confirm that our implementation provides good
approximations of ProbLog probabilities and is able to deal with large graphs.

On the Efficient Execution of ProbLog Programs 187

Table 4. k-probability on Medium

path 983 − 620 983− 582 620− 582
k Tp TB P Tp TB P Tp TB P

1 208 - 0.07 737 - 0.03 45 - 0.42
2 172 1591 0.11 725 1560 0.03 44 1599 0.47
4 200 1681 0.16 757 1738 0.05 60 1464 0.72
8 217 1691 0.25 744 1538 0.06 80 1778 0.92
16 284 1756 0.33 725 1508 0.10 100 1825 0.99
32 628 1855 0.38 753 1570 0.15 144 1578 1.00
64 717 1653 0.41 809 1684 0.23 200 1801 1.00
128 749 1715 0.42 933 1890 0.30 296 1734 1.00
256 849 1600 0.55 1044 1513 0.49 405 1904 1.00
512 2352 1696 0.64 2880 1598 0.53 576 2496 1.00
1024 6208 1849 0.70 5032 1728 0.56 2549 52250 1.00

Table 5. Monte Carlo Inference using memopath/3 on Medium

memo 983− 620 983− 582 620− 582
δ S Tp P S Tp P S Tp P

0.1 1000 1319 0.77 1000 2364 0.76 1000 1878 1.00
0.05 2000 2682 0.76 2000 4766 0.76 1000 1805 1.00
0.01 29000 39687 0.76 29000 70183 0.77 1000 1970 1.00

Table 6. k-probability on Biomine

path 983− 620 983 − 582 620− 582
k Tp TB P Tp TB P Tp TB P

1 5,445 - 0.09 1,248 - 0.11 10,189 - 0.59
2 5,472 1,611 0.12 1,313 1,563 0.17 2,288 1,570 0.63
4 5,989 1,735 0.13 13,729 1,986 0.28 600 1,545 0.65
8 7,016 1,656 0.16 19,885 1,878 0.38 929 1,792 0.66
16 10,012 1,980 0.50 30,338 1,816 0.53 1,557 1,644 0.92
32 14,857 1,872 0.57 35,134 1,657 0.56 2,484 1,922 0.95
64 19,770 1,642 0.80 36,995 1,737 0.65 4,425 1,925 0.95
128 23,165 1,892 0.88 163,242 1,835 0.76 8,472 2,117 0.98
256 35,395 2,149 0.95 292,054 1,463 0.85 16,390 4,935 1.00
512 170,438 3,148 0.98 489,254 15,410 0.88 29,525 7,693 1.00
1024 346,742 609,700 0.99 767,968 97,818 0.93 49,952 102,366 1.00

Table 7. Monte Carlo Inference using memopath/3 on Biomine

memo 983− 620 983− 582 582 − 620
δ S Tp P S Tp P S Tp P

0.1 1000 2,714,781 1.00 1000 4,887,260 0.97 1000 4,709,921 0.99
0.05 1000 2,807,927 1.00 1000 4,769,216 0.98 1000 4,823,262 0.99
0.01 1000 2,686,881 1.00 4000 19,187,318 0.98 2000 9,406,026 0.99

188 A. Kimmig et al.

6 Conclusions

ProbLog is an elegant probabilistic logic language that addresses the problem of
representing uncertain knowledge by explicitely encoding uncertainty about the
truth of facts. The language naturally extends Logic Programming languages
such as Prolog. We present an implementation of the ProbLog language on top
of the YAP Prolog system that is designed to scale for large sized problems. We
show that ProbLog can indeed be used to obtain both explanation and (approx-
imations of) success probabilities for queries on a large database. To the best
of our knowledge, this is the first example of a probabilistic logic programming
system that can execute queries on such large databases. Furthermore, compared
to the initial implementation of ProbLog used in [10], the tight integration in
YAP-Prolog leads to speedups in runtime of several orders of magnitude.

Although we focussed on connectivity queries and Biomine in this work, sim-
ilar problems are found across many domains; we believe that the techniques
presented so far apply to a variety of queries and databases. This is largely pos-
sible because ProbLog provides a clean separation between background knowl-
edge and what is specific to the engine. As shown for Monte Carlo inference,
such an interface can be very useful to improve performance as it allows incre-
mentally refining background knowledge, e.g. graph procedures. Initial experi-
ments with Dijkstra’s algorithm for finding the explanation probability are very
promising.

Compared to alternative formalisms such as PHA [1], PRISM [2], SLPs [3],
CLP(BN) [5], and CP-logic [6], ProbLog is an extremely simple probabilistic
logic. Yet, it has proven to be natural and convenient for modeling biologi-
cal networks and as a vehicle for developing mining and machine learning ap-
proaches [17,20,19,21]. The efficiency of the probabilistic logic implementation is
the most important factor determining the success and the performance of the
learning approaches. Therefore, we expect the efficiency gains to open new possi-
bilities for learning, and to increase the use of probabilistic logics in practical ap-
plications. Another possible use of a simple probabilistic logic, such as ProbLog,
is as a target language in which other, possibly more complex, formalisms can
be compiled. For instance, [22] shows how CP-logic [6] can be compiled into
ProbLog, and SLPs [3] can be compiled in Sato’s PRISM, which is closely re-
lated to ProbLog. Finally, as ProbLog, unlike PRISM and PHA, deals with the
disjoint-sum-problem, it is interesting to study how program transformation and
analysis techniques could be used to optimize ProbLog programs, by detecting
and taking into account situations where some conjunctions are disjoint.

Acknowledgements. We would like to thank Hannu Toivonen for his many
contributions to ProbLog and the Biomine team for the application. This work is
partially supported by the GOA project 2008/08 Probabilistic Logic Learning.
Angelika Kimmig is supported by the Research Foundation-Flanders (FWO-
Vlaanderen). Vı́tor Santos Costa and Ricardo Rocha are partially supported by
the research projects STAMPA (PTDC/EIA/67738/2006) and JEDI (PTDC/
EIA/66924/2006) and by Fundação para a Ciência e Tecnologia.

On the Efficient Execution of ProbLog Programs 189

References

1. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence 64, 81–129 (1993)

2. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. J. Artif. Intell. Res. (JAIR) 15, 391–454 (2001)

3. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) ILP (1995)
4. Lakshmanan, L.V.S., Leone, N., Ross, R.B., Subrahmanian, V.S.: ProbView: A flexi-

ble probabilistic database system. ACM Trans. Database Syst. 22(3), 419–469 (1997)
5. Santos Costa, V., Page, D., Qazi, M., Cussens, J.: CLP(BN): constraint logic pro-

gramming for probabilistic knowledge. In: Meek, C., Kjærulff, U. (eds.) UAI, pp.
517–524. Morgan Kaufmann, San Francisco (2003)

6. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp.
431–445. Springer, Heidelberg (2004)

7. Widom, J.: Trio: A system for integrated management of data, accuracy, and lin-
eage. In: CIDR, pp. 262–276 (2005)

8. Fuhr, N.: Probabilistic Datalog: Implementing logical information retrieval for ad-
vanced applications. JASIS 51(2), 95–110 (2000)

9. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. In:
Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer,
K.B. (eds.) VLDB, pp. 864–875. Morgan Kaufmann, San Francisco (2004)

10. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discovery. In: Veloso, M.M. (ed.) IJCAI, pp. 2462–2467 (2007)

11. Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link discovery in
graphs derived from biological databases. In: Leser, U., Naumann, F., Eckman, B.A.
(eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 35–49. Springer, Heidelberg (2006)

12. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Sterling, L. (ed.) ICLP, pp. 715–729. MIT Press, Cambridge (1995)

13. Dantsin, E.: Probabilistic logic programs and their semantics. In: Voronkov, A.
(ed.) RCLP 1990 and RCLP 1991. LNCS, vol. 592, pp. 152–164. Springer, Heidel-
berg (1992)

14. Poole, D.: Abducing through negation as failure: stable models within the inde-
pendent choice logic. J. Log. Program. 44(1-3), 5–35 (2000)

15. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

16. Poole, D.: Logic programming, abduction and probability. New Generation Com-
puting 11, 377–400 (1993)

17. Kimmig, A., De Raedt, L., Toivonen, H.: Probabilistic explanation based learning.
In: Kok, J.N., Koronacki, J., de Mántaras, R.L., Matwin, S., Mladenic, D., Skowron,
A. (eds.) ECML 2007. LNCS, vol. 4701, pp. 176–187. Springer, Heidelberg (2007)

18. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1989)
19. Gutmann, B., Kimmig, A., Kersting, K., De Raedt, L.: Parameter learning in

probabilistic databases: A least squares approach. In: Daelemans, W., Goethals,
B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS, vol. 5211, pp. 473–488.
Springer, Heidelberg (2008)

20. De Raedt, L., Kersting, K., Kimmig, A., Revoredo, K., Toivonen, H.: Compressing
probabilistic Prolog programs. Machine Learning 70(2-3), 151–168 (2008)

21. Kimmig, A., De Raedt, L.: Probabilistic local pattern mining. In: ILP (2008)
22. Riguzzi, F.: A top down interpreter for LPAD and CP-logic. In: Basili, R., Pazienza,

M.T. (eds.) AI*IA 2007. LNCS, vol. 4733, pp. 109–120. Springer, Heidelberg (2007)

Engineering an Incremental ASP Solver

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele

Institut für Informatik, Universität Potsdam, August-Bebel-Str. 89, D-14482 Potsdam, Germany

Abstract. Many real-world applications, like planning or model checking, com-
prise a parameter reflecting the size of a solution. In a propositional formalism
like Answer Set Programming (ASP), such problems can only be dealt with in
a bounded way, considering one problem instance after another by gradually in-
creasing the bound on the solution size. We thus propose an incremental approach
to both grounding and solving in ASP. Our goal is to avoid redundancy by grad-
ually processing the extensions to a problem rather than repeatedly re-processing
the entire (extended) problem. We start by furnishing a formal framework cap-
turing our incremental approach in terms of module theory. In turn, we take ad-
vantage of this framework for guiding the successive treatment of program slices
during grounding and solving. Finally, we describe the first integrated incremen-
tal ASP system, iclingo, and provide an experimental evaluation.

1 Introduction

Answer Set Programming (ASP; [1]) faces a growing range of applications. This is due
to the availability of efficient ASP solvers and ASP’s rich modeling language, jointly al-
lowing for an easy yet efficient handling of knowledge-intensive applications. Among
them, many real-world applications, like planning or model checking, comprise pa-
rameters reflecting solution sizes. However, in the propositional setting of ASP, such
problems can only be dealt with in a bounded way by considering in turn one prob-
lem instance after another, gradually increasing the bound on the solution size. Such
an approach can nonetheless be highly efficient as demonstrated by Satisfiability (SAT)
solvers in the aforementioned application areas [2,3]. However, while SAT has its focus
on solving, ASP is also concerned with grounding in view of its modeling language.

We address this by proposing an incremental approach to both grounding and solving
in ASP. Our goal is to avoid redundancy by gradually processing the extensions to a
problem rather than repeatedly re-processing the entire extended problem. To this end,
we express a (parametrized) domain description as a triple (B,P,Q) of logic programs,
among which P and Q contain a (single) parameter k ranging over the natural numbers.
In view of this, we sometimes denote P and Q by P [k] and Q[k]. The base program B
is meant to describe static knowledge, independent of parameter k. The role of P is
to capture knowledge accumulating with increasing k, whereas Q is specific for each
value of k. Our goal is then to decide whether the program

R[k/i] = B ∪
⋃

1≤j≤iP [k/j] ∪Q[k/i] (1)

has an answer set for some (minimum) integer i ≥ 1. In what follows, we write R[i]
rather than R[k/i] whenever clear from the context.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 190–205, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Engineering an Incremental ASP Solver 191

For illustration, consider an action description in C+ [4], involving an action a and a
fluent p, along with a query in Qn [5] about trajectories of length n. We translate these
statements into the following domain description:

a causes p
exogenous a
inertial p

⎫⎬⎭ �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B =

⎧⎨⎩
p(0) ← not ¬p(0)
¬p(0) ← not p(0)

← p(0),¬p(0)

⎫⎬⎭

P [k] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(k) ← not ¬a(k)
¬a(k) ← not a(k)
p(k) ← a(k)
p(k) ← p(k−1),not ¬p(k)
¬p(k) ← ¬p(k−1),not p(k)

← p(k),¬p(k)
← a(k),¬a(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
¬p holds at 0
p holds at n

¬a occurs at n

⎫⎬⎭ �→

⎧⎨⎩Q[k] =

⎧⎨⎩
← not ¬p(0)
← not p(k)
← not ¬a(k)

⎫⎬⎭
.

(2)

This domain description induces no answer sets for R[1], but we obtain a single one for
R[2], that is, AS(R[2]) = {{¬p(0), a(1), p(1),¬a(2), p(2)}}.

Such an answer is usually found by appeal to iterative deepening search. That is, one
first checks whether R[1] has an answer set, if not, the same is done for R[2], and so on.
For a given i, this approach re-processes B for i times and (i−j+1) times each P [j],
where 1 ≤ j ≤ i, while each Q[j] is dealt with only once. Unlike this, we propose
to compute answers sets of (1) in an incremental fashion, starting from R[1] but then
gradually dealing with the program slices P [i] and Q[i] rather than the entire program
R[i] in (1). However, B and the previously processed slices P [j] and Q[j], 1 ≤ j < i,
must be taken into account when dealing with P [i] and Q[i]: while the rules in P [j]
are accumulated, the ones in Q[j] must be discarded. For accomplishing this, an ASP
system has to operate in a “stateful way.” That is, it has to maintain its previous state for
processing the current program slices. In this way, all components, B, P [j], and Q[i],
of (1) are dealt with only once, and duplicated work is avoided when increasing i.

Given that an ASP system is composed of a grounder and a solver, our incremental
approach has the following specific advantages over the standard approach. As regards
grounding, it reduces efforts by avoiding reproducing previous ground rules. Regarding
solving, it reduces redundancy, in particular, if a learning ASP solver is used, given that
previously gathered information on heuristics, conflicts, or loops (cf. [6]), respectively,
remains available and can thus be continuously exploited. We provide some empirical
evidence using the new incremental ASP system iclingo [7].

2 Background

Our language is built from a set F of function symbols (including the natural numbers),
a set V of variable symbols, and a set P of predicate symbols. In view of our goal, V
contains a distinguished parameter symbol k (varying over natural numbers). The set T

192 M. Gebser et al.

of terms is the smallest set containing V and all expressions of the form f(t1, . . . , tn),
where f ∈ F and ti ∈ T for 1 ≤ i ≤ n. The set A of atoms contains all expressions of
the form p(t1, . . . , tn), where p ∈ P and ti ∈ T for 1 ≤ i ≤ n. A literal is an atom a
or its (default) negation not a. Given a set L of literals, let L+ = {a ∈ A | a ∈ L}
and L− = {a ∈ A | not a ∈ L}. A logic program over A is a set of rules of the
form a ← b1, . . . , bm,not cm+1, . . . ,not cn, where a, bi, cj ∈ A for 0 < i ≤ m <
j ≤ n. The semantics of integrity constraints and choice rules is given through program
transformations. For instance, {a}← is a shorthand for a ← not a′, a′ ← not a and
similarly ←a for a′ ← a,not a′, for a new atom a′. For a rule r, let head(r) = a
be the head of r, body(r) = {b1, . . . , bm,not cm+1, . . . ,not cn} be the body of r,
and finally atom(r) = {head(r)} ∪ body(r)+ ∪ body(r)−. For a program P , define
head(P) = {head(r) | r ∈ P} and atom(P) =

⋃
r∈P atom(r). Given an expression

e ∈ T ∪A, let var (e) denote the set of all variables occurring in e; analogously, var(r)
gives all variables in rule r. Expression e ∈ T ∪A is ground, if var(e) = ∅. The ground
instantiation of a program P is defined as grd(P) = {rθ | r ∈ P, θ : var (r) → U},
where U = {t ∈ T | var(t) = ∅}; analogously, grd(A) = {a ∈ A | var(a) = ∅}.

A set X ⊆ grd(A) is an answer set of a program P over A, if X is the ⊆-smallest
model of {head(r) ← body(r)+ | r ∈ grd(P), body(r)− ∩ X = ∅}. The set of
answer sets of a programP is denoted AS (P). Two programs,P and P ′, are equivalent,
denoted by P ≡ P ′, if AS(P) = AS (P ′).

3 Semantic Underpinnings through Incremental Modularity

For providing a clear interface between program slices and guaranteeing their composi-
tionality, we build upon the concept of a module developed in [8]: a module P is a triple
(P, I,O) consisting of a (ground) programP over grd(A) and sets I,O ⊆ grd(A) such
that I ∩ O = ∅, atom(P) ⊆ I ∪ O, and head(P) ⊆ O. The elements of I and O are
called input and output atoms, also denoted by I(P) and O(P), respectively; similarly,
we refer to P by P (P). We say that P is input-free, if I(P) = ∅.

For giving an incremental account of modularity, we begin with associating a (non-
ground) program P and a set I of (ground) input atoms with a module, denoted by
P(I), imposing certain restrictions on the ground program induced by P . To this end,
we define for a program P over grd(A) and a set X ⊆ grd(A), the set P |X of rules as

{head(r)←body(r)+∪L | r ∈ P, body(r)+ ⊆ X,L = {not c | c ∈ body(r)−∩X}} .

Note that P |X projects the bodies of rules in P to the atoms of X . If a body con-
tains an atom outside X , either the corresponding rule or literal is removed, depending
on whether the atom occurs positively or negatively. This allows us to associate (non-
ground) programs with (ground) modules in the following way.

Definition 1. Let P be a program over A and I ⊆ grd(A). We define P(I) as the
module (grd(P)|Y , I, head(grd(P)|X)), where X = I ∪ head(grd(P)) and Y =
I ∪ head(grd(P)|X).

The full ground instantiation grd(P) of P is projected onto inputs and atoms defined in
grd(P). The head atoms of this projection, viz., head(grd(P)|I∪head(grd(P))), serve as
output atoms and are used to simplify grd(P), sparing only input and output atoms.

Engineering an Incremental ASP Solver 193

As a simple example, consider P [k] = {p(k) ← p(Y),not p(2); p(k) ← p(2)}.
Note that grd(P [1]) is infinite. However, for X = {p(0), p(1)}, we get

grd(P [1])|X = {p(1) ← p(0); p(1) ← p(1)} and head(grd(P [1])|X) = {p(1)} .
For I = {p(0)}, we obtain I∪head(grd(P [1])) = I ∪head(grd(P [1])|X) = {p(0)}∪
{p(1)} = X . Thus, P[1]({p(0)}) = (grd(P [1])|{p(0),p(1)} , {p(0)} , {p(1)}), and
P (P[1](I)) = grd(P [1])|X is finite. Note that, if p(1) had been in I , we would not
have obtained a module since P [1] defines p(1). Hence, it must be an output atom.

Proposition 1. Let P be a program overA, I ⊆ grd(A), and P(I) = (P ′, I, O). Then,
we have O ⊆ grd(A) and atom(P ′) ⊆ I ∪O.

We define the join of two modules P and Q, denoted by P Q, as the module

(P (P) ∪ P (Q) , I(P) ∪ (I(Q) \O(P)) , O(P) ∪O(Q)) ,

provided that (I(P)∪O(P))∩O(Q) = ∅. This definition is simpler than the original one
in [8], but also more restrictive. For instance, our definition does not permit (negative)
recursion between two modules to be joined, similar to splitting [9]. (Note that positive
and negative recursion are allowed within each module.) Also note that the join of P

and Q, as defined above, is not commutative: even if P Q is defined, Q P might be
undefined. However, lacking commutativity is not an issue in our incremental context,
where portions of a domain description are always processed in order.

We make use of the join to formalize the compositionality of modules induced by
domain descriptions.

Definition 2. A domain description (B,P [k], Q[k]) is modular, if the modules

Pi = Pi−1 P[i](O(Pi−1)) and Qi = Pi Q[i](O(Pi))

are defined for i ≥ 1, where P0 = B(∅).
The requirement of the join being defined demands that gradually obtained ground pro-
grams must define distinct atoms. Also, the directedness of the join, in a sense, permits
an information flow between ground programs in increasing order of values substituted
for k, but not the other way round.

As an example, consider (B,P [k], Q[k]) overA, where:

B = { dbl(0, 0) ← }
P [k] = { n(k) ← ; dbl(k, 2∗Y) ← n(Y),not n(Y+1) }
Q[k] = { ← dbl(Y, k−1) } .

(3)

This domain description induces the following modules:1

P0 = (B = {dbl(0, 0) ←} , ∅ , {dbl(0, 0)}) ,
P1 = (B ∪ {n(1) ←; dbl(1, 2) ← n(1)} , ∅ , O(P0) ∪ {n(1), dbl(1, 2)}) ,
Q1 = (P (P1) ∪ {← dbl(0, 0)} , ∅ , O(P1)) ,
P2 = (P (P2) , ∅ , O(P1) ∪ {n(2), dbl(2, 2), dbl(2, 4)})

where P (P2) = P (P1) ∪ {n(2) ←} ∪
{
dbl(2, 2) ← n(1),not n(2)
dbl(2, 4) ← n(2)

}
,

Q2 = (P (P2) , ∅ , O(P2)) ,

1 For simplicity, we evaluate arithmetic expressions.

194 M. Gebser et al.

P3 = (P (P3) , ∅ , O(P2) ∪ {n(3), dbl(3, 2), dbl(3, 4), dbl(3, 6)})

where P (P3) = P (P2) ∪ {n(3) ←} ∪

⎧⎨⎩
dbl(3, 2) ← n(1),not n(2)
dbl(3, 4) ← n(2),not n(3)
dbl(3, 6) ← n(3)

⎫⎬⎭ ,

Q3 = ({← dbl(1, 2);← dbl(2, 2);← dbl(3, 2)} , ∅ , O(P3)) , etc.

All above modules are defined (in terms of the join) and input-free. Since this also
applies to Pi and Qi for every i > 3, we have that domain description (3) is modular.
Hence, we can read off the results of the expressed queries from the answer sets of
each P (Qi). If i ≥ 1 is odd, we get AS(P (Qi)) = ∅. Otherwise, if i ≥ 1 is even,
then AS(P (Qi)) = {{dbl(0, 0)} ∪ {n(j), dbl(j, 2∗j) | 1 ≤ j ≤ i}}. In fact, for 1 ≤
j ≤ i and Y = j, literals not n(Y+1) are removed from the body of the second rule
in P [k] during the incremental construction because the underlying atoms n(j+1) are
undefined in P [j]. In this way, the atoms dbl(j, 2∗j) are derived. Note that this is not
possible for j < i with program

⋃
1≤j≤i P [j] in a non-incremental setting.

Proposition 2. Let (B,P [k], Q[k]) be a modular domain description, and let (Pi)i≥0
and (Qi)i≥1 as in Definition 2. Then, we have the following for i ≥ 1:

1. Pi and Qi are input-free;
2. atom(P (Pi)) ⊆ O(Pi) and atom(P (Qi)) ⊆ O(Qi);
3. P (Pi) = P (B(∅)) ∪

⋃
1≤j≤i P (P[j](O(Pj−1))) and

P (Qi) = P (Pi) ∪ P (Q[i](O(Pi)));
4. head(P (P[i](O(Pi−1)))) ∩ atom(P (Pi−1)) = ∅ and

head(P (Q[i](O(Pi)))) ∩ atom(P (Pi)) = ∅.

The third item essentially states that the combined programs obtained for i ≥ 1 equal
the union of subprograms added for each 1 ≤ j ≤ i. Importantly, the fourth item
expresses that the head atoms of a newly added subprogram are different from all atoms
encountered before. Hence, the sequence (O(Pi))i≥0 of output atoms amounts to a
splitting sequence [9] for

⋃
i≥0 P (Pi). Nonetheless, we intentionally use modules and

joins rather than splitting for formalizing our approach, as the composition of (ground)
programs done in incremental steps is only indirectly addressed by splitting sequences.

Note that we only take advantage of module theory for establishing a well-defined
formal setting for incremental ASP solving. Our computational approach deals directly
with programs in order to exploit existing ASP technology. In view of this, the next
result shows when the module-guarded formation of ground programs coincides with
separate grounding. To this end, we define a domain description (B,P [k], Q[k]) as
bound, if atom(grd(B)) ⊆ head(grd(B)) and atom(grd(P [i])) ⊆ head(grd(B ∪⋃

1≤j≤iP [j])) for all i ≥ 1. With this concept at hand, we have the following result.

Theorem 1. Let (B,P [k], Q[k]) be a bound modular domain description, and let
(Pi)i≥0 and (Qi)i≥1 as in Definition 2. Then, we have the following for i ≥ 1:

1. P (Pi) ≡ grd(B ∪
⋃

1≤j≤iP [j]);
2. P (Qi) ≡ grd(B ∪

⋃
1≤j≤iP [j] ∪Q[i]).

That is, for bound modular domain descriptions, the same result is obtained when
grounding is done either stepwise or in a single pass. Note that the domain description
given in (2) is modular and bound. Likewise, the domain description in (3) is modular,
but it is not bound because of n(Y) and n(Y+1) occurring in body literals of P [k].

Engineering an Incremental ASP Solver 195

4 Incremental ASP Solving

The computation of answer sets consists of two phases: a grounding phase aiming at a
compact ground instantiation of the original program and a solving phase computing the
answer sets of the obtained ground program. As motivated in Section 1, our incremental
approach is based on the idea that the grounder as well as the solver are implemented in
a stateful way. Thus, both keep their previous states when increasing parameter k in (1).
As regards grounding, at each step i, the goal is to produce only ground rules stem-
ming from program slices P [i] and Q[i], without re-producing previous ground rules.
The ground program slices are then gradually passed to the solver that accumulates all
ground rules from P [j], for 1 ≤ j ≤ i, while discarding the rules from Q[j], if j < i.

Grounding. Let us now characterize the consecutive program slices in terms of ground-
ing programs. In practice, given a program P , the goal of a grounder is to produce a
finite and compact yet equivalent representation of grd(P) by applying answer set pre-
serving simplifications (cf. [10,11]). In our context, P [i] and Q[i] are not grounded
in isolation for i ≥ 1. Rather, the ground programs obtained from previous program
slices are augmented with newly derived ground rules. We thus assume a grounder to
be stateful, where states are represented by the head atoms of ground rules belonging to
the output of previous grounding steps.

Given a program P over A and I ⊆ grd(A), we define an (incremental) grounder
as a partial function ground : (P, I) �→ (P ′, O), where P ′ is a program over grd(A)
and O ⊆ grd(A). Thereby, P ′ stands for the ground program obtained from P , where
the input atoms I provide domain information used to instantiate non-ground atoms in
the rules of P . The output atoms in O essentially correspond to head(P ′). Their main
use is to carry state information, as O can serve as input to subsequent grounding steps.
Also note that ground is not required to be total, given that existing grounders, like
lparse [12] and gringo [7], impose certain restrictions on non-ground programs, such
as being ω- or λ-restricted, not necessarily met by P .

Next, we formalize a grounder’s adequacy to an incremental setting.

Definition 3. A grounder ground is adequate, if for every program P over A and I ⊆
grd(A) such that ground(P, I) = (P ′, O) is defined, the following holds:

1.
(
P ∪ {{a} ← | a ∈ I}

)
≡
(
P ′ ∪ {{a} ← | a ∈ I}

)
,

2.
⋃

X∈AS(P∪{{a}←|a∈I})(X \ I) ⊆ O ⊆ head(grd(P)|Y), where Y = I ∪
head(grd(P)), and

3. for every r′ ∈ P ′, there is some r ∈ grd(P) such that head(r) = head(r′) and
body(r)+ \ (I ∪O) ⊆ body(r′)+.

The first condition expresses that P and P ′, each augmented with any combination of
input atoms in I , must be equivalent. The second condition stipulates that all non-input
atoms belonging to some answer set X of P ∪{{a} ← | a ∈ I} are contained in O. In
addition, O must not exceed the head atoms of grd(P)|I∪head(grd(P)) in order to suit-
ably restrict subsequently produced ground rules, using O as an input (cf. Definition 4).
Finally, the third condition forbids the introduction of rules that cannot be obtained
from grd(P) via permissible simplifications. Clearly, an adequate grounder may apply
answer-set preserving simplifications to compact its output.

196 M. Gebser et al.

For illustration, consider P [k] in (3) along with I = {n(1)}. An adequate grounder
could, for instance, map (P [2], I) to (P ′, O = {n(2), dbl(2, 2), dbl(2, 4)}), where

P ′ = {n(2) ←; dbl(2, 2) ← n(1),not n(2); dbl(2, 4)← n(2),not n(3)} . (4)

Note that AS(P ′ ∪ {{n(1)} ←}) = {{n(1), n(2), dbl(2, 4)}, {n(2), dbl(2, 4)}} =
AS(P [2] ∪ {{n(1)} ←}). Due to fact n(2)←, the second rule could also be dropped
from P ′; similarly, dbl(2, 2) could be removed from O. Furthermore, literals n(2) and
not n(3) could be dropped from the last rule, still satisfying Definition 3. Note that it
is crucial to restrict the atoms in O to head(P ′). For instance, this forbids the inclusion
of n(3) in O, permitting further simplifications of P ′ wrt O.

The following definition specifies the (ground) program slices gradually obtained
from a domain description using a (stateful) grounder.

Definition 4. Let (B,P [k], Q[k]) be a domain description, and let ground be a
grounder. We define for i ≥ 1:

(P0, O0) = (P ′
0|O0 , O0) , where (P ′

0, O0) = ground(B, ∅) ,
(Pi, Oi) = (P ′

i |(�0≤j≤i Oj), Oi) , where (P ′
i , Oi) = ground(P [i],

⋃
0≤j<i Oj) ,

(Qi, O
′
i) = ground(Q[i],

⋃
0≤j≤i Oj) .

Note that the successively identified output atoms in Oj , for 0 ≤ j ≤ i, are used to sim-
plify ground programs P ′

i by eliminating either rules or negative body literals. We thus
obtain ground program slices Pi such that

⋃
r∈Pi

(body(r)+∪body(r)−) ⊆
⋃

0≤j≤i Oj .
This reduction is important in view of the compositional semantics of domain descrip-
tions in Definition 2. For instance, if not done by ground itself, literal not n(3) must
a posteriori be removed from the body of the third rule in (4), in order to obtain the
intended ground program slice. However, ground programs Qi need not be reduced,
since their rules are neither accumulated nor reused.

The next result links the semantics of modular domain descriptions to that of ground
programs gradually produced by an adequate grounder.

Theorem 2. Let (B,P [k], Q[k]) be a modular domain description and ground an ad-
equate grounder. Let (Pi)i≥0 and (Qi)i≥1 be as in Definition 2 and (Pi, Oi)i≥0 and
(Qi, O

′
i)i≥1 as in Definition 4. If (Pj , Oj) is defined for 0 ≤ j ≤ i, we have for i ≥ 1:

1. P (P0) ≡ P0;
2. P (Pi) ≡

⋃
0≤j≤i Pj;

3. P (Qi) ≡
⋃

0≤j≤i Pj ∪Qi, provided that (Qi, O
′
i) is defined.

Recall that ground can be partial. In fact, existing grounders impose certain re-
strictions on the non-ground programs of a domain description, such as being ω- or
λ-restricted, guaranteeing the finiteness of equivalent ground programs. Assuming that
such requirements are met, we next detail how grounding output can be processed by
an answer set solver.

Solving. As with grounding, special care must be taken for customizing existing ASP
solving technology in an incremental setting. First, we have to guarantee the composi-
tionality of successive program slices. Second, a solver has to respect the cumulative
and volatile roles of Pj and Qi, respectively. And finally, we have to furnish a clear
interface between the grounding and the solving component.

Engineering an Incremental ASP Solver 197

For capturing compositionality, we rely on [13], characterizing the answer sets of a
program P over grd(A) by the (classical) models of its completion and loop formulas.
For Y ⊆ grd(A), define the completion of P , CF (P, Y), as the set of formulas

a ↔
∨

r∈P,head(r)=a(
∧

b∈body(r)+b ∧
∧

c∈body(r)−¬c) ,

for all a ∈ Y . Moreover, Y ⊆ grd(A) is a loop of P , if (Y,E = {(head(r), b) | r ∈ P,
head(r) ∈ Y, b ∈ body(r)+ ∩ Y }) is a strongly connected graph such that E �= ∅.
Then, the set of loop formulas for P , LF (P), is given by the set of formulas∨

a∈Y a→
∨

r∈P,head(r)∈Y,body(r)+∩Y =∅(
∧

b∈body(r)+b ∧
∧

c∈body(r)−¬c) ,

for all loops Y of P . As shown in [13], a set X ⊆ grd(A) is an answer set of P iff
X |= CF (P, grd(A)) ∪ LF (P).

For programs induced by modular domain descriptions, completion and loop formu-
las can be sliced as follows.

Theorem 3. Let (B,P [k], Q[k]) be a modular domain description, let ground be an
adequate grounder, and let (Pi, Oi)i≥0 and (Qi, O

′
i)i≥1 as in Definition 4. If (Pj , Oj)

is defined for 0 ≤ j ≤ i and if (Qi, O
′
i) is defined, we have the following for i ≥ 1:2

CF (
⋃

0≤j≤iPj ∪Qi, grd(A)) ≡
⋃

0≤j≤iCF (Pj , Oj) ∪ CF (Qi, grd(A)\
⋃

0≤j≤iOj)
LF (

⋃
0≤j≤iPj ∪Qi) ≡

⋃
0≤j≤iLF (Pj) ∪ LF (Qi|head(

�
0≤j≤i Pj∪Qi)) .

Recall that modular domain descriptions (B,P [k], Q[k]) induce splitting sequences [9].
This means that the answer sets of

⋃
0≤j≤i Pj ∪Qi can be decomposed into a sequence

of answer sets for subprograms P0, . . . , Pi, Qi. Theorem 3 reflects this decomposition
in terms of completion and loop formulas, which are material to the data structures
of ASP solvers. Thus, the practical consequence of the decomposability of completion
and loop formulas is that a solver can successively build its data structures in a modular
fashion. If this was not the case, it would be rather misleading to qualify an approach as
incremental. Hence, a modularity condition is essential for incremental computations.

When processing consecutive program slices, we have to distinguish cumulative and
volatile ones. That is, while the ground rules in Pj are accumulated within the solver
for 0 ≤ j ≤ i, the ones in Qj must be discarded for 1 ≤ j < i when Qi is added.
We accomplish this by adding to each rule in Qj a new body atom αj , along with rules
achieving that αj holds only at step j. To this end, we define the following set of rules
for a program Q over grd(A) and a new atom α /∈ grd(A):

Q(α) = {head(r) ← body(r) ∪ {α} | r ∈ Q} .

In our incremental setting, the addition of new atoms allows us to selectively
(de)activate volatile program slices.

Proposition 3. Let (Pi)i≥0 and (Qi)i≥1 be sequences of programs over grd(A), and
let Fj = {αj ←} for αj /∈ grd(A) and j ≥ 1. Then, we have the following for i ≥ 1:⋃

0≤j≤iPj ∪Qi ∪ Fi ≡ P0 ∪
⋃

1≤j≤i(Pj ∪Qj(αj)) ∪ Fi .

2 We abuse notation and let ≡ stand for classical equivalence here.

198 M. Gebser et al.

The addition of Fi on the left hand side is merely for establishing formal equivalence,
considering that αi occurs in Qi(αi) but not in Qi. The fact that programs Qj(αj)
behave neutrally, as long as αj is underivable, provides us with a handle to control the
effective program slices. In addition to activating some Qj(αj) for j ≥ 1, we also
have to deactivate it in subsequent steps. Thus, a solver cannot include αj persistently
as a fact. But rather than explicitly deleting any fact (or rule) previously passed to
the solver, we build upon an interface supporting assumptions. This trims the required
solver interface to only two functions:

– add(P) incorporates a ground logic program P into the rule database of the solver;
– solve(L) takes a set L of ground literals and computes the answer sets X of the

ground program comprised in the solver that satisfy L+ ⊆ X and L− ∩X = ∅.

This simple interface is similar to the one for incremental SAT solving given in [14].
The literals L passed to solve constitute assumptions, which can semantically be
viewed as the set of integrity constraints {←not a | a ∈ L+} ∪ {←a | a ∈ L−}.
However, as regards clasp [6], the crucial difference between integrity constraints and
assumptions is that the former give rise to program simplifications affecting internal
data structures, while the effect of the latter is temporary, i.e., restricted to an invoca-
tion of solve. While former assumptions can easily be withdrawn, for a learning solver,
it would be much harder to support an explicit deletion of obsolete problem parts [14].

Let us now situate the solver in our incremental context.

Definition 5. Let (Ri)i≥0 and (Li)i≥0 be sequences of programs and literals over
grd(A) ∪ {αi | i ≥ 0}. A solver is a pair of total functions add : Ri �→ Si and
solve : Li �→ χ, where S0 = R0|head(R0), Si = Si−1 ∪ Ri|head(Si−1∪Ri) for i ≥ 1,
and χ ⊆ 2(grd(A)∪{αi|i≥0}).

Note that only add affects a solver’s state, where added programs are subject to simpli-
fication. In fact, as with Pi for i ≥ 0 in Definition 4, we assume that atoms not occurring
as the head of any rule are eliminated. Even if such an atom becomes derivable later on
when another program is added, it can thus not interact with the rules already present.
The reason for this design decision is that, although operating in an open environment,
the possible addition of information or program slices, respectively, should not force
the solver to continuously rebuild its existent data structures. Of course, this necessi-
tates program slices to be provided in a bottom-up manner. The second function, solve,
leaves the accumulated program slices (logically) unaffected, that is, the passed literals
are only assumed locally within solve.

The objective of maintaining program slices, once they have been added, also moti-
vates the following definition of soundness.

Definition 6. A solver as in Definition 5 is sound, if for all sequences (Ri)i≥0 and
(Li)i≥0 of programs and literals over grd(A) ∪ {αi | i ≥ 0}, and for every
i ≥ 0, we have: X ∈ solve(Li) iff L+

i ⊆ X ⊆ head(Si) \ L−
i such that X |=⋃

0≤j≤i(CF (Rj |head(Sj), head(Rj |Yj)) ∪ LF (Rj |head(Sj))), where Y0 = head(R0)
and Yj = head(Sj−1 ∪Rj) for 1 ≤ j ≤ i.

First, observe that literals passed as assumptions in Li must be respected by solutionsX
returned by a sound solver. Second, X must satisfy the completion and loop formulas

Engineering an Incremental ASP Solver 199

individually for each program slice, thereby, restricting the attention to the respective
head atoms. This conception allows the solver to build its data structures in a modular
way, without sacrificing soundness, but it also relocates the responsibility to properly
partition a program away from the solver. However, as Theorem 3 shows, modular
domain descriptions (along with an adequate grounder) permit the construction of a
program’s completion and loop formulas locally for program slices, obtaining the same
answer sets as with the entire program.

We now define the program slices to be added to the solver for the ground rules
obtained from a domain description.

Definition 7. Let (B,P [k], Q[k]) be a domain description, let ground be a grounder,
and let (Pi, Oi)i≥0 and (Qi, O

′
i)i≥1 as in Definition 4. If (P0, O0), (Pj , Oj), and

(Qj , O
′
j) are defined for 1 ≤ j ≤ i, we define a sequence (Ri)i≥0 of programs and

a sequence (Li)i≥0 of literals for 1 ≤ j ≤ i and αj−1, αj /∈ grd(A) by:

R0 = P0 Rj = Pj ∪Qj(αj) ∪ {{αj}←} ∪ {←αj−1}
L0 = ∅ Lj = {αj} .

The difference between the cumulative rules in Pj and the volatile ones in Qj is that an
additional atomαj is appended to the bodies of the latter. Moreover, choice rule {αj}←
nominally permits the unconditional inclusion of αj in an answer set. However, upon
the invocation of solve in step j, literal αj is passed as assumption, so that answer
sets must necessarily contain αj . In contrast, in step j + 1, integrity constraint ←αj

is persistently added to the solver, forcing αj to be false. Due to this, all rules in Qj

are deactivated in later steps. Notably, clasp eliminates such false atoms and rules with
false bodies from its data structures, thus deleting a whole obsolete program Qj .

In theory, no added rule is deleted later on. Thus, we require an additional condition.

Definition 8. We define a domain description (B,P [k], Q[k]) as separated, if for all
i ≥ 1 and j > i, head(grd(Q[i])) ∩ head(grd(P [j] ∪Q[j])) = ∅.

Separation can easily be achieved by using distinct predicates and parameter k in the
heads of rules in Q[k] as well as in body atoms corresponding to such heads. The do-
main descriptions given in (2) and (3), trivially, are separated.

Using an adequate grounder and a sound solver, we finally establish that our incre-
mental solving strategy leads to the desired outcomes for modular domain descriptions.

Theorem 4. Let (B,P [k], Q[k]) be a separated modular domain description, let
ground be an adequate grounder, and let (Pi, Oi)i≥0 and (Qi, O

′
i)i≥1 as in Defini-

tion 4. Furthermore, let (add, solve) be a sound solver, (Ri)i≥0 and (Li)i≥0 as in
Definition 7, and Sj = add(Rj) for j ≥ 0 as in Definition 5. If (P0, O0), (Pj , Oj), and
(Qj , O

′
j) are defined for 1 ≤ j ≤ i, we have the following for i ≥ 1:

X ∈ solve(Li) iff (X \ {αi}) ∈ AS(
⋃

0≤j≤i Pj ∪Qi).

Comparing with the third item in Theorem 2 shows that our approach, comprising in-
cremental grounding and solving, matches exactly the semantics of (programs induced
by) separated modular domain descriptions. In this context, the modularity condition in
Definition 2 allows us to largely reuse existing ASP technology, as we see below.

200 M. Gebser et al.

Algorithm 1 isolve

Input : A domain description (B, P [k], Q[k]).
Output : A nonempty set of answer sets.
Internal: A grounder GROUNDER.
Internal: A solver SOLVER.

i ← 01

(P0, O) ← GROUNDER.ground(B, ∅)2

SOLVER.add(P0)3

loop4

i ← i + 15

(Pi, Oi) ← GROUNDER.ground(P [i], O)6

SOLVER.add(Pi)7

O ← O ∪Oi8

(Qi, O
′
i) ← GROUNDER.ground(Q[i], O)9

SOLVER.add(Qi(αi)∪{{αi}←}∪{←αi−1})10
χ ← SOLVER.solve({αi})11

if χ �= ∅ then return {X \ {αi} | X ∈ χ}12

Algorithm 1. combines
our grounding and solving
functions for successively
computing the answer
sets of programs induced
by a domain descrip-
tion (B,P [k], Q[k]). To this
end, isolve makes use of
one instance of a grounder,
denoted by GROUNDER,
and one instance of a solver,
viz., SOLVER. Programs
B, P [i], and Q[i] are then
gradually grounded by
means of GROUNDER. Pro-
vided that GROUNDER can
instantiate the given pro-
grams, i.e., if they satisfy
any additional require-
ments GROUNDER may impose, the obtained ground programs are fed into SOLVER

through function add. In Line 7, 10, and 11 of Algorithm 1, cumulative and volatile

i Rules L
0 B p(0) ← not ¬p(0)

¬p(0) ← not p(0)
← p(0),¬p(0)

1 P [1] a(1) ← not ¬a(1)
¬a(1) ← not a(1)

p(1) ← a(1)
p(1) ← p(0), not ¬p(1)

¬p(1) ← ¬p(0), not p(1)
← p(1),¬p(1)
← a(1),¬a(1)

Q[1](α1) ← not ¬p(0), α1 α1
← not p(1), α1
← not ¬a(1), α1

{α1} ←
← α0

2 P [2] a(2) ← not ¬a(2)
¬a(2) ← not a(2)

p(2) ← a(2)
p(2) ← p(1), not ¬p(2)

¬p(2) ← ¬p(1), not p(2)
← p(2),¬p(2)
← a(2),¬a(2)

Q[2](α2) ← not ¬p(0), α2 α2
← not p(2), α2
← not ¬a(2), α2

{α2} ←
← α1

Fig. 1. Tracing Algorithm 1: isolve

program slices are handled according to the se-
quences of programs and assumptions, respec-
tively, specified in Definition 7. Note that isolve
terminates as soon as function solve of SOLVER

reports some answer set. Otherwise, if no answer
set is found in any step i ≥ 1, isolve (in theory)
loops forever on increasing values for k.

For illustrating isolve, reconsider the exam-
ple in (2). We give in Figure 1 the accumu-
lation of ground rules within the solver during
the formation of the answer set containing
{¬p(0), a(1), p(1),¬a(2), p(2)}. The left column
shows the value of i in Algorithm 1, the middle
one groups the rules added in Line 2, 7, and 10 of
Algorithm 1, and the right one gives the assump-
tion, αi, used in each iteration. The rules accu-
mulated within the solver at the end of the first
iteration yield no answer set under assumptionα1,
while the addition of the rules obtained in the next
step yields the above answer set under assump-
tion α2. Note that this answer set also includes
α2, while it does not contain α1 due to integrity
constraint← α1.

Engineering an Incremental ASP Solver 201

If GROUNDER is adequate and if SOLVER is sound, for a separated modular domain
description (B,P [k], Q[k]) such that P (Qi) (cf. Definition 2) has an answer set for
some i ≥ 1, isolve returns the answer sets of P (Qi) for the least such i ≥ 1.

Theorem 5. Let (B,P [k], Q[k]) be a separated modular domain description, let
GROUNDER be an adequate grounder, and let SOLVER be a sound solver. Let
(Pi, Oi)i≥0 and (Qi, O

′
i)i≥1 be as in Definition 4 for ground = GROUNDER.ground,

and let (Qi)i≥1 as in Definition 2. If (P0, O0), (Pi, Oi), and (Qi, O
′
i) are defined for

all i ≥ 1, we have isolve((B,P [k], Q[k])) = AS(P (Qi)) for the least i ≥ 1 such
that AS(P (Qi)) �= ∅.

Note that the above result builds upon the assumption that (B,P [k], Q[k]) is modu-
lar. When feeding a non-modular domain description (that GROUNDER can instantiate)
into isolve, interpretations computed by SOLVER.solve do not necessarily match the
answer sets of the combined program slices.

We next provide simple syntactic conditions under which B, P [k], and Q[k] assem-
ble a modular domain description.

Proposition 4. Let (B,P [k], Q[k]) be a domain description, and let P =
⋃

i≥1 P [i]
and Q =

⋃
i≥1 Q[i]. Then, (B,P [k], Q[k]) is modular if the following conditions hold:

1. atom(grd(B)) ∩ (head(grd(P)) ∪ head(grd(Q))) = ∅,
2. atom(grd(P)) ∩ head(grd(Q)) = ∅, and
3. {head(grd(P [i])) | i ≥ 1} is a partition of head(grd(P)).

Pragmatically, these conditions can be granted by using predicates not occurring in
B ∪ P [k] for the heads of rules in Q[k], and by including 0 as parameter in every atom
ofB as well as parameter k in the head of every rule in P [k]. Of course, parameter 0 can
also be omitted in atoms of B if the corresponding predicates are not used in the heads
of rules in P [k]. Recalling the domain descriptions given in (2) and (3), one can ob-
serve that the respective programs B, P [k], and Q[k] fit into this scheme. In fact, many
problems over time parameters are naturally stated via modular domain descriptions.

5 Experiments with the Incremental ASP System iclingo

We implemented our approach to incremental ASP solving within the system iclingo by
building on grounder gringo (2.0.0) and solver clasp (1.1.0) (all available at [7]). As in-
put, gringo accepts λ-restricted programs, inducing finite equivalent ground programs.
Procedurally, iclingo uses gringo as delineated in Algorithm 1. The customization of
clasp conceptually affects two components, namely, the treatment of a program’s com-
pletion and loop formulas, respectively. Note that neither of these adaptations would
be necessary in a SAT solver, since the underlying semantics does not rely on Clark’s
completion. Over time, clasp accumulates ground program slices and, moreover, learns
further constraints during solving. As a matter of fact, clasp is equipped with dynamic
deletion and simplification techniques disposing of superfluous constraints.

Our experiments consider iclingo in four settings: keeping over successive solving
steps (1) learned constraints, (2) learned constraints and heuristic values, (3) heuristic

202 M. Gebser et al.

values only, and (4) neither. We compare these variants with iterative deepening search
using clingo, the direct combination of gringo and clasp via an internal interface, as well
as gringo and clasp via a textual interface (using the output language of lparse [12]).
Except for using different communication channels, clingo as well as piped gringo and
clasp run identically, and clingo is consistently faster at a fraction of run-time.

The benchmarks in Table 1 belong to four different classes. In the Blocksworld ex-
ample, the goal is to reconstruct a tower of n blocks in inverse order, requiring a plan of
length n. In the Queens example, we compute (at most) one answer set for each value
of k, iterating from 1 to n. For Sokoban and Towers of Hanoi, we use handmade in-
stances from [15,16], each instance requiring n steps for achieving its goal condition.
With both of these planning problems, the default encoding includes the initial state in
a base program B and the goal condition in a query program Q[k]. We also provide
alternative encodings (attributed by “back” in Table 1), in which B contains the goal
and Q[k] the initial state. Table 1 summarizes run-time results in seconds, taking the av-
erage of three runs per instance. The rows marked with Σ show the sums of run-times
over all instances of a benchmark class, also distinguishing encodings, with timeouts
taken as 1200s. The last row (ΣΣ) sums run-times over all benchmark classes. All
benchmarks as well as extended results are available at [7].

On the Blocksworld and Queens examples, we see that iclingo clearly outper-
forms clingo by one order of magnitude, which is primarily due to reduced ground-
ing overhead. In fact, the simple Blocksworld problems are solved without any search,
but clingo has to redo full grounding and propagation in each iterative deepening
step, working on ground programs of considerable size. For example, considering the
Blocksworld problem with four blocks, viz., n = 4, gringo produces 158 ground rules
in the first step and 236 ground rules for each further step. While iclingo adds this num-
ber of rules in each incremental step, resulting in 158+(n−1)∗236 = 866 ground rules
for n = 4, clingo processes n ∗ 158 + (n ∗ (n−1)/2) ∗ 236 = 2048 ground rules before
obtaining a solution. Of course, the ratio of ground rules processed by iclingo gets even
smaller as n increases, explaining the dramatic performance gains on Blocksworld. On
the Queens example, we observe a similar effect, but here, clasp has to search for a
solution for n ≥ 4. Interestingly, iclingo (1), keeping learned constraints, has a clear
edge, but iclingo (2), additionally keeping heuristic values, is by far the slowest among
all iclingo variants. However, iclingo (3), keeping heuristic values, is again consistently
faster than iclingo (4), keeping neither heuristic values nor learned constraints. This
suggests that the strategy of iclingo (2) here tends to bias future runs too much, while a
moderate amount of memory via either learned constraints or heuristic values is helpful.

Other than the simple Blocksworld and combinatorial Queens examples, Sokoban
and Towers of Hanoi contain more realistic instances, shifting the focus to search for
a plan. In fact, all systems underlie non-deterministic heuristic effects and traverse the
search space differently. Though all systems spend most of their run-time in the solving
component, the savings in grounding are still noticeable for iclingo, but smaller than
on Blocksworld and Queens. On Sokoban, we observe varying relative performance of
the considered systems on individual instances, which is due to the elevated difficulty
of the problem. However, on the instance requiring the most steps, viz., n = 21, we
have that the learning variants, iclingo (1) and iclingo (2), perform much better than the

Engineering an Incremental ASP Solver 203

Table 1. Benchmark results on a 2.2GHz PC under Linux; each run limited to 1200s time

Name n iclingo (1) iclingo (2) iclingo (3) iclingo (4) clingo gringo|clasp

Blocksworld 20 2.61 2.61 2.62 2.62 37.09 42.41
25 6.78 6.84 6.80 6.80 124.35 138.68
30 15.68 15.80 15.71 15.81 330.15 362.39
35 32.43 32.36 32.29 32.31 753.90 821.96
40 60.99 60.75 60.71 61.04 - -
Σ 118.49 118.36 118.13 118.58 2445.49 2565.44

Queens 80 19.46 65.83 39.98 47.79 144.28 153.61
90 36.72 135.19 70.81 81.70 249.13 264.21

100 49.25 227.69 111.99 128.62 409.69 431.23
110 64.05 424.03 176.16 201.67 636.91 669.75
120 99.54 612.76 274.29 354.00 958.34 1003.67
Σ 269.02 1465.50 673.23 813.78 2398.35 2522.47

Sokoban 16 243.22 287.46 320.07 334.08 376.74 384.41
12 26.50 37.55 50.61 28.19 27.83 28.43
16 124.26 124.44 320.97 341.94 189.48 194.12
16 135.72 164.70 128.66 183.74 120.60 123.57
18 140.80 145.07 233.71 275.12 236.60 242.19
16 26.86 40.60 29.41 27.88 45.94 47.04
17 1165.67 906.00 734.44 730.09 887.26 904.75
14 119.95 140.11 106.40 213.22 96.26 98.10
14 35.42 42.74 58.79 46.81 70.16 71.81
21 286.46 200.43 600.19 777.68 278.97 285.09
17 120.33 140.44 139.19 156.85 171.01 174.90
14 39.09 36.21 36.00 47.48 66.12 67.43
Σ 2464.28 2265.75 2758.44 3163.08 2566.97 2621.84

Sokoban back 16 - - - - - -
12 51.23 44.62 98.09 57.42 72.59 74.30
16 264.81 201.48 265.21 359.38 296.45 302.46
16 148.19 121.19 150.06 145.40 148.25 151.43
18 723.07 - - - 1059.02 1081.34
16 243.81 185.00 340.97 190.32 402.27 410.72
17 599.74 714.40 1051.60 825.61 - -
14 149.37 126.04 164.98 191.33 170.36 173.74
14 29.73 69.46 73.03 28.04 43.06 43.89
21 346.56 428.43 400.81 295.69 402.78 411.70
17 181.00 143.20 172.83 317.82 234.21 239.56
14 15.06 58.45 39.27 17.50 59.63 60.78
Σ 3952.57 4492.27 5156.85 4828.51 5288.62 5349.92

Towers 33 38.00 42.96 48.46 27.15 31.98 32.76
34 61.40 36.78 47.09 45.95 61.77 63.39
36 81.26 60.77 88.52 131.29 86.56 88.46
39 223.46 155.76 184.63 204.13 216.89 222.74
41 429.82 327.74 392.47 342.11 459.97 471.22
Σ 833.94 624.01 761.17 750.63 857.17 878.57

Towers back 33 4.62 6.42 5.68 5.80 12.59 12.79
34 55.79 33.42 56.27 42.39 52.80 54.00
36 16.66 16.46 14.69 17.11 24.81 25.38
39 27.88 25.43 28.60 32.83 46.01 46.85
41 48.20 36.38 62.75 40.62 83.78 85.60
Σ 153.15 118.11 167.99 138.75 219.99 224.62

ΣΣ 7791.45 9084.00 9635.81 9813.33 13776.59 14162.86

remaining ones, iclingo (3) and iclingo (4), which are also outperformed by clingo. The
“back” encoding of Sokoban does not yield overall performance gains for any of the
considered systems, but we observe that iclingo (1) copes best with this encoding. Note
that both the initial and the goal states of Sokoban instances are total. Hence, with both
encodings, clasp searches for a trajectory from one complete state to another. Finally, on
Towers of Hanoi, the differences between the systems are rather small, and all of them
show significant gains on the “back” encoding. In contrast to Sokoban, goal conditions
do here not define total states. Thus, learning may further constrain the goal in B, while

204 M. Gebser et al.

the total initial state in Q[k] can easily be propagated. The differences between Sokoban
and Towers of Hanoi regarding the impact of encodings show that incremental problems
constitute a whole new setting, different from traditional ones, and further investigations
are needed for optimizing computational strategies to deal with them.

6 Discussion

We presented the first theoretical and practical account of incremental ASP solving.
Our framework allows for tackling bounded problems in ASP, paving the way for more
ambitious real-world applications. Our approach is driven by the desire to minimize
redundancies while gradually treating program slices. However, fixing the incremen-
tal solving process required the integration and adaption of successive grounding and
solving steps in a globally consistent way. To this end, we developed an incremental
module theory guiding the formal setting of iterative grounding and solving by means
of existing ASP grounders and solvers. Module theory does not only provide us with
a natural semantics for non-ground, parametrized program slices but moreover makes
precise their composition by appeal to input/output interfaces. Such compositionality
provides the primary basis for incremental computations. Our experimental results in-
dicate the computational impact of our incremental approach on parametrized domain
descriptions. While savings in grounding are evident, on different encodings of search-
intensive problems, we have seen that the effectiveness of solving techniques in an
incremental setting is (currently) less predictable. Indeed, incremental problems differ
from traditional ones, so that dedicated computational strategies for them can be devel-
oped and explored. In this respect, our system iclingo makes merely a first step. Future
work also includes more elaborate incremental algorithms than isolve, allowing for
non-elementary program slices while still guaranteeing optimality of solutions.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

2. Kautz, H., Selman, B.: Planning as satisfiability. In: Proc. of ECAI 1992, pp. 359–363. Wiley,
Chichester (1992)

3. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solv-
ing. Formal Methods in System Design 19(1), 7–34 (2001)

4. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
Artificial Intelligence 153(1-2), 49–104 (2004)

5. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. on AI 3(6), 193–210 (1998)
6. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:

Proc. of IJCAI 2007. AAAI Press, Menlo Park (2007)
7. http://www.cs.uni-potsdam.de/wv/software
8. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: Proc. of

ECAI 2006, pp. 412–416. IOS Press, Amsterdam (2006)
9. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proc. of ICLP, pp. 23–37. MIT Press,

Cambridge (1994)
10. Brass, S., Dix, J.: Semantics of (disjunctive) logic programs based on partial evaluation.

Journal of Logic Programming 40(1), 1–46 (1999)

http://www.cs.uni-potsdam.de/wv/software

Engineering an Incremental ASP Solver 205

11. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and
strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp.
87–99. Springer, Heidelberg (2003)

12. http://www.tcs.hut.fi/Software
13. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artifi-

cial Intelligence 157(1-2), 115–137 (2004)
14. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes

in Theoretical Computer Science 89(4) (2003)
15. http://www.ne.jp/asahi/ai/yoshio/sokoban/handmade/
16. http://asparagus.cs.uni-potsdam.de/

http://www.tcs.hut.fi/Software
http://www.ne.jp/asahi/ai/yoshio/sokoban/handmade/
http://asparagus.cs.uni-potsdam.de/

Concurrent and Local Evaluation of Normal
Programs

Rui Marques1 and Terrance Swift2

1 CITI, Dep. Informática — FCT, Universidade Nova de Lisboa
2 CENTRIA — Universidade Nova de Lisboa

Abstract. Tabled evaluations can incorporate a number of features,
including tabled negation, reduction with respect to the well-founded
model, tabled constraints and answer subsumption. Many of these fea-
tures are most efficiently evaluated using the Local evaluation strategy,
which fully evaluates each mutually dependent set of tabled subgoals
before returning answers to other subgoals outside of that set. In this
paper, we introduce a formalism, Concurrent Local SLG by which multi-
ple threads of computation concurrently perform Local evaluation of the
well-founded semantics, and which is a framework for multi-threaded
tabling in the XSB system. We prove several properties of Local evalua-
tion within single-threaded tabled computation. We then extend SLG to
a model of concurrency and show that the completeness and complexity
of SLG are retained when computed by multiple threads. Finally, we ex-
tend Local evaluation to concurrent SLG, and show that the properties
of Local evaluation continue to hold under concurrency.

This paper provides an operational semantics for a type of concurrent TLP
that relies on a scheduling strategy called Local evaluation [4]. The model of
concurrency adopted is one in which threads of computation execute separate
subgoals while sharing completed tables. The main idea behind Local evaluation
is that it fully evaluates a single mutually dependent set of tabled subgoals before
performing operations (such as returning answers) to subgoals outside of that
set. Experiments in several implementations have shown that Local evaluation
utilizes space efficiently (see e.g. [4,10]) and as a result it has been implemented
for several Prologs.

Another feature of Local evaluation is shown in an example in [4] in which
tabling was used to compute the shortest path between two nodes. When Local
evaluation was used the shortest path could be computed in a time proportional
to the number of nodes in the graph, while if a non-Local scheduling strategy
was used the time was proportional to the number of paths in the graph – i.e.
the time was exponential in the number of nodes. Comparing path lengths to
compute a shortest path can be considered as an instance of answer subsumption
in which answers are retained and propagated only if they are maximal over a
partial order or are a monotonic function of answers so far produced.

Using SLG resolution [1] as a basis, this paper presents the following results
about concurrent and Local evaluations.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 206–222, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Concurrent and Local Evaluation of Normal Programs 207

– As analysis of Local evaluation in the literature has been mostly empirical,
Local SLG evaluation is formally defined in Section 2 and shown complete
for queries to normal programs. Properties are derived about dependencies
between subgoals in a Local evaluation, about the return of answers, and
about the extent of non-completed subgoals in an evaluation.

– Section 3 presents SLGC , an extension of SLG to concurrent evaluations
in which completed tables are shared among threads. SLGC is complete for
queries to normal programs, and its abstract complexity is the same as SLG.

– Concurrent Local SLG (Local SLGC) is then defined in Section 3.1. It
is shown that properties of Local SLG evaluations extend to the sub-
evaluations performed by each concurrently executing thread, and a property
is derived about the structure of dependencies between threads.

– Section 4 sketches the implementation of Local SLGC in XSB, where the
engine design is directly motivated by the preceding results for subgoal and
thread dependencies. In addition to having the properties of finite evaluations
presented in this paper, XSB’s implementation of Local SLGC has been
extended to support tabled constraints, answer subsumption, tabled dynamic
code, and space reclamation.

We begin with a review of SLG evaluation.

1 SLG Evaluation

This presentation of SLG reformulates the operations of [1] using the model
of a forest of trees. However, for reasons of space we make the following re-
strictions throughout this paper. First, the formal definitions in this paper
consider only finite evaluations, although the statements of theorems that are
true for transfinite evaluations are not restricted. Second, our definition of
Completely Evaluated (Definition 4) does not permit Early Completion. And
third, we do not formally define the concept of a supported answer. All of
this formalism can be found in the full version of this paper, available at
http://www.cs.sunysb.edu/~tswift/papers.html.

Terminology and assumptions. We assume the standard terminology of logic
programming and an understanding of the well-founded semantics (see [12]).
All programs discussed are normal, and defined over a countable language of
predicates and function symbols. If L is a literal, the underlying subgoal of L is
L if L is positive and S if L = not S. A 3-valued interpretation I of a program
P is a set of literals defined over the Herbrand base of P , HP . For A ∈ HP , if
A ∈ I, A is true in I, and if not A ∈ I, A is false in I; otherwise A and not A
are undefined in I. When I is an interpretation and A is an atom, I|A refers to

{L | L ∈ I and (L=G or L = not G) and G is in the ground instantiation of A}

The well-founded model of a program P is denoted as WFM(P). In the following
sections, we use the terms goal, subgoal, and atom interchangeably. Variant terms
are considered to be identical.

208 R. Marques and T. Swift

The nodes in SLG trees are built from atoms and default literals along with
a special type of literal called a delay literal.

Definition 1 (Delay Literals). A negative delay literal has the form not A,
where A is a ground atom. A positive delay literal has the form ASubg

Ans , where
A is an atom whose truth value is based on that of some answer Ans for the
subgoal Sub. If θ is a substitution, then (ASubg

Ans)θ = (Aθ)Subg
Ans .

The annotations in positive delay literals are used to propagate truth values
when a given answer to a given subgoal becomes unconditionally true or false.

Definition 2 (SLG Trees and Forest). An SLG forest consists of a set of
SLG trees. Nodes of SLG trees have the form:

Answer Template :- DelaySet|GoalList

or simply fail. In the first form, the Answer Template is an atom, DelaySet is
a set of delay literals and GoalList is a sequence of literals. The second form is
called a failure node.

An SLG tree T is associated with a (possibly empty) marking sequence, which
is a sequence of terms possibly preceded by the distinguished term complete. The
first element of the marking sequence for T is denoted as marking(T). For a
term t, setMark(T, t) prepends t to the marking sequence of T .

A node N is an answer when it is a leaf node for which GoalList is empty.
If the DelaySet of an answer is empty it is termed an unconditional answer,
otherwise, it is a conditional answer.

The root node of a given SLG tree has the form S :- |S where S is a subgoal —
a property ensured by Definition 6. Thus, within a forest each tree and subgoal
are uniquely associated, so when T is an SLG tree in a forest F whose root node
is S :- |S it is sometimes convenient to use the terminology S is the root node for
T ; T is the tree for S; and S is in F . If marking(T) = complete, we refer to both
S and T as completed. Until Section 3, marking sequences will either be empty
or will contain only the term complete. Literals in a GoalList are resolved by
an arbitrary but fixed literal selection strategy. For simplicity, throughout this
paper literals are always selected in a left-to-right order.

SLG operations transform one forest of trees into another. One of the oper-
ations, Answer Return is based on answer resolution, which is extended to
take account of delay literals.

Definition 3 (Answer Resolution). Let N be a node A :- D|L1, ..., Ln, where
n > 0, and Ans = A′ :- D′| an answer whose variables have been standardized
apart from N . N is SLG resolvable with Ans if ∃i, 1 ≤ i ≤ n, such that Li and
A′ are unifiable with an mgu θ. The SLG resolvent of N and Ans on Li is:

(A :- D|L1, ..., Li−1, Li+1, ..., Ln)θ

if D′ is empty; otherwise the resolvent has the form:

(A :- D,Li
Li

A′ |L1, ..., Li−1, Li+1, ..., Ln)θ

Concurrent and Local Evaluation of Normal Programs 209

The SLG Completion operation marks a set of trees as complete when they
can produce no more useful answers – a condition captured as follows.

Definition 4 (Completely Evaluated). A set S of subgoals in a forest F is
completely evaluated if no S ∈ S is completed; and if for each S ∈ S, for each
node N in the tree for S:

1. The underlying subgoal of the selected literal of N is completed; or
2. There are no applicable New Subgoal, Program Clause Resolution,

Answer Return, Negation Return or Delaying operations (Defini-
tion 6) for N .

In order to prevent S from being repeatedly completed, the preceding definition
explicitly prohibits S from containing any completed subgoals.

SLG forests are related to interpretations in the following manner.

Definition 5. Let F be a forest. The interpretation induced by F , IF , is the
smallest set such that:

– A (ground) atom A ∈ IF iff A is in the ground instantiation of some uncon-
ditional answer Ans :- | in F .

– A (ground) literal not A ∈ IF iff A is in the ground instantiation of a
completely evaluated subgoal in F , and A is not in the ground instantiation
of any answer in F .

An atom S is successful in F if some tree in F has an unconditional answer
S. S is failed in F if S is completed and the tree for S contains no answers. An
atom S is successful (failed) in IF if S′ (not S′) is in IF for every S′ in the
ground instantiation of S. A negative delay literal not D is successful (failed)
in a forest F if D is failed (successful) in F . Similarly, a positive delay literal
DSubg

Ans is successful in F if Subg has an unconditional answer Ans :- | and failed
if Subg has no answer with head Ans.

Given these concepts, the SLG operations themselves can be stated.

Definition 6 (SLG Operations). Given a forest Fn of a SLG evaluation of
program P , Fn+1 may be produced by one of the following operations.

1. New Subgoal: Let Fn contain a non-root node

N = Ans :- DelaySet|G,GoalList

where G is the selected literal S or not S. Assume Fn contains no tree with
root subgoal S. Then add the tree S :- |S to Fn.

2. Program Clause Resolution: Let Fn contain a root node N = S :- |S
and C be a program clause Head :- Body such that Head unifies with S with
mgu θ. Assume that in Fn, N does not have a child Nchild = (S :- |Body)θ.
Then add Nchild as a child of N .

210 R. Marques and T. Swift

3. Answer Return: Let Fn contain a non-root node
N = Ans :- DelaySet|S,GoalList

whose selected literal S is positive. Let Ans be an answer node for S in Fn

and Nchild be the SLG resolvent of N and Ans on S. Assume that in Fn, N
does not have a child Nchild. Then add Nchild as a child of N .

4. Negation Return: Let Fn contain a leaf node
N = Ans :- DelaySet|not S,GoalList.

whose selected literal not S is ground.
(a) Negation Success: If S is failed in Fn, then create a child for N of

the form: Ans :- DelaySet|GoalList.
(b) Negation Failure: If S succeeds in Fn, then create a child for N of

the form fail.
5. Delaying: LetFn contain a leaf nodeN = Ans :- DelaySet|not S,GoalList,

such that the selected literal npt S is ground, S is in Fn, but S is nei-
ther successful nor failed in Fn. Then create a child for N of the form Ans
:- DelaySet, not S|GoalList.

6. Simplification: Let Fn contain a leaf node N = Ans :- DelaySet|, and let
L ∈ DelaySet
(a) If L is failed in F then create a child fail for N .
(b) If L is successful in F , then create a child Ans :- DelaySet′| for N ,

where DelaySet′ = DelaySet− L.
7. Completion: Given a completely evaluated set S of subgoals (Definition 4),

for each S ∈ S, setMark(T, complete), where T is the tree for S.
8. Answer Completion: Given a set of unsupported answers UA, create a

failure node as a child for each answer Ans ∈ UA.

In the above definition, the Answer Completion operation relies on the con-
cept of unsupported answers. Unsupported answers are conditional answers that
are false in the well-founded model, and reflect certain unfounded sets in that
model. While necessary for completeness of SLG, the Answer Completion

operation is not affected by local or concurrent evaluations, so for reasons of
space, we omit its formal definition (see the full version of this paper).

SLG Evaluations. An SLG evaluation consists of a (possibly transfinite) se-
quence of forests. However as noted, we restrict definitions of evaluations to be
finite for reasons of space (see the full version of this paper for the general case).

Definition 7 (SLG Evaluation). Given a program P and goal G, an SLG
evaluation E is a sequence of SLG forests F0,F1,. . . ,Fβ , such that:

– F0 is the forest containing a single tree G :- | G
– For each successor ordinal, n + 1 ≤ β, Fn+1 is obtained from Fn by an

application of an SLG operation from Definition 6.

If no operation is applicable to Fβ, Fβ is called a final forest of E. If Fβ contains
a leaf node with a non-ground selected negative literal, it is floundered.

The correctness is formulated as follows for transfinite evaluations.

Concurrent and Local Evaluation of Normal Programs 211

Theorem 1 ([1]). Let E be an SLG evaluation of a goal to a program P . Then
E has a final forest F . Let A be an atom such that A :- |A is the root of some
tree in F . Then if F is non-floundered, WFM(P)|A = IF |A.

2 Local SLG Evaluations

As noted above, a Local SLG evaluation fully evaluates each mutually dependent
set of tabled subgoals before performing operations to subgoals outside of that
set. We begin to formalize that notion by defining what it means for one subgoal
to depend on another.

Definition 8 (Subgoal Dependency Graph). Let F be a forest, and let
S1 :- |S1 be the root of a non-completed tree in F . The subgoal S1 directly de-
pends on a subgoal S2 iff S2 is not completed in F , and there is some node N in
the tree for S1 such that S2 is the underlying subgoal of the selected literal of N .

The Subgoal Dependency Graph of F , SDG(F) = (V,E), is a directed graph
in which (Si, Sj) ∈ E iff subgoal Si directly depends on subgoal Sj, and V is the
underlying set of E. S1 “depends on” S2 in F is there is a path from S1 to S2
in SDG(F).

Since the SDG of a forest is a directed graph, it can be partitioned into disjoint
sets of strongly connected components, or SCCs, where a node with no outgoing
edges is considered to be in a trivial SCC. We refer to a given SCC by the set of
its vertices (subgoals), and distinguish independent SCCs.

Definition 9 (Independent SCC). A strongly connected component S is in-
dependent if ∀S ∈ S: if S depends on some S′, then S′ ∈ S.

By Definition 9 it is straightforward that a trivial SCC is independent, and that
each independent component is maximal — i.e. contained in no larger SCC.
Local evaluation, then, performs operations on independent SCCs. Formally:

Definition 10 (Local SLG Evaluation). Given a program P and goal G, a
Local SLG evaluation E is a sequence of SLG forests F0,F1,. . . ,Fβ , such that:

1. F0 is the forest containing a single tree G :- | G
2. For each successor ordinal, n + 1 ≤ β, Fn+1 is obtained from Fn by an

application of an SLG operation from Definition 6 such that:
(a) if a New Subgoal operation is applied to create a tree S :- |S then S

is the underlying subgoal of a selected literal in a tree whose root subgoal
is in an independent SCC of SDG(Fn);

(b) a Program Clause Resolution, Answer Return, Negation Re-

turn or Delaying operation is only applied to a node on a tree whose
root subgoal is in an independent SCC of SDG(Fn);

E is delay avoiding if no Delaying operation is performed in a forest if any
other operation is applicable.

212 R. Marques and T. Swift

In the transfinite extension of Definition 10, a Local (SLG) evaluation works as
an unrestricted SLG evaluation whenever an independent SCC does not exist in
a forest, leading to the following theorem.

Theorem 2 (Completeness of Local Evaluation). Let P be a program and
G a goal. Then there exists an SLG evaluation E of G against P with final forest
F if and only if there exists a local SLG evaluation EL of G against P with final
forest FL such that IF |G = IFL |G.

While Local evaluation is ideally complete for the well-founded semantics, its
importance arises from its efficiency for certain classes of programs, along with
properties that can be used to ensure the correctness of implementations. The
first such property is:

Theorem 3. Let EL be a finite Local SLG evaluation. For each F in EL

SDG(F) has one and only one independent SCC.

Theorem 3 implies the following corollary which will be used by the implemen-
tation described in Section 4.

Corollary 1. Let EL be a finite Local SLG evaluation. For each F in EL there
is at most one incoming edge for each maximal SCC in SDG(F).

The following corollary captures the notion that in a Local evaluation, a subgoal
may only return answers out of its SCC once its SCC has been completed.

Corollary 2. In any forest F of a Local SLG evaluation, if an answer A is used
in an Answer Return operation to a node in a tree with root subgoal S, then
the tree for A has been completed, or is in the same SCC as S in SDG(F).

Corollary 2 has practical importance for answer subsumption since it implies
that no answer A need be returned out of an SCC if the model entails an an-
swer that is preferred to A – only the preferred answer need be returned. In
addition, it is easy to see that if Local evaluation were extended to ensure that
all appropriate Simplification and Answer Completion operations are per-
formed for an independent SCC just after it has been completed, the following
statement also holds. If a forest in Local evaluation contains a conditional an-
swer A = S :- D| and S is successful or failed in F , A will never be propagated
outside of the SCC. This strategy reduces the overall number of Simplifica-

tion and Answer Completion operations and has been adopted by the XSB
engine when computing non-stratified programs. The space efficiency of Local
evaluation is stated as follows:

Theorem 4. Let EL be a finite delay-avoiding Local evaluation of a goal G to
a program P , and let E be an SLG evaluation of G to a P . Then for any forest
FL in EL, there exists a forest F in E such that SDG(FL) is a subgraph of
SDG(F).

Concurrent and Local Evaluation of Normal Programs 213

3 Sharing Completed Tables in a Concurrent Evaluation

Rather than starting with a single top-level atomic query, a concurrent SLG,
SLGC , evaluation is initialized with a set of atomic queries, such that each
atomic query is evaluated by a different thread of computation. In this model
of concurrency, threads share only completed tables so that a thread is pre-
vented from consuming answers from a (non-completed) table owned by another
thread. This disallows consume-producer models of concurrency and implies that
different threads may not collaborate to evaluate subgoals within a single SCC.
However as discussed below, within a Local evaluation the restriction may not
be binding since Local evaluations prevent consumer-producer models by their
nature, and since the scope of an SCC in a Local evaluation is relatively small.

Formally, this model of concurrency marks every non-completed tree in a given
forest with a thread identifier (cf. Definition 2). As terminology, if N is a node in
a tree T , marking(N) denotes marking(T), and if S is a subgoal marking(S)
denotes marking(T), where T is the tree for S.

Definition 11 (Thread). A thread identifier is an element of a set of terms
that does not include the term complete. Given an SLG forest F in an evaluation
E, a thread state is the maximal set T of trees in F such that for all T ∈ T
marking(T) = t where t is a thread identifier. A thread in E is the sequence of
thread states for a given marking. A thread is active in F if its thread state in
F is non-empty.

Let S be a subgoal, T the tree for S, and N a node in a forest. N is thread
compatible with S if marking(T) = complete or marking(T) = marking(N).

SLGC uses SLG forests and other notions from Definitions 1-5, but differs in that
certain SLGC operations may create or change thread markings, and markings
may restrict the applicability of operations based on whether a node and subgoal
are thread compatible according to the previous definition. Definition 12 presents
a new operation called Usurpation, along with those operations that differ from
Definition 6 where the difference in each altered operation is underlined.

Definition 12 (SLGC Operations). Given an SLG forest Fn, Fn+1 may be
produced by one of the following operations.

1. New Subgoal: Let Fn contain a non-root node
N = Ans :- DelaySet|G,GoalList

where G is the selected literal S or not S. Assume Fn contains no
tree with root subgoal S. Then add the tree T = S :- |S to Fn,
and setMark(T,marking(N)).

2. Answer Return: Let Fn contain a non-root node
N = Ans :- DelaySet|S,GoalList

whose selected literal S is positive. Let Ans be an answer node for S in Fn

such that N is thread compatible with S and let Nchild be the SLG resolvent
of N and Ans on S. Assume that in Fn, N does not have a child Nchild.
Then add Nchild as a child of N .

214 R. Marques and T. Swift

3. Negation Return: Let Fn contain a leaf node
N = Ans :- DelaySet|not S,GoalList.

whose selected literal not S is ground where N is thread compatible with S.
(a) Negation Success: If S is failed in Fn, then create a child for N of

the form: Ans :- DelaySet|GoalList.
(b) Negation Failure: If S succeeds in Fn, then create a child for N of

the form fail.
4. Completion: Given a completely evaluated set S of subgoals

such that for all S ∈ S,marking(S) = t, then for each S ∈ S, setMark
(T, complete), where T is the tree for S.

5. Usurpation: Let S be a set of subgoals in deadlock (Definition 13), SU ∈ S,
and TU the tree for SU . For each S ∈ S, setMark(T,marking(TU)).

The thread compatibility restrictions can mean that an SLG operation is ap-
plicable in a given forest, but that the corresponding SLGC operation is not.
The Usurpation operation is designed to address cases where SLGC opera-
tions might get stuck – which are formalized as situations of deadlock.

Definition 13 (Deadlock). A set S of subgoals in a forest F is in deadlock
if:

1. For each S ∈ S there are no applicable New Subgoal, Program Clause

Resolution, Answer Return, Negation Return or Delaying oper-
ations of Definition 12; and

2. There exists no S′ such that S ⊆ S′ and S′ is completely evaluated in F .

Example 1. As defined, SLGC evaluations may use any scheduling strategy, and
are not restricted to Local evaluations. They also begin with a set of goals
rather than with a single goal. Figure 1 illustrates a simple, non-Local, SLGC

evaluation of the goal {a(X),b(X)} to the program P2, where a(X) is initially
marked with thread identifier 1 and b(X) with thread identifier 2. Through
New Subgoal operations, trees for c(X) and e(X) are created and associated
with thread identifier 1, while d(X) is created and associated with thread iden-
tifier 2. Evaluation continues until there is a deadlock, as shown in Figure 1b.
Note in Figure 1b, that while there is an answer that could be returned to
the node e(1):- |d(X) in a non-Local evaluation, the node is associated with
thread identifier 1, while the answer is associated with thread identifier 2 so that
the return is prohibited by the thread compatibility restrictions. Usurpation

is the only operation applicable to this forest; assume that thread identifier 1
performs the Usurpation, marking trees for c(X), d(X), and e(X) with iden-
tifier 1. Afterward, an answer for e(1) is derived, leading to Figure 1c. Fur-
ther Answer Return operations lead to Figure 1d.‘v All of the subgals in
thread identifier 1 have been completely evaluated, but the subgoal b(X) in
thread identifier 2 cannot be completely evaluated until the answer for d(X)
is resolved with the node b(X):- |d(X). Since a completed subgoal is thread
compatible with any thread, once d(X) is completed, the answer for d(X) can be
resolved.

Concurrent and Local Evaluation of Normal Programs 215

a(X):- c(X). b(X):- d(X). c(X):- e(1),d(X). d(X):- c(X).
d(1).

e(1):- d(X)
(a) The Program P2

a(X):− |a(X) [1]

e(1):− |d(X)

e(1):− |e(1) [1]

d(1):− |d(X):− |c(X)

d(X):− |d(X) [2]

c(X):− |e(1),d(X).

c(X):− |c(X) [1]

b(X):− |d(X)

b(X):− |b(X) [2]

a(X):− |c(X)

(b) State α: Deadlock

a(X):− |a(X) [1]

d(X):− |c(X)

e(1):− |

e(1):− |d(X)

e(1):− |e(1) [1]

d(1):− |

d(X):− |d(X) [1]

c(X):− |e(1),d(X).

c(X):− |c(X) [1]

b(X):− |d(X)

b(X):− |b(X) [2]

a(X):− |c(X)

(c) State β: Answer for e(1)

a(X):− |a(X) [1]

e(1):− |

e(1):− |d(X)

e(1):− |e(1) [1]

a(1):− | d(1):− |

c(1):− |

c(X):− |d(X)

d(X):− |c(X)

d(X):− |d(X) [1]

b(X):− |d(X) d(1):− |c(X):− |e(1),d(X).

c(X):− |c(X) [1]

a(X):− |c(X)

b(X):− |b(X) [2]

(d) State γ: Complete Evaluation for Thread Identifier 1

Fig. 1. A non-Local SLGC Evaluation of P2

The definition of a SLGC evaluation is nearly the same as for SLG (Defini-
tion 7), but is initialized so that each atomic query in the set of goals it is
presented with is marked with a different thread identifier (Its formal, trans-
finite, definition can be found in the full version of this paper). In addition,
SLGC forests are based on Definition 2, so the definition of an interpretation
induced by a forest is identical in both frameworks, leading to the following
theorem.

Theorem 5 (Correctness of SLGC). Let P be a program and G a finite non-
empty set of goals. Then a SLGC evaluation of G against P exists with final state
F̂ , iff for every Gi ∈ G there exists an SLG evaluation of Gi against P with final
state F i and I

�F = (
⋃
IFi).

The completeness portion of the theorem follows from a demonstration that
for any SLG operation on a forest, an equivalent SLGC operation is applicable
after zero or more Usurpation operations. The following theorem bounds the
number of Usurpation operations in a finite evaluation, which implies that the
abstract complexity of SLGC is the same as that of SLG.

216 R. Marques and T. Swift

Theorem 6 (Complexity of Usurpation). Let E be a finite SLGC evaluation
with final forest F , and SF the set of all subgoals in F . Then there are at most
|SF | Usurpation operations performed.

3.1 Concurrent Local Evaluations

In SLGC the Subgoal Dependency Graph (Definition 8) can be partitioned into
disjoint sub-graphs for each thread state of a forest.

Definition 14 (Thread Subgoal Dependency Graph). For each thread
state t in a forest F , the Thread Subgoal Dependency Graph of t
(Thread SDG(F , t)) consists of the sub-graph of SDG(F) determined by sub-
goals in F whose marking is t.

Local SLGC evaluation is based on independent SCCs within Thread SDGs,
rather than within a global SDG.

Definition 15 (Local SLGC). Given a program P , a set T of thread identi-
fiers, and a finite non-empty set G of goals, a Local SLGC evaluation E is a
sequence of forests F0,F1,. . . ,Fβ , such that:

1. F0 is a set-minimal forest containing the trees Ti = Gi :- |Gi, for each Gi ∈
G, where for each Ti there is a ti ∈ T such that marking(Ti) = ti, and
ti �= tj if i �= j.

2. For each successor ordinal, n + 1 ≤ β, Fn+1 is obtained from Fn by an
application of an operation from Definition 12 such that:
(a) if a New Subgoal is applied to create a tree T = S :- |S then S is the

underlying subgoal of a selected literal in a tree whose root subgoal is in
an independent SCC of Thread SDG(Fn,marking(T));

(b) a Program Clause Resolution, Answer Return, Nega-

tion Return or Delaying operation is only applied to a node
on a tree whose root subgoal is in an independent SCC of
Thread SDG(Fn,marking(T)).

This finitary definition can be extended to the transfinite evaluations, leading
to the following theorem.

Theorem 7 (Correctness of Local SLGC). Let P be a program and G a
finite non-empty set of goals. Then a Local SLGC evaluation of G against P
exists with final state F̂, iff every Gi ∈ G there exists an SLG evaluation of Gi

against P with final state F i and I
�F = (

⋃
IFi).

The following theorem is an analogue of Theorem 3, and implies that each thread
of an Local SLGC evaluation has the dependency properties of Section 2.

Theorem 8. Let F be a forest in a finite Local SLGC evaluation. Then for each
active thread t in F , Thread SDG(F , t) has one and only one independent SCC.

The Thread Dependency Graph can be seen as a homomorphism of the SDG of
a given SLGC forest.

Concurrent and Local Evaluation of Normal Programs 217

Definition 16 (Thread Dependency Graph). Let t1 and t2 be two active
threads in a SLG forest F . t1 directly depends on t2 if there exist a subgoal in t1
that directly depends on a subgoal in t2 (according to Definition 8). The Thread
Dependency Graph TDG(F) = (V,E) of F is a directed graph where V is the
set of active threads in F and (ti, tj) ∈ E iff ti directly depends on tj.

Based on the thread dependency graph, the following theorem shows that any
thread depends on at most one other thread.

Theorem 9. Let F be a forest in a finite Local SLGC evaluation. Then for each
node in TDG(F) there is at most one outgoing edge.

As a practical matter, this theorem indicates that each thread of computation
will wait on the results from at most one other thread. so that the thread com-
munication and dependency detection required to implement the Usurpation

operation will be relatively simple.

4 Implementing SLGC in the SLG-WAM

We summarize the changes made to XSB’s SLG-WAM in order to implement Lo-
cal SLGC . Our discussion omits numerous optimizations required for efficiency.
In particular, due to space restrictions we do not discuss the propagation of sub-
goal dependencies between threads, or the handling of subgoals that have been
usurped multiple times (see [8] for details). We first describe Local SLGC for
definite programs before considering negation.

Since XSB’s SLG-WAM implements Local evaluation, it is evident from Sec-
tion 3 that the main addition is the Usurpation operation, which mainly affects
the SLG-WAM tabletry instruction. This instruction occurs at the entry point
of a tabled predicate when a tabled subgoal Subg is called.

In the sequential SLG-WAM tabletry is essentially responsible for deter-
mining whether a New Subgoal operation is required. The instruction first
determines whether Subg is in the table using its representation in the WAM
argument registers. If Subg is not in the table, a New Subgoal operation is
effectively performed. Subg will have been copied to the table during the check;
and a generator choice point is created to backtrack through program clauses,
to check whether the subgoal’s SCC has been fully evaluated, and to schedule
Answer Return operations if the SCC is not fully evaluated. On the other
hand, if Subg is in the table, tabletry creates a consumer choice point to back-
track through any answers to Subg in the table and thereby perform Answer

Return operations.
Extensions to tabletry for Local SLGC are summarized in Figure 2. If Subg is

new, it is copied into the table as in the sequential case, but in order to represent
the TDG a thread identifier is associated with Subg. For this association the
subgoal frame, a structure containing information about each tabled subgoal, is
extended with a ThreadMark cell. The essential difference from the sequential
case of tabletry occurs when Subg is not new and is currently marked by

218 R. Marques and T. Swift

Instruction tabletry
/* Subg is in argument registers; Tcurrent is current thread */
Perform the subgoal check insert(Subg) operation in the table for this predicate
If Subg is not new and is marked by another thread

lock global TDG mutex
If deadlock(Tcurrent,Subg.ThreadMark)

/* all other threads in the independent SCC are suspended at deadlock */
usurp(Tcurrent,Subg.ThreadMark)

Else unlock TDG mutex; suspend the calling thread until Subg completes
Proceed as in the sequential case; if Subg was usurped, treat it as a new subgoal

deadlock(Tcurrent,depends thread)
while(depends thread = NULL)

if(depends thread = Tcurrent) return true;
else depends thread ← depends thread.suspended on thread);

return false;

usurp(Tcurrent, first usurped)
Traverse SCCdl to reset suspended on thread dependency of each usurped thread
Unlock global TDG mutex
Traverse SCCdl to

Propagate the proper subgoal dependency to each usupred thread
Reset stacks of each (suspended) usurped thread

Fig. 2. Summary of Concurrent Local SLG implementation in the SLG-WAM

another thread (and therefore not marked as completed). In this case deadlock
detection is performed: if a deadlock is not found, the calling thread Tcurrent

suspends as it does not have any applicable Local SLGC operations; otherwise
Tcurrent performs a Usurpation operation. In addition to changes in tabletry,
a change is made to the SLG-WAM completion instruction so that any thread
suspended on Subg is awakened when Subg is completed (a condition variable
based on the predicate symbol of Subg is used for this awakening).

The design of deadlock detection in the SLG-WAM relies on Theorem 9, which
states that each thread may be suspended on at most one other thread. The SLG-
WAM adds a suspended on thread field to the context of each thread to denote
any thread dependency. As shown in Figure 2, when a thread Tcurrent performs
deadlock detection, it starts by checking whether the thread marking Subg is
suspended using this suspended on thread field: if the thread is not suspended,
Tcurrent may suspend without fear of deadlock and it will be awakened when Subg
is completed. If the marker of Subg is suspended, the deadlock detection code fol-
lows the suspended on thread field. By Theorem 9, any loop in the TDG must be
a simple cycle so that deadlock detection is a simple while loop that exits in one of
two cases. If Tcurrent is found in the suspended on thread field for one of the tra-
versed threads, then Tcurrent depends (transitively) on itself and deadlock occurs;
otherwise if the suspended on thread field of a traversed thread is null, Tcurrent

transitively depends on a subgoal that is actively being computed.

Concurrent and Local Evaluation of Normal Programs 219

The fact that the thread dependencies for deadlocked threads form a simple
cycle also underlies the control flow of the usurp() function which consists of
two traversals of the deadlocked TDG cycle, denoted SCCdl. Each traversal be-
gins with the thread that marks Subg. In the first traversal, the usurping thread
Tcurrent updates the TDG, setting the suspended on thread field of each usurped
thread to its own id. Adjusting the TDG must be performed under global mu-
tual exclusion: otherwise two concurrently usurping threads might produce an
incoherent TDG. In the second traversal, which is not under mutual exclusion,
the execution stacks in each usurped thread Tusurped are examined and manipu-
lated – an operation that is safe since Tusurped has suspended on a subgoal due
to thread compatibility restrictions. The manipulation ensures that Tusurped will
no longer generate answers for usurped subgoals that it has marked, but rather
will be set to consume answers. This stack manipulation is considerably simpli-
fied by the property that the SDG for Tusurped will depend on a single usurped
subgoal STusurped

– the first subgoal in SCCdl that Tusurped encountered. (the
property is implied by Corollary 1 together with Theorem 8). However to de-
termine STusurped

, both subgoal dependencies contained in Tusurped and subgoal
dependencies across usurped threads must be considered. Accordingly, usurp()
also propagates cross-thread dependencies (the actual mechanism is not shown in
this summary) and uses these dependencies when resetting the stacks of Tusurped.
As a result, when Tusurped is awakened it will call STusurped

again from scratch
and backtrack through the answers of the completed subgoal.

This approach has the virtue of conceptual simplicity, but any partial com-
putations for the usurped subgoals are lost, and will be recomputed by the
usurping thread. Theorem 6 states that the maximal number of Usurpation

operations in a SLGC evaluation is linear in atoms(P), the number of atoms in a
program P . In [8] it is shown that Usurpation operations affect only constant-
time operations so that even if answers for usurped subgoals are recomputed,
the complexity of the well-founded semantics is unaffected.

Extensions for Negation and Answer Subsumption. As suggested by the
changed operations in Definition 12, the SLG-WAM requires few modifications
beyond those presented to extend Local SLGC to the well-founded semantics.
Consider first stratified programs. In the SLG-WAM, if the underlying (tabled)
subgoal Subg of a selected negative literal is not new and not complete, the
computation path “suspends” and resumes only when Subg has been completed.
These operations are essentially the same as the interactions between threads
so far described. In the case of non-stratified negation the first new operation
to consider is the Delaying operation. If Subg is involved in a loop through
negation, the resumption mechanism is the same except that a bit in the subgoal
frame of Subg is set to indicate that Subg was delayed rather than completed.
Several cycles of delaying may be needed before Subg is finally completed, but
each cycle may be handled by the thread suspension and usurpation mecha-
nisms described. When Subg is completed, any Simplification operations for
its SCC are performed before awakening any threads suspended on Subg, so
that Simplification is not affected by the concurrency mechanisms. Beyond

220 R. Marques and T. Swift

negation, answer subsumption is implemented as an extension to the SLG-WAM
new answer operation which is unaffected by Local SLGC .
Performance Several performance studies have been made on tabling with Lo-
cal SLGC [6,8,7]. We focus on tests of scalability in which a list of M queries is
distributed to N threads and the elapsed time measured. [7] measured the use of
Local SLGC on programs which analyzed configuration reachability for various
extensions of Petri nets. Depending on particular formalism for the net, the pro-
grams were definite, or used well-founded negation, tabled constraints or answer
subsumption. For nearly all of these benchmarks, left-recursive reachability of
the form reachable(bound,free)) scaled perfectly to 4 processors (the number
available for this experiment).

In constrast, [8] measured scalability on a worst case: where multiple threads
concurrently evaluated right recursion on random graphs of varying densities, us-
ing queries of the form rightRec(bound,free). Observe that for right-recursion
over a graph, the connectivity of the SDG directly reflects the connectivity of
the graph. Consider properties of a random graph of V vertices (cf. [11]). If each
vertex has at most 1 edge there can be no cycles; if each vertex has between 1
and ln(V) edges the graph (and SDG) is likely to be split up into several SCCs;
while if each vertex has ln(V) or more edges the graph is likely to be connected,
with the SDG consisting of a single SCC. While somewhat preliminary, [8] indi-
cates that the number of deadlocks are relatively small. For graphs with between
1 and ln(V) edges per vertex, this is either because the graphs do not contain
large SCCs or because the subgoals in these SCCs are quickly completed. For
fully connected graphs, each thread is usurped at most once. As expected, scal-
ability is poor for the connected graphs as usurped threads must wait for the
SCC to be evaluated. However, the elapsed time for the Local SLGC is never
worse than that for a Local single-threaded evaluation on any graph. In other
words, for these benchmarks the implementation of Local SLGC is not affected
by the cost of recomputing answers for usurped subgoals and degenerates into a
mostly sequential evaluation where threads wait for the completion of SCCs.

5 Discussion

Local SLGC is well suited for multi-threaded evaluations that benefit from Local
evaluation and can provide speedups on problems that can be subdivided rela-
tively easily. At the same time, Local SLGC is not intended to support general
table parallelism. Local evaluation itself prevents one thread from consuming an-
swers concurrently produced by another thread if the consuming and producing
subgoals are in different SCCs. Beyond this, a Local SLGC evaluation may have
a number of threads suspended on incomplete or usurped subgoals, although
Theorem 6 puts a limit on the number of Usurpation operations.

We believe that a salient strength of Local SLGC is its formal basis. By The-
orem 7 several threads can cooperate to correctly compute the well-founded
semantics, and by Theorem 6 the abstract complexity is the same as a sequen-
tial SLG evaluation. By Theorem 8 each thread in a Local SLGC evaluation

Concurrent and Local Evaluation of Normal Programs 221

will have a single independent SCC, and so each thread will have properties of
a Local evaluation, including the space efficiency property of Theorem 4. By
Corollary 2 (and Theorem 8) each thread will only return answers from com-
pleted tables, a useful property for computing the well-founded semantics and
answer subsumption. As noted in Section 4, the implementation of Local SLGC

directly relies on Theorem 9 and Corollary 1. As a result of the theory-oriented
design, the implementation of Local SLGC , although delicate, mainly requires
about 300 lines of code to be added to the tabletry instruction: thus Local
SLGC should be relatively easy to port to other tabling engines that implement
Local evaluation.

Related Work. These strengths and limitations distinguish (Local) SLGC from
previous work, which we briefly discuss (see [6] for more details). [5] presents an
approach to distributed tabling in which the SDG (Definition 8) is distributed
among threads, the dependencies partially represented by numerical encodings
associated with subgoals, and a message-counting algorithm used for termination
detection. Maintaining the distributed SDG leads to an approach that is cubic
in the number of messages. SLGC differs from [5] in being a more minimal
extension of SLG requiring only the addition of markings and Usurpation,
and in retaining the complexity of SLG. Another distributed tabling method,
[2] avoids the cubic message complexity by using a centralized table manager to
maintain dependency and other information and a credit-recovery algorithm to
detect completion of the SCCs. SLGC differs from [2] in not requiring an explicit
table manager and in using the “optimistic” Usurpation operation to control
concurrency, as well as in being a formalism sufficient for proving completeness
and other properties. [9] presents algorithms for adding tabling to an or-parallel
engine and implements these algorithms in YAP, with impressive results for
definite programs. As mentioned above, unlike [9] Local SLGC does not address
general table parallelism, although it addresses normal programs and is based
on a formalization which permits a concise implementation. Perhaps the closest
work is [3] which allows threads to share answers when tables are not completed:
Concurrent SLG differs from this work in using a simpler method of concurrency
control, as well as in modeling normal rather than definite programs.

Acknowledgements. The authors thank Manuel Carro, Pablo Chico de
Guzmán, and anonymous reviewers for their careful comments.

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1), 20–74 (1996)

2. Damásio, C.: A distributed tabling system. In: Proceedings of the 2nd Workshop
on Tabulation in Parsing and Deduction, TAPD 2000, pp. 65–75 (2000)

3. Freire, J., Hu, R., Swift, T., Warren, D.S.: Parallelizing tabled evaluation. In: Swier-
stra, S.D. (ed.) PLILP 1995. LNCS, vol. 982, pp. 115–132. Springer, Heidelberg
(1995)

222 R. Marques and T. Swift

4. Freire, J., Swift, T., Warren, D.S.: Beyond depth-first: Improving tabled logic pro-
grams through alternative scheduling strategies. JFLP 1998(3) (1998)

5. Hu, R.: Distributed Tabled Evaluation. Ph.D thesis, SUNY at Stony Brook (1997)
6. Marques, R.: Concurrent Tabling: Algorithms and Implementation. Ph.D thesis,

Universidade Nova de Lisboa (2007)
7. Marques, R., Swift, T., Cunha, J.: Extending tabled logic programming with multi-

threading: A systems perspective (2008)
8. Marques, R., Swift, T., Cunha, J.: A simple and efficient implementation of con-

current local tabling (2008), http://www.cs.sunysb.edu/∼tswift
9. Rocha, R., Silva, F., Costa, V.S.: On applying or-parallelism and tabling to logic

programs. Theory and Practice of Logic Programming 4(6) (2004)
10. Rocha, R., Silva, F., Santos Costa, V.: Dynamic mixed-strategy evaluation of tabled

logic programs. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668,
pp. 250–264. Springer, Heidelberg (2005)

11. Spencer, J.: The Strange Logic of Random Graphs. Springer, Heidelberg (2000)
12. van Gelder, A., Ross, K.A., Schlipf, J.S.: Unfounded sets and well-founded seman-

tics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)

http://www.cs.sunysb.edu/~tswift

On the Continuity of Gelfond-Lifschitz Operator and
Other Applications of Proof-Theory in ASP

V.W. Marek1 and J.B. Remmel2

1 Department of Computer Science
University of Kentucky

Lexington, KY 40506-0046, USA
2 Department of Mathematics

University of California
La Jolla, CA 92093

Abstract. Using a characterization of stable models of logic programs P as sat-
isfying valuations of a suitably chosen propositional theory, called the set of re-
duced defining equations rΦP , we show that the finitary character of that theory
rΦP is equivalent to a certain continuity property of the Gelfond-Lifschitz oper-
ator GLP associated with the program P . The introduction of the formula rΦP

leads to a double-backtracking algorithm for computation of stable models by re-
duction to satisfiability of suitably chosen propositional theories. This algorithm
does not use the reduction via loop-formulas as proposed in [1] or its extension
proposed in [2]. Finally, we discuss possible extensions of techniques proposed
in this paper to the context of cardinality constraints.

1 Introduction

The use of proof theory in logic based formalisms for constraint solving is pervasive.
For example, in Satisfiability (SAT), proof theoretic methods are used to find lower
bounds on complexity of various SAT algorithms. However, proof-theoretic methods
have not played as prominent role in Answer Set Programming (ASP) formalisms. This
is not to say that there were no attempts to apply proof-theoretic methods in ASP. To
give a few examples, Marek and Truszczynski in [3] used the proof-theoretic meth-
ods to characterize Reiter’s extensions in Default Logic (and thus stable semantics of
logic programs). Bonatti [4] and separately Milnikel [5] devised non-monotonic proof
systems to study skeptical consequences of programs and default theories. Lifschitz
[6] used proof-theoretic methods to approximate well-founded semantics of logic pro-
grams. Bondarenko et.al. [7] studied an approach to stable semantics using methods
with a clear proof-theoretic flavor. Marek, Nerode, and Remmel in a series of papers,
[8,9,10,11,12,13], developed proof theoretic methods to study what they termed non-
monotonic rule systems which have as special cases almost all ASP formalisms that
have been seriously studied in the literature. Recently the area of proof systems for
ASP (and more generally, nonmonotonic logics) received a lot of attention [14,15]. It

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 223–237, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

224 V.W. Marek and J.B. Remmel

is clear that the community feels that an additional attention to these area is neces-
sary. Nevertheless, there is no clear classification of proof systems for nonmonotonic
reasoning analogous to those in classical logic and SAT, in particular.

In this paper, we define a notion of P -proof schemes, which is a kind of a proof
system that was previously used by Marek, Nerode, and Remmel to study complexity
issues for stable semantics of logic programs [12]. This proof system abstracts of M -
proofs of [3] and produces Hilbert-style proofs. The nonmonotonic character of our
P -proofs is provided by the presence of guards, called the support of the proof scheme,
to insure context-dependence. A different but equivalent, presentation of proof schemes,
using a guarded resolution is also possible.

We shall show that we can use P -proof schemes to find a characterization of stable
models via reduced defining equations. While in general these defining equations may
be infinite, we study the case of programs for which all these equations are finite. This
resulting class of programs, called FSP-programs, turns out to be characterized by a
form of continuity of the Gelfond-Lifschitz operator.

Contributions of the Paper

The contributions of this paper consist, primarily, of investigations that elucidate the
proof-theoretical character of the stable semantics for logic programs, an area with 20
years history [16]. The two principal results of this paper are the following.

1. We show that the Gelfond-Lifschitz operator GLP is, in fact, a proof-theoretical
construct (Proposition 7).

2. Given (1), we show that the upper-half continuity of that operator is equivalent to
finiteness of (propositional) formulas in a certain class associated with the program
P (Proposition 10).

These two results hold for arbitrary programs. A third contribution of this paper which
is in a somewhat different direction from our first two results, is to show that in case
of the finite programs P , we can use our proof theory techniques to construct a class
of theories CP , which we call the set of candidate theories associated with P , with the
following properties: (i) the theories in CP are of size linear in P , (ii) the propositional
models of any T ∈ CP are stable models of P , and (iii) for every stable model M of
P , there is T ∈ CP such that M is a model of T . Thus we can find stable models of P
by using SAT solvers to find models of T ∈ CP . This result shows how the exponential
size of completion of P with loop formulas [1] can be traded for exponential number
of linear-size propositional theories.

The outline of this paper is as follows. In section 2, we provide the necessary back-
ground on logic programs and stable models to present our results. In section 3, we
introduce P -proof schemes and the reduced defining equations for a logic program P
as well as certain associated equivalence theorems. In section 4, we discuss the con-
tinuity properties of operators. In section 5, we introduce an algorithm (and establish
its correctness) for stable model computation that follows from the techniques outlined
in earlier sections. In Section 6 we extend our techniques to the context of programs
with cardinality constraints. Finally in Section 7, we have provide some conclusions
and directions for future work.

On the Continuity of Gelfond-Lifschitz Operator 225

2 Preliminaries

Let At be a countably infinite set of atoms. We will study programs consisting of clauses
built of the atoms from At . A program clause C is a string of the form

p← q1, . . . , qm,¬r1, . . . ,¬rn (1)

The integers m or n or both can be 0. The atom p will be called the head of C and
denoted head(C). We let PosBody(C) denote the set {q1, . . . , qm} and NegBody(C)
denote the set {r1, . . . , rn}. For any set of atoms X , we let ¬X denote the conjunction
of negations of atoms from X . Thus, we can write clause (1) as

head(C) ← Posbody(C),¬negBody (C).

Let us stress that the set NegBody(C) is a set of atoms, not a set of negated atoms as
is sometimes used in the literature. A normal propositional program is a set P of such
clauses. For any M ⊆ At , we say that M is model of C if whenever q1, . . . , qm ∈ M
and {r1, . . . , rn} ∩ M = ∅, then p ∈ M . We say that M is a model of a program
P if M is a model of each clause C ∈ P . Horn clauses are clauses with no negated
literals, i.e. clauses of the form (1) where n = 0. We will denote by Horn(P) the part
of the program P consisting of its Horn clauses. Horn programs are logic programs P
consisting entirely of Horn clauses. Thus for a Horn program P , P = Horn(P).

Each Horn program P has a least model in the Herbrand base and the least model of
P is the least fixed point of a continuous operator TP representing 1-step Horn clause
logic deduction ([17]). That is, for any set I ⊆ At , we let TP (I) equal the set of all
p ∈ At such that there is a clause C = p ← q1, . . . , qm in P and q1, . . . , qm ∈ I .
Then TP has a least fixed point FP which is obtained by iterating TP starting at the
empty set for ω steps, i.e., FP =

⋃
n∈ω T

n
P (∅) where for any I ⊆ At , T 0

P (I) = I and
T n+1

P (I) = TP (T n
P (I)). Then FP is the least model of P .

The semantics of interest for us is the stable semantics of normal programs, although
we will discuss some extensions in Section 5. The stable models of a program P are
defined as fixed points of the operator TP,M . This operator is defined on the set of all
subsets of At , P(At). If P is a program and M ⊆ At is a subset of the Herbrand base,
define operator TP,M : P(At) → P(At) as follows:

TP,M (I) = {p : there exist a clause C = p← q1, . . . , qm,¬r1, . . . ,¬rn

in P such that q1 ∈ I, . . . , qm ∈ I, r1 /∈M, . . . , rn /∈M}

The following is immediate, see [18] for unexplained notions.

Proposition 1. For every program P and every set M of atoms the operator TP,M is
monotone and continuous.

Thus the operator TP,M like all monotonic continuous operators, possesses a least fixed
point FP,M .

Given program P and M ⊆ At , we define the Gelfond-Lifschitz reduct of P , PM ,
as follows. For every clause C = p ← q1, . . . , qm,¬r1, . . . ,¬rn of P , execute the
following operations.

226 V.W. Marek and J.B. Remmel

(1) If some atom ri, 1 ≤ i ≤ n, belongs to M , then eliminate C altogether.
(2) In the remaining clauses that have not been eliminated by operation (1), eliminate
all the negated atoms.

The resulting programPM is a Horn propositional program. The programPM possesses
a least Herbrand model. If that least model of PM coincides with M , then M is called
a stable model for P . This gives rise to an operator GLP which associates to each
M ⊆ At , the least fixed point of TP,M . We will discuss the operator GLP and its
proof-theoretic connections in section 4.2.

3 Proof Schemes and Reduced Defining Equations

In this section we recall the notion of a proof scheme as defined in [8,3] and introduce
a related notion of defining equations.

Given a propositional logic program P , a proof scheme is defined by induction on
its length. Specifically, a proof scheme w.r.t. P (in short P -proof scheme) is a sequence
S = 〈〈C1, p1〉, . . . , 〈Cn, pn〉, U〉 subject to the following conditions:

(I) when n = 1, 〈〈C1, p1〉, U〉 is a P -proof scheme if C1 ∈ P , p1 = head(C1),
PosBody(C1) = ∅, and U = NegBody(C1) and
(II) when 〈〈C1, p1〉, . . . , 〈Cn, pn〉, U〉 is a P -proof scheme,
C = p← PosBody(C),¬NegBody(C) is a clause in the programP , and PosBody(C)
⊆ {p1, . . . , pn}, then

〈〈C1, p1〉, . . . , 〈Cn, pn〉, 〈C, p〉, U ∪ NegBody(C)〉

is a P -proof scheme.

When S = 〈〈C1, p1〉, . . . , 〈Cn, pn〉, U〉 is a P -proof scheme, then we call (i) the integer
n – the length of S, (ii) the set U – the support of S, and (iii) the atom pn – the
conclusion of S. We denote U by supp(S).

Example 1. Let P be a program consisting of four clauses: C1 = p ←, C2 = q ←
p,¬r, C3 = r ← ¬q, and C4 = s ← ¬t. Then we have the following examples of
P -proof schemes:

(a) 〈〈C1, p〉, ∅〉 is a P -proof scheme of length 1 with conclusion p and empty support.
(b) 〈〈C1, p〉, 〈C2, q〉, {r}〉 is a P -proof scheme of length 2 with conclusion q and sup-

port {r}.
(c) 〈〈C1, p〉, 〈C3, r〉, {q}〉 is a P -proof scheme of length 2 with conclusion r and sup-

port {q}.
(d) 〈〈C1, p〉, 〈C2, q〉, 〈C3, r〉, {q, r}〉 is a P -proof scheme of length 3 with conclusion

r and support {q, r}.

Proof scheme in (c) is an example of a proof scheme with unnecessary items (the first
term). Proof scheme (d) is an example of a proof scheme which is not internally con-
sistent in that r is in the support of its proof scheme and is also its conclusion. �

A P -proof scheme carries within itself its own applicability condition. In effect, a P -
proof scheme is a conditional proof of its conclusion. It becomes applicable when all

On the Continuity of Gelfond-Lifschitz Operator 227

the constraints collected in the support are satisfied. Formally, for any set of atoms M ,
we say that a P -proof scheme S is M -applicable if M ∩ supp(S) = ∅. We also say
that M admits S if S is M -applicable.

The fundamental connection between proof schemes and stable models [8,3] is given
by the following proposition.

Proposition 2. For every normal propositional program P and every set M of atoms,
M is a stable model of P if and only if the following conditions hold.

(i) For every p ∈ M , there is a P -proof scheme S with conclusion p such that M
admits S.

(ii) For every p /∈ M , there is no P -proof scheme S with conclusion p such that M
admits S.

Proposition 2 says that the presence and absence of the atom p in a stable model depends
only on the supports of proof schemes. This fact naturally leads to a characterization
of stable models in terms of propositional satisfiability. Given p ∈ At , the defining
equation for p w.r.t. P is the following propositional formula:

p⇔ (¬U1 ∨ ¬U2 ∨ . . .) (2)

where 〈U1, U2, . . .〉 is the list of all supports of P -proof schemes with conclusion p.
Here for any finite set S = {s1, . . . , sn} of atoms, ¬S = ¬s1∧· · ·∧¬sn. If p is not the
conclusion of any proof scheme, then we set the defining equation of p to be p ⇔ ⊥.
Also, in the case where all the supports of proof schemes of p are empty, we set the
defining equation of p to be p⇔ �. Up to a total ordering of the finite sets of atoms such
a formula is unique. For example, suppose we fix a total order on At , p1 < p2 < · · · .
Then given two sets of atoms, U = {u1 < · · · < um} and V = {v1 < · · · < vn}, we
say that U ≺ V , if either (i) um < vn, (ii) um = vn and m < n, or (iii) um = vn,
n = m, and (u1, . . . , un) is lexicographically less than (v1, . . . , vn). We say that (2) is
the defining equation for p relative to P if U1 ≺ U2 ≺ · · · . We will denote the defining
equation for p with respect to P by EqP

p .
For example, if P is a Horn program, then for every atom p, either the support of all

its proof schemes are empty or p is not the conclusion of any proof scheme. The first of
these alternatives occurs when p belongs to the least model of P , lm(P). The second
alternative occurs when p /∈ lm(P). The defining equations are p⇔ � (that is p) when
p ∈ lm(P) and p ⇔ ⊥ (that is ¬p) when p /∈ lm(P). When P is a stratified program
the defining equations are more complex, but the resulting theory is logically equivalent
to

{p : p ∈ Perf P } ∪ {¬p : p /∈ Perf P }

where Perf P is the unique stable model of P .
Let ΦP be the set {EqP

p : p ∈ At}. We then have the following consequence of
Proposition 2.

Proposition 3. Let P be a normal propositional program. Then stable models of P are
precisely the propositional models of the theory ΦP .

228 V.W. Marek and J.B. Remmel

When P is purely negative, i.e. all clauses C of P have PosBody(C) = ∅, the stable
and supported models of P coincide [19] and the defining equations reduce to Clark’s
completion [20] of P .

Let us observe that in general the propositional formulas on the right-hand-side of
the defining equations may be infinite.

Example 2. Let P be an infinite program consisting of clauses p ← ¬pi, for all i ∈ n.
In this case, the defining equation for p in P is infinite. That is, it is

p⇔ (¬p1 ∨ ¬p2 ∨ ¬p3 ∨ . . .)

�

The following observation is quite useful. If U1, U2 are two finite sets of propositional
atoms then

U1 ⊆ U2 if and only if ¬U2 |= ¬U1

Here |= is the propositional consequence relation. The effect of this observation is that
not all the supports of proof schemes are important, only the inclusion-minimal ones.

Example 3. Let P be an infinite program consisting of clauses p ← ¬p1, . . . ,¬pi, for
all i ∈ N . The defining equation for p in P is

p⇔ [¬p1 ∨ (¬p1 ∧ ¬p2) ∨ (¬p1 ∧ ¬p2 ∧ ¬p3) ∨ . . .]

which is infinite. But our observation above implies that this formula is equivalent to
the formula

p⇔ ¬p1

�

Motivated by the Example 3, we define the reduced defining equation for p relative to
P to be the formula

p⇔ (¬U1 ∨ ¬U2 ∨ . . .) (3)

whereUi range over inclusion-minimal supports of P -proof schemes for the atom p and
U1 ≺ U2 ≺ · · · . Again, if p is not the conclusion of any proof scheme, then we set the
defining equation of p to be p ⇔ ⊥. In the case, where there is a proof scheme of p
with empty support, then we set the defining equation of p to be p⇔ �. We denote this
formula as rEqP

p , and define rΦP to be the theory consisting of rEqP
p for all p ∈ At .

We then have the following strengthening of Proposition 3.

Proposition 4. Let P be a normal propositional program. Then stable models of P are
precisely the propositional models of the theory rΦP .

In our Example 3, the theory ΦP involved formulas with infinite disjunctions, but the
theory rΦP contains only usual finite propositions.

Given a normal propositional program P , we say that P is a finite support program
(FSP-program) if all the reduced defining equations for atoms with respect to P are
finite propositional formulas. Equivalently, a programP is an FSP-program if for every
atom p, there are only finitely many inclusion-minimal supports of P -proof schemes
for p.

On the Continuity of Gelfond-Lifschitz Operator 229

4 Continuity Properties of Operators and Proof Schemes

In this section we investigate continuity properties of operators and we will see that one
of those properties characterizes the class of FSP programs.

4.1 Continuity Properties of Monotone and Antimonotone Operators

Let us recall that P(At) denotes the set of all subsets of At . We say that any function
O : P(At) → P(At) is an operator on the set At of propositional atoms. An operator
O is monotone if for all sets X,Y ⊆ At , X ⊆ Y implies O(X) ⊆ O(Y). Likewise an
operator O is antimonotone if for all sets X,Y ⊆ At , X ⊆ Y implies O(Y) ⊆ O(X).
For a sequence 〈Xn〉n∈N of sets of atoms, we say that 〈Xn〉n∈N is monotonically
increasing if for all i, j ∈ N , i ≤ j implies Xi ⊆ Xj and we say that 〈Xn〉n∈N is
monotonically decreasing if for all i, j ∈ N , i ≤ j implies Xj ⊆ Xi.

There are four distinct classes of operators that we shall consider in this paper. First,
we shall consider two types of monotone operators, upper-half continuous monotone op-
erators and lower-half continuous monotone operators. That is, we say that a monotone
operator O is upper-half continuous if for every monotonically increasing sequence
〈Xn〉n∈N , O(

⋃
n∈N Xn) =

⋃
n∈N O(Xn). We say that a monotone operator O is

lower-half continuous if for every monotonically decreasing sequence
〈Xn〉n∈N , O(

⋂
n∈N Xn) =

⋂
n∈N O(Xn). In the Logic Programming literature the

first of these properties is called continuity. The classic result due to van Emden and
Kowalski is the following.

Proposition 5. For every Horn program P , the operator TP is upper-half continuous.

In general, the operator TP for Horn programs is not lower-half continuous. For ex-
ample, let P be the program consisting of the clauses p ← pi for i ∈ N . Then the
operator TP is not lower-half continuous. That is, if Xi = {pi, pi+1, . . .}, then clearly
p ∈ TP (Xi) for all i. However,

⋂
i Xi = ∅ and p �∈ TP (∅).

Lower-half continuous monotone operators have appeared in the Logic Programming
literature [21]. Even more generally, for a monotone operator O, let us define its dual
operator Od as follows:

Od(X) = At \O(At \X).

Then an operator O is upper-half continuous if and only if Od is lower-half continuous
[22]. Therefore, for any Horn program P , the operator T d

P is lower-half continuous.
For antimonotone operators, we have two additional notions of continuity. We say

that an antimonotone operator O is upper-half continuous if for every monotonically
increasing sequence 〈Xn〉n∈N , O(

⋃
n∈N Xn) =

⋂
n∈N O(Xn). Similarly, we say an

antimonotone operator O is lower-half continuous if for every monotonically decreas-
ing sequence 〈Xn〉n∈N , O(

⋂
n∈N Xn) =

⋃
n∈N O(Xn).

4.2 Gelfond-Lifschitz Operator GLP and Proof-Schemes

For the completeness sake, let us recall that the Gelfond-Lifschitz operator for a pro-
gram P , which we denote GLP , assigns to a set of atoms M the least fixpoint of the
operator TP,M or, equivalently, the least model NM of the program PM which is the
Gelfond-Lifschitz reduct of P via M [16]. The following fact is crucial.

230 V.W. Marek and J.B. Remmel

Proposition 6 ([16]). The operator GL is antimonotone.

Here is a useful proof-theoretic characterization of the operator GLP .

Proposition 7. Let P be a normal propositional program and M be a set of atoms.
Then

GLP (M) = {p : there exists a P -proof scheme S such that M admits S,

and p is the conclusion of S}

4.3 Continuity Properties of the Operator GLP

In this subsection, we state our results on the continuity properties of the operator GLP .
First, it is easy to prove that for every program P , the operator GLP is lower-half
continuous. Moreover, we can prove that if f is a lower-half continuous antimonotone
operator, then f = GLP for a suitably chosen program P . Finally, we can prove that
the operator GLP is upper-half continuous if and only if P is an FSP-program. That is,
GLP is upper-half continuous if for all atoms p the reduced defining equation for any p
(w.r.t. P) is finite. Thus we have the following results.

Proposition 8. ForeverynormalprogramP , theoperatorGLP is lower-half continuous.

The lower-half continuity of antimonotone operators is closely related to programs, as
shown in the following result.

Proposition 9. Let At be a denumerable set of atoms. Let f be an antimonotone and
lower-half continuous operator on P(At). Then there exists a normal logic program P
such that f = GLP .

We are now ready to state one of the main result of this paper.

Proposition 10. LetP be a normal propositional program.The following are equivalent:

(a) P is an FSP-program.
(b) The operator GLP is upper-half continuous, i.e.

GLP (
⋃

n∈N

Xn) =
⋂

n∈N

GLP (Xn)

for every monotonically increasing sequence 〈Xn〉n∈N .

5 Computing Stable Models Via Satisfiability, but without Loop
Formulas or Defining Equations

Proposition 3 characterized the stable models of a propositional program in terms of the
collection of all propositional valuations of the underlying set of atoms. In this section,
we give an alternative characterization in terms of the models of P , only. The proof of
this characterization uses Proposition 3, but relates stable models of finite propositional

On the Continuity of Gelfond-Lifschitz Operator 231

programs P to models of theories of size O(|P |). This is in contrast to Proposition 3
since the set of defining equations is, in general, of size exponential in |P |.

A subequation for an atom p is either a formula ¬p or a formula

p⇔ ¬S

where S is a support of a proof scheme for p. Here if S = ∅, then by convention
we interpret p ⇔ ¬S to be simply the atom p. The idea is that a subequation either
asserts absence of the atom p in the putative stable model or provides the reason for
the presence of p in the putative stable model. A candidate theory for program P is
the union of P and a set of subequations, one for each p ∈ At . CP is the class of all
candidate theories for the program P .

The key to our algorithm is the following result.

Proposition 11. 1. Let T ∈ CP . If T is consistent, then every propositional model of
T is a stable model for P .

2. For every stable model M of P , there is a theory T ∈ CP such that M is a model
for T .

Proposition 11, similarly to [1] characterizes stable models of logic programs via propo-
sitional satisfiability, except that theories are smaller.

Next we give an example of our approach to reducing the computation of stable mod-
els to satisfiability of propositional theories. It will be clear from this example that our
approach avoids having to compute the completion of the program and thus significantly
reduces the size of the input theories.

Example 4. Let P be a propositional program as follows:

p← t,¬q
p← ¬r
q ← ¬s
t←

Let us observe that the atom p has two supports of minimal proof schemes: {q} and
{r}. The atom q has just one support: {s}, the atom t has a single support - the empty
set. The atoms r and s have no support at all.

Thus there are three subequations for p:

p⇔ ¬q
p⇔ ¬r
¬p

Now, q has just two subequations: q ⇔ ¬s, and ¬q, t has also two subequations, t and
¬t, but this second one leads to contradiction whenever chosen. Finally each of r and s
have just one defining equation, ¬r, and ¬s, respectively.

First let us choose for p, the subequation ¬p, and for q, the subequation q ⇔ ¬s.
The remaining subequations are forced to t, ¬r, and ¬s. The resulting theory has nine
clauses, when we write our program in propositional form:

S = {¬p,¬r,¬s, t, q ⇔ ¬s} ∪ {¬t ∨ p ∨ q, r ∨ p, s ∨ q, t}.

232 V.W. Marek and J.B. Remmel

It is quite obvious that this theory is inconsistent. However, if we choose for p, the
subequation p ⇔ ¬r and for q, the subequation q ⇔ ¬s, then the resulting theory
written out in propositional form is

S = {p⇔ ¬r,¬r,¬s, t, q ⇔ ¬s} ∪ {¬t ∨ p ∨ q, r ∨ p, s ∨ q, t}.

In this case, {p, q, t} is a model of S and hence, {p, q, t} is a stable model of P . �

Let us observe that our discussion above implies an algorithm for computing stable
models. In this algorithm, we fix an order of propositional variables (atoms) and we

1. systematically generate proof-schemes for atoms,
2. then generate subequations (one per each atom), and
3. then submit the resulting theories to a SAT solver.

The algorithm described above can be implemented as a two-tier backtracking search,
with the on-line computation of supports of proof schemes using resolution to collect
the negative information derived from clauses, and the usual backtracking scheme of
DPLL. This second backtracking can be implemented using any DPLL-based SAT-
solver. Proposition 11 implies that the algorithm we outlined is both sound and com-
plete. Indeed, if the SAT solver returns a model M of a theory T , then M is a stable
model of P by Proposition 11(1). Otherwise we generate another candidate theory and
loop through this process until one satisfying assignment is found. Proposition 11(2)
guarantees the completeness of our algorithm.

Our algorithm is not using loop formulas like the algorithms of Lin and Zhao [1] or
Giunchiglia, Lierare and Maratea [23], but systematically searches for supports of proof
schemes, thus providing supports for atoms in the putative model. It also differs from
the modified loop formulas approach of Ferraris, Lee and Lifschitz [2] in that we do not
consider loops of the call-graph of P at all. Instead, we compute systematically proof
schemes and their supports for atoms. While the time-complexity of our algorithm is
significant, the space complexity is O(|P |). This is the effect of not looking at loop
formulas at all ([24]). The issue of the feasibility of practical implementation of the
above algorithm is not clear at the time of writing of this paper.

6 Extensions to CC -Programs

In [25] Niemelä and coauthors defined a significant extension of logic programming
with stable semantics which allows for programming with cardinality constraints, and,
more generally, with weight constraints. This extension has been further studied in
[26,27]. To keep things simple, we will limit our discussion to cardinality constraints
only, although it is possible to extend our arguments to any class of convex constraints
[28]. Cardinality constraints are expressions of the form lXu, where l, u ∈ N , l ≤ u
and X is a finite set of atoms. The semantics of an atom lXu is that a set of atoms M
satisfies lXu if and only if l ≤ |M ∩ X | ≤ u. When l = 0, we do not write it, and,
likewise, when u ≥ |X |, we omit it, too. Thus an atom p has the same meaning as 1{p}
while ¬p has the same meaning as {p}0.

On the Continuity of Gelfond-Lifschitz Operator 233

The stable semantics for CC -programs is defined via fixpoints of an analogue of
the Gelfond-Lifschitz operator GLP ; see the details in [25] and [26]. The operator in
question is neither monotone nor antimonotone. But when we limit our attention to the
programsP where clauses have the property that the head consists of a single atom (i.e.
are of the form 1{p}), then one can define an operator CCGLP which is antimonotone
and whose fixpoints are stable models of P . This is done as follows.

Given a clause C
p← l1X1u1, . . . , lmXmum,

we transform it into the clause

p← l1X1, . . . , lmXm, X1u1, . . . , Xmum (4)

[27]. We say that a clause C of the form (4) is a CC -Horn clause if it is of the form

p← l1X1, . . . , lmXm. (5)

A CC -Horn program is a CC -program all of whose clauses are of the form (5). If P
is a CC -Horn program, we can define the analogue of the one step provability operator
TP by defining that for a set of atom M ,

TP (M) = {p : (∃C = p← l1X1, . . . , lmXm)(∀i ∈ {1, . . .m})(|Xi∩M | ≥ li)} (6)

It is easy to see that TP is monotone operator and the least fixed point of TP is given by

lfp(TP) =
⋃
n≥0

T n
P (∅). (7)

We can define the analogue of the Gelfond-Lifschitz reduct of a CC -program, which
we call the NSS -reduct of P , as follows. Let P̄ denote the set of all transformed clauses
derived from P . Given a set of atoms M , we eliminate from P̄ those clauses where
some upper-constraint (Xiui) is not satisfied byM , i.e. |M∩Xi| > ui. In the remaining
clauses, the constraints of the formXiui are eliminated altogether. This leaves us with a
CC -Horn program PM . We then define CCGLP (M) to be the least fixed point of TPM

and say that M is a CC -stable model if M is a model of P and M = CCGLP (M).
The equivalence of this construction and the original construction in [25] for normal
CC -programs is shown in [27].

Next we define the analogues of P -proof schemes for normal CC -programs, i.e.
programs which consists entirely of clauses of the form (4). This is done by induction
as follows. When

C = p← X1u1, . . . , Xkuk

is a normal CC -clause without the cardinality-constraints of the form liXi then

〈〈C, p〉, {X1u1, . . . , Xkuk}〉

is a P -CC -proof scheme with support {X1u1, . . . , Xkuk}. Likewise, when

S = 〈〈C1, p1〉, . . . , 〈Cn, pn〉, U〉

is a P -CC -proof scheme,

234 V.W. Marek and J.B. Remmel

p← l1X1, . . . , lmXm, X1u1, . . . , Xmum

is a clause in P , and |X1 ∩ {p1, . . . , pn}| ≥ l1, . . ., |Xm ∩ {p1, . . . , pn}| ≥ lm, then

〈〈C1, p1〉, . . . , 〈Cn, pn〉, 〈C, p〉, U ∪ {X1u1, . . . , Xmum}〉

is a P -CC -proof scheme with support U ∪ {X1u1, . . .Xmum}. The notion of admit-
tance of a P -CC -proof scheme is similar to the notion of admittance of P -proof scheme
for normal programs P . That is, if S = 〈〈C1, p1〉, . . . , 〈Cn, pn〉, 〈C, p〉, U〉 is a CC -
proof scheme with support U = {X1u1, . . . Xnun}, then S is admitted by M if for
every Xiui ∈ U , M |= Xiui, i.e. |M ∩Xi| ≤ ui.

Similarly, we can associate a propositional formula φU so that M admits S if and
only if M |= φU as follows:

φU =
n∧

i=1

∨
W⊆Xi,|W |=|Xi|−ui

¬W. (8)

Then we can define a partial ordering on the set of possible supports of proof scheme
by defining U1) U2 ⇐⇒ φU2 |= φU1 . For example if U1 = 〈{1, 2, 3}2, {4, 5, 6}2〉
and U2 = 〈{1, 2, 3, 4, 5, 6}, 4〉, then

φU1 = (¬1 ∨ ¬2 ∨ ¬3) ∧ (¬4 ∨ ¬5 ∨ ¬6)

φU2 =
∨

1≤i<j≤6

(¬i ∧ ¬j).

Then clearly φU1 |= φU2 so that U2) U1. We then define a normal propositional
CC -program to be a FPS CC -program if for each p ∈ At, there are finitely many
)-minimal supports of P -CC -proof schemes with conclusion p.

We can also define analogue of the defining equation CCEqP
p of p relative to a

normal CC -program P as
p⇔ (φU1 ∨ φU2 ∨ · · ·) (9)

where 〈U1, U2, . . .〉 is a list of supports of all P -CC -proofs schemes with conclusion p.
Again up to a total ordering of possible finite supports, this formula is unique. Let ΦP

be the set {CCEqP
p : p ∈ At}. Similarly, we define the reduced defining equation for

p relative to P to be the formula

p⇔ (¬φU1 ∨ ¬φU2 ∨ . . .) (10)

where Ui range over)-minimal supports of P -CC -proof schemes for the atom p.
Then we have the following analogues of Propositions 2 and 3.

Proposition 12. For every normal propositional CC -program P and every set M of
atoms, M is a CC -stable model of P if and only if the following two conditions hold:

(i) for every p ∈ M , there is a P -CC -proof scheme S with conclusion p such that M
admits S and

On the Continuity of Gelfond-Lifschitz Operator 235

(ii) for every p /∈M , there is no P -CC -proof scheme S with conclusion p such that M
admits S.

Proposition 13. Let P be a normal propositional CC -program. Then CC -stable mod-
els of P are precisely the propositional models of the theory ΦP .

We also can prove the analogues of Propositions 6 and 7.

Proposition 14. For any CC-program P , the operator CCGLP is antimonotone.

Proposition 15. Let P be a normal propositional CC -program and M be a set of
atoms. Then

CCGLP (M) = {p : there exists a P -proof scheme S such that M admits S,

and p is the conclusion of S}

We can also prove that analogue of Proposition 8.

Proposition 16. For every normal CC -program P , the operator CCGLP is lower-half
continuous.

However, we can only prove the analogue of the first half of Proposition 10.

Proposition 17. Let P be a normal propositional CC -program. Then if P is an FSP-
program, the operator CCGLP is upper-half continuous, i.e.

CCGLP (
⋃

n∈N

Xn) =
⋂

n∈N

CCGLP (Xn)

for every monotonically increasing sequence 〈Xn〉n∈N .

We note that, alternatively, one can easily give a direct reduction of our CC -programs
to normal logic programs using the methods of [29] and the distributivity result for
disjunctions in the bodies of clauses of [30]. Such reductions, of course, lead to an
exponential blow up in the size of the representation.

7 Conclusions

In this paper, we have explored the applications of P -proof schemes. We have shown
that the Gelfond-Lifschitz operatorGLP is upper-half continuous if and only if for each
atom p, there are only finitely many minimal supports of P -proof schemes for p. We
also show how we can use P -proofs schemes to associate a natural defining equation
for each atom of p and how we can use proof schemes to generate candidate theories
whose propositional models correspond to stable models. This leads to an algorithm for
finding stable models where we submit candidate theories to SAT solvers.

We note that the investigations of proof systems in a related area, SAT, have played
a key role in establishing lower bounds on the complexity of algorithms for finding the
models. We wonder if there are analogous results in ASP. In particular, are there proof
systems for ASP that can be used to develop a deeper understanding of the complexity
issues related to finding stable models? The P -proof schemes described in this paper
represent one possible candidate of such a proof system for ASP.

236 V.W. Marek and J.B. Remmel

Acknowledgments

The research of the first author was supported by the National Science Foundation under
Grant IIS-0325063 and by the Kentucky Science and Engineering Foundation under
Grant KSEF-1036-RDE-008. The research of the second author was supported by the
National Science Foundation under Grant DMS 0654060.

References

1. Lin, F., Zhao, Y.: Assat: Computing answer sets of a logic program by sat solvers. In: Pro-
ceedings of AAAI 2002, pp. 112–117 (2002)

2. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of Lin-Zhao theorem. Annals of Mathe-
matics and Artificial Intelligence 47, 79–101 (2006)

3. Marek, V., Truszczyński, M.: Nonmonotonic Logic. Springer, Heidelberg (1993)
4. Bonatti, P.: Reasoning with infinite stable models. Artificial Intelligence Journal 156, 75–111

(2004)
5. Milnikel, R.: Sequent calculi for skeptical reasoning in predicate default logic and other

nonmonotonic systems. Annals of Mathematics and Artificial Intelligence 44, 1–34 (2005)
6. Lifschitz, V.: Foundations of logic programming. In: Principles of Knowledge Representa-

tion, pp. 69–127. CSLI Publications (1996)
7. Bondarenko, A., Toni, F., Kowalski, R.: An assumption-based framework for non-monotonic

reasoning. In: Proceedings of LPNMR 1993, pp. 171–189. MIT Press, Cambridge (1993)
8. Marek, W., Nerode, A., Remmel, J.: Nonmonotonic rule systems I. Annals of Mathematics

and Artificial Intelligence 1, 241–273 (1990)
9. Marek, W., Nerode, A., Remmel, J.: Nonmonotonic rule systems II. Annals of Mathematics

and Artificial Intelligence 5, 229–264 (1992)
10. Marek, W., Nerode, A., Remmel, J.: A context for belief revision: Normal logic programs.

In: Proceedings, Workshop on Defeasible Reasoning and Constraint Solving, International
Logic Programming Symposium (1991)

11. Marek, W., Nerode, A., Remmel, J.: How complicated is the set of stable models of a logic
program? Annals of Pure and Applied Logic 56, 119–136 (1992)

12. Marek, W., Nerode, A., Remmel, J.: The stable models of predicate logic programs. Journal
of Logic Programming 21, 129–154 (1994)

13. Marek, W., Nerode, A., Remmel, J.: Context for belief revision: Forward chaining-normal
nonmonotonic rule systems. Annals of Pure and Applied Logic 67, 269–324 (1994)

14. Gebser, M., Schaub, T.: Generic tableaux for answer set programming. In: Proceedings of
International Conference on Logic Programming, 2007, pp. 119–133 (2007)

15. Järvisalo, M., Oikarinen, E.: Extended asp tableaux and rule redundancy in normal logic pro-
grams. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 134–148. Springer,
Heidelberg (2007)

16. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceed-
ings of the International Joint Conference and Symposium on Logic Programming, pp. 1070–
1080 (1988)

17. Lloyd, J.: Foundations of Logic Programming. Springer, Heidelberg (1989)
18. Apt, K.: Logic programming. In: van Leeuven, J. (ed.) Handbook of Theoretical Computer

Science, pp. 493–574. MIT Press, Cambridge (1990)
19. Dung, P., Kanchanasut, K.: On the generalized predicate completion of non-Horn programs.

In: Logic programming. Proceedings of the North American Conference (1989)

On the Continuity of Gelfond-Lifschitz Operator 237

20. Clark, K.: Negation as failure. In: Minker, J., Gallaire, H. (eds.) Logic and data bases, pp.
293–322. Plenum Press (1978)

21. Doets, K.: From Logic to Logic Programming. MIT Press, Cambridge (1994)
22. Jonsson, B., Tarski, A.: Boolean algebras with operators. American Journal of Mathemat-

ics 73, 891–939 (1951)
23. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional

satisfiability. Journal of Automated Reasoning 36, 345–377 (2006)
24. Lifschitz, V., Razborov, A.: Why are there so many loop formulas. Annals of Mathematics

and Artificial Intelligence 7, 261–268 (2006)
25. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-

tics. Artificial Intelligence Journal 138, 181–234 (2002)
26. Marek, V., Remmel, J.: Set constraints in logic programming. In: Lifschitz, V., Niemelä, I.

(eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 154–167. Springer, Heidelberg (2003)
27. Marek, V., Niemelä, I., Truszczyński, M.: Logic programs with monotone abstract constraint

atoms. Theory and Practice of Logic Programming 8, 167–199 (2008)
28. Liu, L., Truszczyński, M.: Properties of programs with monotone and convex constraints. In:

Proceedings of the 20th National Conference on Artificial Intelligence, pp. 701–706 (2005)
29. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of

Logic Programming 5, 45–74 (2005)
30. Lifschitz, V., Tang, L., Turner, H.: Nested expressions in logic programs. Annals of Mathe-

matics and Artificial Intelligence 25, 369–389 (1999)

αleanTAP : A Declarative Theorem Prover for
First-Order Classical Logic

Joseph P. Near�, William E. Byrd, and Daniel P. Friedman

Indiana University, Bloomington, IN 47405
{jnear,webyrd,dfried}@cs.indiana.edu

Abstract. We present αleanTAP , a declarative tableau-based theorem
prover written as a pure relation. Like leanTAP, on which it is based,
αleanTAP can prove ground theorems in first-order classical logic. Since
it is declarative, αleanTAP generates theorems and accepts non-ground
theorems and proofs. The lack of mode restrictions also allows the user
to provide guidance in proving complex theorems and to ask the prover
to instantiate non-ground parts of theorems. We present a complete
implementation of αleanTAP , beginning with a translation of leanTAP into
αKanren, an embedding of nominal logic programming in Scheme. We
then show how to use a combination of tagging and nominal unification
to eliminate the impure operators inherited from leanTAP, resulting in a
purely declarative theorem prover.

1 Introduction

We present a declarative theorem prover for first-order classical logic. We call
this prover αleanTAP , since it is based on the leanTAP [1] prover and written in
αKanren [2]. Our prover is a pure relation and has no mode restrictions [3]; given
a logic variable as the theorem to be proved, αleanTAP generates valid theorems.

leanTAP is a lean tableau-based theorem prover for first-order logic due to
Beckert and Posegga [1]. Written in Prolog, it is extremely concise and is capable
of a high rate of inference. leanTAP uses Prolog’s cut (!) in three of its five
clauses in order to avoid nondeterminism, and uses copy term/2 to make copies
of universally quantified formulas. Although Beckert and Posegga take advantage
of Prolog’s unification and backtracking features, their use of the impure cut and
copy term/2 makes leanTAP non-declarative.

We show how to eliminate these impure operators from leanTAP. To eliminate
the use of Prolog’s cut, we introduce a tagging scheme that makes our formulas
unambiguous. To eliminate the use of copy term/2, we use substitution instead
of copying terms. Universally quantified formulas are used as templates, rather
than instantiated directly; instead of representing universally quantified variables
with logic variables, we use the noms of nominal logic [4]. We then use nominal
unification [5] to write a substitution relation that replaces quantified variables
with logic variables, leaving the original template untouched.
� Now at the Massachusetts Institute of Technology: jnear@csail.mit.edu

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 238–252, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

jnear@csail.mit.edu

αleanTAP : A Declarative Theorem Prover for First-Order Classical Logic 239

The resulting declarative theorem prover is interesting for two reasons. First,
because of the technique used to arrive at its definition: we use declarative sub-
stitution rather than copy term/2. To our knowledge, there is no method for
copying arbitrary terms declaratively. Our solution is not completely general
but is useful when a term is used as a template for copying, as in the case of
leanTAP. Second, because of the flexibility of the prover itself: αleanTAP is capable
of instantiating non-ground theorems during the proof process, and accepts non-
ground proofs, as well. Whereas leanTAP is fully automated and either succeeds
or fails to prove a given theorem, αleanTAP can accept guidance from the user
in the form of a partially-instantiated proof, regardless of whether the theorem
is ground.

We present an implementation of αleanTAP , demonstrating our technique for
eliminating cuts and copy term/2 from leanTAP. Our implementation demon-
strates our contributions: first, it illustrates a method for eliminating common
impure operators, and demonstrates the use of nominal logic for representing
formulas in first-order logic; second, it shows that the tableau process can be
represented as a relation between formulas and their tableaux; and third, it
demonstrates the flexibility of relational provers to mimic the full spectrum of
theorem provers, from fully automated to fully dependent on the user.

We proceed as follows. In section 2 we provide a brief description of αKanren
and describe the concept of tableau theorem proving. In section 3 we motivate
our declarative prover by examining its declarative properties and the proofs it
returns. In section 4 we present the implementation of αleanTAP . In section 5 we
briefly examine αleanTAP ’s performance. In section 6, we discuss related work.
Familiarity with αKanren and knowledge of tableau theorem proving would be
helpful; for more on these topics, see the references given in section 2.

2 Preliminaries

We begin by presenting a brief overview of αKanren, the language in which
αleanTAP is written. We also provide an introduction to tableau theorem proving
and its implementation in leanTAP.

2.1 αKanren Refresher

αKanren is an embedding of nominal logic programming in Scheme. It extends
the Scheme language with a term constructor �� (pronounced “tie”) and five
operators: ≡, #, exist1, fresh, and conde. In addition to these declarative
operators, we use the impure operator conda to model Prolog’s cut.
≡ unifies two terms using nominal unification. exist and fresh, which are

syntactically similar to Scheme’s lambda and whose bodies are conjoined, are
used to introduce new lexical variables; those introduced by exist bind logic (or
unification) variables, while those introduced by fresh bind noms (also called
“names” or “atoms” in nominal logic). A nom unifies only with a logic variable
1 The name exist is chosen to avoid conflict with R6RS Scheme’s [6] exists.

240 J.P. Near, W.E. Byrd, and D.P. Friedman

or with itself; in αleanTAP , noms represent variable names. # is a freshness
constraint: (# a t) asserts that the nom a does not occur free in t . �� is a term
constructor: (�� a t) creates a term in which all free occurrences of the nom a
in t are considered bound. Thus (# a (�� a t)) always succeeds.

conde, which is syntactically similar to cond, expresses a disjunction of
clauses. Each clause may contain arbitrarily many conjoined goals. conda is
similar to conde, but only a single clause of a conda may succeed. The success-
ful clause may succeed an arbitrary number of times, but once its first goal is
successful, no other clause may succeed. This behavior is similar to placing a cut
(!) before the first conjunct in the body of each relevant clause.

run provides an interface between Scheme and αKanren; it allows the user
to limit the number of answers returned, and to specify a logic variable whose
value should be reified to obtain answers. Reification is the process of replacing
distinct logic variables in a term with unique names. The first such variable
to be found is represented by the symbol 0 , the second by 1 , and so on. For
example:

(run5 (q)
(exist (x y z)

(conde

((≡ x 3) (≡ y 2) (≡ z y))
((≡ x y) (≡ y z))
((≡ x z)))

(≡ ‘(,x ,y ,z)2q)))

⇒ ((3 2 2) (0 0 0) (0 1 0))

This run expression has three answers, each corresponding to one line of the
conde. In the first answer, all three variables have been instantiated to ground
values. In the second, the three variables have been unified with one another,
so they have the same reified value. In the third, x and z share the same reified
value, which is distinct from that of y.

Nominal unification equates α-equivalent binders:

(run1 (q) (fresh (a b) (≡ (�� a a) (�� b b)))) ⇒ (0)

Although the noms a and b are distinct and would therefore fail to unify, this
run expression succeeds. Like the terms λa.a and λb.b, the terms (�� a a) and
(�� b b) bind in the same way and are thus α-equivalent.

For a more complete description of αKanren, see Byrd and Friedman [2]. A
newer implementation of αKanren in R6RS Scheme [6] was used in the develop-
ment of αleanTAP 3; this version uses triangular substitutions [7] instead of idem-
potent substitutions and is significantly faster. αKanren is based on αProlog [8],
which implements the nominal unification of Urban, Pitts, and Gabbay [5], and
miniKanren, an earlier logic programming language [9,10].

2 Here, backquote and comma are used to build a list of logic variables: the expression
‘(,x ,y ,z) is equivalent to [X, Y, Z] in Prolog. Similarly, the expression ‘(,x . ,y)
constructs a pair, and is equivalent to [X|Y] in Prolog.

3 The latest αKanren and αleanTAP source code is available at
https://code.launchpad.net/∼jnear-csail/minikanren/alphaleanTAP

https://code.launchpad.net/~jnear-csail/minikanren/alphaleanTAP

αleanTAP : A Declarative Theorem Prover for First-Order Classical Logic 241

2.2 Tableau Theorem Proving

Tableau is a method of proving first-order theorems that works by refuting the
theorem’s negation. In our description we assume basic knowledge of first-order
logic; for coverage of this subject and a more complete description of tableau
proving, see Fitting [11]. For simplicity, we consider only formulas in Skolem-
ized negation normal form (NNF). Converting a formula to this form requires
removing existential quantifiers through Skolemization, reducing logical connec-
tives so that only ∧, ∨, and ¬ remain, and pushing negations inward until they
are applied only to literals—see section 3 of Beckert and Posegga [1] for details.

To form a tableau, a compound formula is expanded into branches recursively
until no compound formulas remain. The leaves of this tree structure are referred
to as literals. leanTAP forms and expands the tableau according to the following
rules. When the prover encounters a conjunction x ∧ y, it expands both x and
y on the same branch. When the prover encounters a disjunction x∨ y, it splits
the tableau and expands x and y on separate branches. Once a formula has been
fully expanded into a tableau, it can be proved unsatisfiable if on each branch
of the tableau there exist two complementary literals a and ¬a (each branch is
closed). In the case of propositional logic, syntactic comparison is sufficient to
find complementary literals; in first-order logic, sound unification must be used.
A closed tableau represents a proof that the original formula is unsatisfiable.

The addition of universal quantifiers makes the expansion process more com-
plicated. To prove a universally quantified formula ∀x.M , leanTAP generates a
logic variable v and expands M , replacing all occurrences of x with v (i.e., it
expands M ′ where M ′ = M [v/x]). If leanTAP is unable to close the current
branch after this expansion, it has the option of generating another logic vari-
able and expanding the original formula again. When the prover expands the
formula ∀x.F (x) ∧ (¬F (a) ∨ ¬F (b)), for example, ∀x.F (x) must be expanded
twice, since x cannot be instantiated to both a and b.

3 Introducing αleanTAP

We begin by presenting some examples of αleanTAP ’s abilities, both in proving
ground theorems and in generating theorems. We also explore the proofs gen-
erated by αleanTAP , and show how passing partially-instantiated proofs to the
prover can greatly improve its performance.

3.1 Running Forwards

Both leanTAP and αleanTAP can prove ground theorems; in addition, αleanTAP
produces a proof. This proof is a list representing the steps taken to build a
closed tableau for the theorem; Paulson [12] has shown that translation to a more
standard format is possible. Since a closed tableau represents an unsatisfiable
formula, such a list of steps proves that the negation of the formula is valid. If the
list of steps is ground, the proof search becomes deterministic, and αleanTAP acts
as a proof checker.

242 J.P. Near, W.E. Byrd, and D.P. Friedman

leanTAP encodes first-order formulas using Prolog terms. For example, the
term (p(b),all(X,(-p(X);p(s(X))))) represents p(b) ∧ ∀x.¬p(x) ∨ p(s(x)). In
our prover, we represent formulas using Scheme lists with extra tags:

(and (pos (app p (app b))) (forall (�� a (or (neg (app p (var a)))
(pos (app p (app s (var a))))))))

Consider Pelletier Problem 18 [13]: ∃y.∀x.F (y) ⇒ F (x). To prove this theorem
in αleanTAP , we transform it into the following negation of the NNF:

(forall (�� a (and (pos (app f (var a))) (neg (app f (app g1 (var a)))))))

where (app g1 (var a)) represents the application of a Skolem function to the
universally quantified variable a. Passing this formula to the prover, we obtain
the proof (univ conj savefml savefml univ conj close). This proof lists the steps
the prover (presented in section 4.3) follows to close the tableau. Because both
conjuncts of the formula contain the nom a, we must expand the universally
quantified formula more than once.

Partially instantiating the proof helps αleanTAP prove theorems with similar
subparts. We can create a non-ground proof that describes in general how to
prove the subparts and have αleanTAP fill in the trivial differences. This can
speed up the search for a proof considerably. By inspecting the negated NNF of
Pelletier Problem 21, for example, we can see that there are at least two portions
of the theorem that will have the same proof. By specifying the structure of the
first part of the proof and constraining the identical portions by using the same
logic variable to represent both, we can give the prover some guidance without
specifying the whole proof. We pass the following non-ground proof to αleanTAP :

(conj univ split (conj savefml savefml conj split x x)
(conj savefml savefml conj split (close) (savefml split y y)))

On our test machine, our prover solves the original problem with no help in 68
milliseconds (ms); given the knowledge that the later parts of the proof will be
duplicated, the prover takes only 27 ms. This technique also yields improvement
when applied to Pelletier Problem 43: inspecting the negated NNF of the for-
mula, we see two parts that look nearly identical. The first part of the negated
NNF—the part representing the theorem itself—has the following form:

(and (or (and (neg (app Q (app g4) (app g3)))
(pos (app Q (app g3) (app g4))))

(and (pos (app Q (app g4) (app g3)))
(neg (app Q (app g3) (app g4))))) . . .)

Since we suspect that the same proof might suffice for both branches of the the-
orem, we give the prover the partially-instantiated proof (conj split x x). Given
just this small amount of help, αleanTAP proves the theorem in 720 ms, com-
pared to 1.5 seconds when the prover has no help at all. While situations in
which large parts of a proof are identical are rare, this technique also allows us
to handle situations in which different parts of a proof are merely similar by
instantiating as much or as little of the proof as necessary.

αleanTAP : A Declarative Theorem Prover for First-Order Classical Logic 243

3.2 Running Backwards

Unlike leanTAP, αleanTAP can generate valid theorems. Some interpretation of
the results is required since the theorems generated are negated formulas in
NNF.4 In the example

(run1 (q) (exist (x) (proveo q ’() ’() ’() x)))
⇒ ((and (pos (app 0)) (neg (app 0))))

the reified logic variable 0 represents any first-order formula p, and the entire
answer represents the formula p ∧ ¬p. Negating this formula yields the original
theorem: ¬p ∨ p, or the law of excluded middle. We can also generate more
complicated theorems; here we use the “generate and test” idiom to find the
first theorem matching the negated NNF of the inference rule modus ponens:

(run1 (q)
(exist (x)

(proveo x ’() ’() ’() q)
(≡ ’(and (and (or (neg (app a)) (pos (app b))) (pos (app a)))

(neg (app b)))
x)))

⇒ ((conj conj split (savefml close) (savefml savefml close)))

This process takes about 5.1 seconds; modus ponens is the 173rd theorem to
be generated, and the prover also generates a proof of its validity. When this
proof is given to αleanTAP , modus ponens is the sixth theorem generated, and
the process takes only 20 ms.

Thus the declarative nature of αleanTAP is useful both for generating theorems
and for producing proofs. Due to this flexibility, αleanTAP could become the core
of a larger proof system. Automated theorem provers like leanTAP are limited in
the complexity of the problems they can solve, but given the ability to accept
assistance from the user, more problems become tractable.

As an example, consider Pelletier Problem 47: Schubert’s Steamroller. This
problem is difficult for tableau-based provers like leanTAP and αleanTAP , and
neither can solve it automatically [1]. Given some help, however, αleanTAP can
prove the Steamroller. Our approach is to prove a series of smaller lemmas that
act as stepping stones toward the final theorem; as each lemma is proved, it
is added as an assumption in proving the remaining ones. The proof process
is automated—the user need only specify which lemmas to prove and in what
order. Using this strategy, αleanTAP proves the Steamroller in about five seconds;
the proof requires twenty lemmas.
αleanTAP thus offers an interesting compromise between large proof assistants

and smaller automated provers. It achieves some of the capabilities of a larger
system while maintaining the lean deduction philosophy introduced by leanTAP.
Like an automated prover, it is capable of proving simple theorems without
user guidance. Confronted with a more complex theorem, however, the user can

4 The full implementation of αleanTAP includes a simple declarative translator from
negated NNF to a positive form.

244 J.P. Near, W.E. Byrd, and D.P. Friedman

provide a partially-instantiated proof; αleanTAP can then check the proof and
fill in the trivial parts the user has left out. Because αleanTAP is declarative, the
user may even leave required axioms out of the theorem to be proved and have
the system derive them. This flexibility comes at no extra cost to the user—the
prover remains both concise and reasonably efficient.

The flexibility of αleanTAP means that it could be made interactive through
the addition of a read-eval-print loop and a simple proof translator between
αleanTAP ’s proofs and a more human-readable format. Since the proof given to
αleanTAP may be partially instantiated, such an interface would allow the user
to conveniently guide αleanTAP in proving complex problems. With the addition
of equality and the ability to perform single beta steps, this flexibility would
become more interesting—in addition to reasoning about programs and proving
properties about them, αleanTAP would instantiate non-ground programs during
the proof process.

4 Implementation

We now present the implementation of αleanTAP . We begin with a translation
of leanTAP from Prolog into αKanren. We then show how to eliminate the trans-
lation’s impure features through a combination of substitution and tagging.

leanTAP implements both expansion and closing of the tableau. When the
prover encounters a conjunction, it uses its argument UnExp as a stack (Figure 1):
leanTAP expands the first conjunct, pushing the second onto the stack for later
expansion. If the first conjunct cannot be refuted, the second is popped off the
stack and expansion begins again. When a disjunction is encountered, the split
in the tableau is reflected by two recursive calls. When a universal quantifier is
encountered, the quantified variable is replaced by a new logic variable, and the
formula is expanded. The FreeV argument is used to avoid replacing the free
variables of the formula. leanTAP keeps a list of the literals it has encountered
on the current branch of the tableau in the argument Lits. When a literal is
encountered, leanTAP attempts to unify its negation with each literal in Lits; if
any unification succeeds, the branch is closed. Otherwise, the current literal is
added to Lits and expansion continues with a formula from UnExp.

4.1 Translation to αKanren

While αKanren is similar to Prolog with the addition of nominal unification,
αKanren also uses a variant of interleaving depth-first search [14], so the order
of conde clauses in αKanren is irrelevant. Because of Prolog’s depth-first search,
leanTAP must use VarLim to limit its search depth; in αKanren, VarLim is not
necessary, and thus we omit it.

In Figure 1 we present mKleanTAP, our translation of leanTAP into αKanren;
we label two clauses (1©, 2©), since we will modify these clauses later. To express
Prolog’s cuts, our definition uses conda. The final two clauses of leanTAP do
not contain Prolog cuts; in mKleanTAP, they are combined into a single clause

αleanTAP : A Declarative Theorem Prover for First-Order Classical Logic 245

containing a conde. In place of leanTAP ’s recursive call to prove to check the
membership of Lit in Lits, we call membero, which performs a membership
check using sound unification.5 Prolog’s copy term/2 is not built into αKanren;
this addition is available as part of the mKleanTAP source code.

(define proveo

(λ (fml unexp lits freev)
prove((E1,E2),UnExp,Lits,

FreeV,VarLim) :- !,
prove(E1,[E2|UnExp],Lits,

FreeV,VarLim).

(conda

((exist (e1 e2)
(≡ ‘(and ,e1 ,e2) fml)
(proveo e1 ‘(,e2 . ,unexp) lits freev)))

prove((E1;E2),UnExp,Lits,
FreeV,VarLim) :- !,

prove(E1,UnExp,Lits,FreeV,VarLim),
prove(E2,UnExp,Lits,FreeV,Varlim).

((exist (e1 e2)
(≡ ‘(or ,e1 ,e2) fml)
(proveo e1 unexp lits freev)
(proveo e2 unexp lits freev)))

prove(all(X,Fml),UnExp,Lits,
FreeV,VarLim) :- !,

\+ length(FreeV,VarLim),
copy_term((X,Fml,FreeV),

(X1,Fml1,FreeV)),
append(UnExp,[all(X,Fml)],UnExp1),
prove(Fml1,UnExp1,Lits,

[X1|FreeV],VarLim).

1© ((exist (x x1 body body1 unexp1)
(≡ ‘(forall ,x ,body) fml)
(copy-termo ‘(,x ,body ,freev)

‘(,x1 ,body1 ,freev))
(append o unexp ‘(,fml) unexp1)
(proveo body1 unexp1 lits

‘(,x1 . ,freev))))

prove(Lit,_,[L|Lits],_,_) :-
(Lit = -Neg; -Lit = Neg) ->
(unify(Neg,L);
prove(Lit,[],Lits,_,_)).

2© ((conde

((exist (neg)
(conda

((≡ ‘(not ,neg) fml))
((≡ ‘(not ,fml) neg)))

(membero neg lits)))
prove(Lit,[Next|UnExp],Lits,

FreeV,VarLim) :-
prove(Next,UnExp,[Lit|Lits],

FreeV,VarLim).

((exist (next unexp1)
(≡ ‘(,next . ,unexp1) unexp)
(proveo next unexp1 ‘(,fml . ,lits)

freev))))))))

Fig. 1. leanTAP and mKleanTAP : a translation from Prolog to αKanren

4.2 Eliminating copy-termo

Since copy-termo is an impure operator, its use makes proveo non-declarative:
reordering the goals in the prover can result in different behavior. For example,
moving the call to copy-termo after the call to proveo causes the prover to diverge
when given any universally quantified formula. To make our prover declarative,
we must eliminate the use of copy-termo.

Tagging the logic variables that represent universally quantified variables al-
lows the use of a declarative technique that creates two pristine copies of the
original term: one copy may be expanded and the other saved for later copying.
5 We define membero in Figure 3; it uses sound unification (≡

√
).

246 J.P. Near, W.E. Byrd, and D.P. Friedman

Unfortunately, this copying examines the entire body of each quantified formula
and instantiates the original term to a potentially invalid formula.

Another approach is to represent quantified variables with symbols or strings.
When a new instantiation is needed, a new variable name can be generated,
and the new name can be substituted for the old without affecting the original
formula. This solution does not destroy the prover’s input, but it is difficult to
ensure that the provided data is in the correct form declaratively: if the formula
to be proved is non-ground, then the prover must generate unique names. If the
formula does contain these names, however, the prover must not generate new
ones. This problem can be solved with a declarative preprocessor that expects
a logical formula without names and puts them in place. If the preprocessor is
passed a non-ground formula, it instantiates the formula to the correct form. The
requirement of a preprocessor, however, means the prover itself is not declarative.

We use nominal logic [4] to solve the copy-termo problem. Nominal logic is
designed to handle the complexities of dealing with names and binders declara-
tively. Since noms represent unique names, we achieve the benefits of the symbol
or string approach without the use of a preprocessor. We can generate unique
names each time we encounter a universally quantified formula, and use nominal
unification to perform the renaming of the quantified variable. If the original for-
mula is uninstantiated, our newly-generated name is unique and is put in place
correctly; we no longer need a preprocessor to perform this function.

Using the tools of nominal logic, we can modify mKleanTAP to represent uni-
versally quantified variables using noms and to perform substitution instead of
copying. When the prover reaches a literal, however, it must replace each nom
with a logic variable, so that unification may successfully compare literals. To
accomplish this, we associate a logic variable with each unique nom, and replace
every nom with its associated variable before comparing literals. These variables
are generated each time the prover expands a quantified formula.

To implement this strategy, we change our representation of formulas slightly.
Instead of representing ∀x.F (x) as (forall x (f x)), we use a nom wrapped in a
var tag to represent a variable reference, and the term constructor �� to represent
the ∀ binder: (forall (�� a (f (var a)))), where a is a nom. The var tag allows us
to distinguish noms representing variables from other formulas. We now write a
relation subst-lito to perform substitution of logic variables for tagged noms in
a literal, and we modify the literal case of proveo to use it. We also replace the
clause handling forall formulas and define lookupo. The two clauses of lookupo

overlap, but since each mapping in the environment is from a unique nom to a
logic variable, a particular nom will never appear twice.

We present the changes needed to eliminate copy-termo from mKleanTAP in
Figure 2. Instead of copying the body of each universally quantified formula, we
generate a logic variable x and add an association between the nom representing
the quantified variable and x to the current environment. When we prepare to
close a branch of the tableau, we call subst-lito, replacing the noms in the current
literal with their associated logic variables.

αleanTAP : A Declarative Theorem Prover for First-Order Classical Logic 247

1© ((fresh (a)
(exist (x body unexp1)

(≡ ‘(forall ,(�� a body)) fml)
(append o unexp ‘(,fml) unexp1)
(proveo body unexp1 lits

‘((,a . ,x) . ,env)))))

2© ((exist (lit)
(subst-lito fml env lit)
(conde

((exist (neg)
(conda

((≡ ‘(not ,neg) lit))
((≡ ‘(not ,lit) neg)))

(membero neg lits)))
((exist (next unexp1)

(≡ ‘(,next . ,unexp1) unexp)
(proveo next unexp1 ‘(,lit . ,lits)

env))))))

(define lookupo

(λ (a env out)
(exist (first rest)

(conde

((≡ ‘((,a . ,out) . ,rest) env))
((≡ ‘(,first . ,rest) env)
(lookupo a rest out))))))

(define subst-lito

(λ (fml env out)
(conda

((exist (a)
(≡ ‘(var ,a) fml)
(lookupo a env out)))

((exist (e1 e2 r1 r2)
(≡ ‘(,e1 . ,e2) fml)
(≡ ‘(,r1 . ,r2) out)
(subst-lito e1 env r1)
(subst-lito e2 env r2)))

((≡ fml out)))))

Fig. 2. Changes to mKleanTAP to eliminate copy-termo

The original copy term/2 approach used by leanTAP and mKleanTAP avoids
replacing free variables by copying the list (x body freev). The copied version is
unified with the list (x1 body1 freev), so that only the variable x will be replaced
by a new logic variable—the free variables will be copied, but those copies will
be unified with the original variables afterwards. Since our substitution strategy
does not affect free variables, the freev argument is no longer needed, and so we
have eliminated it.

4.3 Eliminating conda

Both proveo and subst-lito use conda because the clauses that recognize literals
overlap with the other clauses. To solve this problem, we have designed a tagging
scheme that ensures that the clauses of our substitution and proveo relations do
not overlap. To this end, we tag both positive and negative literals, applications,
and variables. Constants are represented by applications of zero arguments. Our
prover thus accepts formulas of the following form:

Fml → (and Fml Fml) | (or Fml Fml) | (forall (�� Nom Fml)) | Lit
Lit → (pos Term) | (neg Term)
Term → (var Nom) | (app Symbol Term*)

This scheme has been chosen carefully to allow unification to compare lit-
erals. In particular, the tags on variables must be discarded before literals are
compared. Consider the two non-ground literals (not (f x)) and (f (p y)). These
literals are complementary: the negation of one unifies with the other, associ-
ating x with (p y). When we apply our tagging scheme, however, these literals

248 J.P. Near, W.E. Byrd, and D.P. Friedman

become (neg (app f (var x))) and (pos (app f (app p (var y)))), respectively, and
are no longer complementary: their subexpressions (var x) and (app p (var y))
do not unify. To avoid this problem, our substitution relation discards the var
tag when it replaces noms with logic variables.

(define proveo

(λ (fml unexp lits env proof)
(conde

((exist (e1 e2 prf)
(≡ ‘(and ,e1 ,e2) fml)
(≡ ‘(conj . ,prf) proof)
(proveo e1 ‘(,e2 . ,unexp)

lits env prf)))
((exist (e1 e2 prf1 prf2)

(≡ ‘(or ,e1 ,e2) fml)
(≡ ‘(split ,prf1 ,prf2) proof)
(proveo e1 unexp lits env prf1)
(proveo e2 unexp lits env prf2)))

((fresh (a)
(exist (x body unexp1 prf)

(≡ ‘(forall ,(�� a body)) fml)
(≡ ‘(univ . ,prf) proof)
(append o unexp ‘(,fml) unexp1)
(proveo body unexp1 lits

‘((,a . ,x) . ,env) prf))))
((exist (lit)

(subst-lito fml env lit)
(conde

((exist (tm neg)
(≡ ‘(close) proof)
(conde

((≡ ‘(pos ,tm) lit)
(≡ ‘(neg ,tm) neg))

((≡ ‘(neg ,tm) lit)
(≡ ‘(pos ,tm) neg)))

(membero neg lits)))
((exist (next unexp1 prf)

(≡ ‘(,next . ,unexp1) unexp)
(≡ ‘(savefml . ,prf) proof)
(proveo next unexp1 ‘(,lit . ,lits)

env prf)))))))))

(define membero

(λ (x ls)
(exist (a d)

(≡ ‘(,a . ,d) ls)
(conde

((≡
√

a x))
((membero x d))))))

(define append o

(λ (ls s out)
(conde

((≡ ’() ls) (≡ s out))
((exist (a d r)

(≡ ‘(,a . ,d) ls)
(≡ ‘(,a . ,r) out)
(append o d s r))))))

(define subst-lito

(λ (fml env out)
(conde

((exist (l r)
(≡ ‘(pos ,l) fml)
(≡ ‘(pos ,r) out)
(subst-termo l env r)))

((exist (l r)
(≡ ‘(neg ,l) fml)
(≡ ‘(neg ,r) out)
(subst-termo l env r))))))

(define subst-termo

(λ (fml env out)
(conde

((exist (a)
(≡ ‘(var ,a) fml)
(lookupo a env out)))

((exist (f d r)
(≡ ‘(app ,f . ,d) fml)
(≡ ‘(app ,f . ,r) out)
(subst-term∗o d env r))))))

(define subst-term∗o

(λ (tm∗ env out)
(conde

((≡ ’() tm∗) (≡ ’() out))
((exist (e1 e2 r1 r2)

(≡ ‘(,e1 . ,e2) tm∗)
(≡ ‘(,r1 . ,r2) out)
(subst-termo e1 env r1)
(subst-term∗o e2 env r2))))))

Fig. 3. Final definition of αleanTAP

αleanTAP : A Declarative Theorem Prover for First-Order Classical Logic 249

Given our new tagging scheme, we can easily rewrite our substitution relation
without the use of conda. We simply follow the production rules of the grammar,
defining a relation to recognize each.

Finally, we modify proveo to take advantage of the same tags. We also add
a proof argument to proveo. We call this version of the prover αleanTAP , and
present its definition in Figure 3. It is declarative, since we have eliminated the
use of copy-termo and every use of conda. In addition to being a sound and
complete theorem prover for first-order logic, αleanTAP can now generate valid
first-order theorems.

5 Performance

Like the original leanTAP, αleanTAP can prove many theorems in first-order logic.
Because it is declarative, αleanTAP is generally slower at proving ground the-
orems than mKleanTAP, which is slower than the original leanTAP. Figure 4
presents a summary of αleanTAP ’s performance on the first 46 of Pelletier’s
75 problems [13], showing it to be roughly twice as slow as mKleanTAP.

leanTAP mKleanTAP αleanTAP

1 0.1 0.7 2.0
2 0.0 0.1 0.3
3 0.0 0.2 0.5
4 0.0 1.0 1.7
5 0.1 1.2 2.5
6 0.0 0.1 0.2
7 0.0 0.1 0.2
8 0.0 0.3 0.8
9 0.1 4.3 9.7

10 0.3 5.5 10.2
11 0.0 0.3 0.6
12 0.6 17.7 31.9
13 0.1 3.7 8.2
14 0.1 4.2 9.7
15 0.0 0.8 1.9
16 0.0 0.2 0.6
17 1.1 9.2 18.1
18 0.1 0.5 1.2
19 0.3 15.1 33.5
20 0.5 8.1 12.7
21 0.4 22.1 38.7
22 0.1 3.4 6.4
23 0.1 2.5 5.4

leanTAP mKleanTAP αleanTAP

24 1.7 31.9 60.3
25 0.2 7.5 14.1
26 0.8 130.9 187.5
27 2.3 40.4 79.3
28 0.3 19.1 29.6
29 0.1 27.9 57.0
30 0.1 4.2 9.6
31 0.3 13.2 23.1
32 0.2 23.9 42.4
33 0.1 15.9 39.2
34 199129.0 7272.9 8493.5
35 0.1 0.5 1.1
36 0.2 6.7 12.4
37 0.8 123.3 169.2
38 8.9 4228.8 8363.8
39 0.0 1.1 2.8
40 0.2 8.1 19.2
41 0.1 6.9 17.0
42 0.4 15.0 32.1
43 43.2 668.4 1509.6
44 0.3 15.1 35.7
45 3.4 145.3 239.7
46 7.7 505.5 931.2

Fig. 4. Performance of leanTAP, mKleanTAP, and αleanTAP on the first 46 Pelletier
Problems. All times are in milliseconds, averaged over 100 trials. All tests were run
under Debian Linux on an IBM Thinkpad X40 with a 1.1GHz Intel Pentium-M proces-
sor and 768MB RAM. leanTAP tests were run under SWI-Prolog 5.6.55; mKleanTAP and
αleanTAP tests were run under Ikarus Scheme 0.0.3+.

250 J.P. Near, W.E. Byrd, and D.P. Friedman

These performance numbers suggest that while there is a penalty to be paid
for declarativeness, it is not so severe as to cripple the prover. The advantage
mKleanTAP enjoys over the original leanTAP in Problem 34 is due to αKanren’s
interleaving search strategy; as the result for mKleanTAP shows, the original
leanTAP is faster than αleanTAP for any given search strategy.

Many automated provers now use the TPTP problem library [15] to assess
performance. Even though it is faster than αleanTAP , however, leanTAP solves
few of the TPTP problems. The Pelletier Problems, on the other hand, fall into
the class of theorems leanTAP was designed to prove, and so we feel they provide
a better set of tests for the comparison between leanTAP and αleanTAP .

6 Related Work

Through his integration of leanTAP with the Isabelle theorem prover [12], Paul-
son shows that it is possible to modify leanTAP to produce a list of Isabelle
tactics representing a proof. This approach could be reversed to produce a proof
translator from Isabelle proofs to αleanTAP proofs, allowing αleanTAP to become
interactive as discussed in section 3.2.

The leanTAP Frequently Asked Questions [16] states that leanTAP might be
made declarative through the elimination of Prolog’s cuts but does not address
the problem of copy term/2 or specify how the cuts might be eliminated. Other
provers written in Prolog include those of Manthey and Bry [17] and Stickel [18],
but each uses some impure feature and is thus not declarative.

Christiansen [19] uses constraint logic programming and metavariables (simi-
lar to nominal logic’s names) to build a declarative interpreter based on Kowal-
ski’s non-declarative demonstrate predicate [20]. This approach is similar to
ours, but the Prolog-like language is not complicated by the presence of binders.

Higher-order abstract syntax (HOAS), presented in Pfenning and Elliott [21],
can be used instead of nominal logic to perform substitution on quantified formu-
las. Felty and Miller [22] were among the first to develop a theorem prover using
HOAS to represent formulas; Pfenning and Schurmann [23] also use a HOAS
encoding for formulas.

Kiselyov [24] uses a HOAS encoding for universally quantified formulas in
his original translation of leanTAP into miniKanren. Since miniKanren does not
implement higher-order unification, the prover cannot generate theorems.

Lisitsa’s λleanTAP [25] is a prover written in λProlog that addresses the prob-
lem of copy term/2 using HOAS, and is perhaps closest to our own work. Like
αleanTAP , λleanTAP replaces universally quantified variables with logic variables
using substitution. However, λleanTAP is not declarative, since it contains cuts.
Even if we use our techniques to remove the cuts from λleanTAP, the prover
does not generate theorems, since λProlog uses a depth-first search strategy.
Generating theorems requires the addition of a tagging scheme and iterative
deepening on every clause of the program. Even with these additions, however,
λleanTAP often generates theorems that do not have the proper HOAS encoding,
since that encoding is not specified in the prover.

αleanTAP : A Declarative Theorem Prover for First-Order Classical Logic 251

7 Conclusion

We have presented αleanTAP , a declarative tableau theorem prover for first-
order classical logic. Based on the concise but non-declarative prover leanTAP,
αleanTAP retains leanTAP’s minimalism without the use of Prolog’s copy term/2
or cut. To avoid the use of copy term/2, we have represented universally quan-
tified variables with noms rather than logic variables, allowing us to perform
substitution instead of copying. To eliminate cuts, we have enhanced the tag-
ging scheme for representing formulas.

Both of these transformations are broadly applicable. When cuts are used to
handle overlapping clauses, a carefully crafted tagging scheme can often be used
to eliminate overlapping. When terms must be copied, substitution can often be
used instead of copy term/2—in the case of αleanTAP , we use a combination of
nominal unification and substitution.

The resulting theorem prover retains the strengths of leanTAP. It is slower than
mKleanTAP, our translation of leanTAP, by a factor of two, but remains concise. In
addition, its declarative nature makes it more flexible than leanTAP : given non-
ground values for both the theorem to be proved and its proof, αleanTAP fills in
the uninstantiated parts. Like leanTAP, αleanTAP has the capability of proving
theorems on its own, and like a proof assistant, it can accept help from the user
in proving theorems.

Acknowledgements

We thank Oleg Kiselyov for pointing out an alternative solution for making
leanTAP declarative and for his helpful comments on a draft of this paper. We
also thank Matthew Lakin for his comments on a later version. We are grate-
ful to Ramana Kumar and Christian Urban for their work on the triangular
substitution-based implementation of αKanren. We also thank Micah Linnemeier
and Adam Hinz for their participation in the early stages of this research. We
appreciate the many insightful comments provided by the anonymous referees.

References

1. Beckert, B., Posegga, J.: leanTAP: Lean tableau-based deduction. Journal of Au-
tomated Reasoning 15(3), 339–358 (1995)

2. Byrd, W.E., Friedman, D.P.: αKanren: A fresh name in nominal logic program-
ming. In: Proceedings of the 2007 Workshop on Scheme and Functional Pro-
gramming, Université Laval Technical Report DIUL-RT-0701, pp. 79–90 (2007),
http://www.cs.indiana.edu/∼webyrd

3. Mellish, C.S.: The Automatic Generation of Mode Declarations for Prolog Pro-
grams. Dept. of Artificial Intelligence, University of Edinburgh (1981)

4. Pitts, A.M.: Nominal logic: A first order theory of names and binding. In:
Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 219–242.
Springer, Heidelberg (2001)

http://www.cs.indiana.edu/~webyrd

252 J.P. Near, W.E. Byrd, and D.P. Friedman

5. Urban, C., Pitts, A., Gabbay, M.: Nominal unification. Theoretical Computer Sci-
ence 323(1-3), 473–497 (2004)

6. Sperber, M., Clinger, W., Dybvig, R., Flatt, M., van Straaten, A., Kelsey, R., Rees,
J.: Revised 6 report on the algorithmic language Scheme (September 2007)

7. Baader, F., Snyder, W.: Unification theory. Handbook of Automated Reasoning 1,
446–533

8. Cheney, J., Urban, C.: αProlog: A logic programming language with names, binding
and α-equivalence. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132,
pp. 269–283. Springer, Heidelberg (2004)

9. Byrd, W.E., Friedman, D.P.: From variadic functions to variadic relations
10. Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. The MIT Press,

Cambridge (2005)
11. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer, Hei-

delberg (1996)
12. Paulson, L.C.: A generic tableau prover and its integration with Isabelle. Journal

of Universal Computer Science 5(3), 73–87 (1999)
13. Pelletier, F.: Seventy-five problems for testing automatic theorem provers. Journal

of Automated Reasoning 2(2), 191–216 (1986)
14. Kiselyov, O., Shan, C., Friedman, D., Sabry, A.: Backtracking, interleaving, and

terminating monad transformers (functional pearl). ACM SIGPLAN Notices 40(9),
192–203 (2005)

15. Sutcliffe, G., Suttner, C.: The TPTP Problem Library. Journal of Automated Rea-
soning 21(2), 135–277 (1998)

16. Beckert, B., Posegga, J.: The leanTAP-FAQ: Frequently asked questions about
leanTAP, http://www.uni-koblenz.de/∼beckert/pub/LeanTAP FAQ.pdf

17. Manthey, R., Bry, F.: SATCHMO: A theorem prover implemented in Prolog. In:
Proceedings of the 9th International Conference on Automated Deduction, pp.
415–434 (1988)

18. Stickel, M.: A Prolog technology theorem prover. In: Proceedings of the 9th Inter-
national Conference on Automated Deduction, pp. 752–753 (1988)

19. Christiansen, H.: Automated reasoning with a constraint-based metainterpreter.
The Journal of Logic Programming 37(1-3), 213–254 (1998)

20. Kowalski, R.A.: Logic for Problem Solving. Prentice Hall PTR, Upper Saddle River
(1979)

21. Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: Proceedings of the
SIGPLAN Conference on Programming Language Design and Implementation,
vol. 23(7), pp. 199–208 (1988)

22. Felty, A., Miller, D.: Specifying theorem provers in a higher-order logic program-
ming language. In: Proceedings of the 9th International Conference on Automated
Deduction, pp. 61–80 (1988)

23. Pfenning, F., Schurmann, C.: System description: Twelf—a meta-logical framework
for deductive systems. In: Proceedings of the 16th International Conference on
Automated Deduction, pp. 202–206 (1999)

24. Friedman, D.P., Kiselyov, O.: A declarative applicative logic programming system,
http://kanren.sourceforge.net

25. Lisitsa, A.: λleanTAP: lean deduction in λProlog. Technical report, ULCS-03-017,
University of Liverpool, Department of Computer Science (2003)

http://www.uni-koblenz.de/~beckert/pub/LeanTAP_FAQ.pdf
http://kanren.sourceforge.net

Towards Ludics Programming:
Interactive Proof Search

Alexis Saurin

INRIA Saclay - Île-de-France & École polytechnique (LIX)
saurin@lix.polytechnique.fr

Abstract. Girard [1] introduced Ludics as an interactive theory aiming
at overcoming the distinction between syntax and semantics in logic.

In this paper, we investigate how ludics could serve as a foundation for
logic programming, providing a mechanism for interactive proof search,
that is proof search by interaction (or proof search by cut-elimination).

Keywords: Ludics, Game Semantics, Logic Programming, Proof Search,
Interaction, Proof Normalization.

1 Introduction

Proof Theory and Computation. Recent developments in proof theory have led to
major advances in the theory of programming languages. The modelling of com-
putation using proofs impacted deeply the foundational studies of programming
languages as well as many of their practical issues by providing formal tools to
analyze programs properties. Declarative programming languages have been re-
lated mainly in two ways to the mathematical theory of proofs: on the one hand,
the “computation as proof normalization” paradigm provided a foundation for
functional programming languages through the well-known Curry-Howard cor-
respondence [2]. On the other hand the “computation as proof search” paradigm
stands as a foundation for logic programming: the computation of a program is
the search for a proof in some deductive system.

Computation as Proof Search. Uniform proofs and abstract logic programming
languages [3] and focalization [4] in linear logic (LL) [5] allowed to consider
computation as proof search for much richer fragments of logic than first-order
Horn clauses with resolution (Hereditary Harrop formulas, higher order, LL) and
to benefit from the structure of sequent calculus which enrich the dynamics of
proof search. This impacted deeply the design of logic programming languages
by allowing to model various programming primitives logically (HO program-
ming, modules, resource management, concurrent primitives, . . .). Nevertheless
some essential programming constructions could not be dealt with logically, in
particular when concerned with the control of computation [6,7] (cut predicate,
(intelligent) backtracking, . . .). As a consequence, some parts of the languages
do not have a very well established nor declarative semantics, and thus it is
difficult to analyze programs using those constructions even though they are

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 253–268, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

254 A. Saurin

extremely common in Prolog programming. A long-standing research direction
on proof search is to treat those extra-logical primitives in a logical way in order
to get closer to the “ideal” correspondence: “Algorithm = Logic” [8].

We can draw a comparison with functional programming: the extension of the
Curry-Howard correspondence to classical logic allowed to capture logically sev-
eral control operators that were used in practice (like call/cc) thanks to typing
rules [9] or thanks to extensions of λ-calculus such as λµ-calculus [10]. However,
corresponding extensions in logic programming could not be achieved up to now,
this may be understood as the result of a mismatch between sequent calculus
proof theory and logic programming: while in sequent calculus, we manipulate
proofs, the process of searching for proofs does not deal with proofs until the
computation is finished. Instead, the objects of proof search are partial proofs
(or open proofs) which may end up not leading to a proof at all but to a failure.
Such failed proofs are not part of the proof theory of sequent calculus.

Ludics and Interaction. Girard introduced Ludics [1] in which unfinished proofs
are given a clear status being at the heart of this theory of interaction. Ludics is
a logical theory that attempts to overcome the distinction between syntax and
semantics by considering that interaction comes first and by building syntax
and semantics afterwards. Ludics objects can be seen as intermediate objects
“between” syntax (sequent proofs) and semantics (innocent strategies [11]).

Games and Logic Programming. Game-theoretic approaches to logic program-
ming are fairly natural and however not as much developped as for functional
programming [12,13]. Van Emden was the first to notice connections between
logic programming computations and two-person games with αβ-algorithm [14],
which was later studied in details by Loddo et al. [15,16,17]. Pym and Rit-
ter [18,19] proposed a game semantics for uniform proofs and backtracking by
relating intuitionnistic and classical provability while the author, Miller and De-
lande [20,21] developed a neutral approach to proofs and refutations based on
games which was inspired by Prolog search engine [20]. More recently, Galanaki
et al. [22] generalized van Emden’s games for logic programs with (well-founded)
negation.

Structure of the Paper. We investigate the use of Ludics as a foundation for
proof search and logic programming by means of a model of interactive proof
search (IPS). We first draw in section 2 the general picture of “computation as
interactive proof search” (or proof search by cut-elimination). Basic Ludics defi-
nitions are introduced in section 3 while the heart of the paper is section 4 with
the definition of the SLAM, an abstract machine for IPS and the explanation of
how backtracking can be treated.

2 Logic Programming, Interactivity and Ludics

In the uniform-proof model, computation is modelled as a search for a proof of a
sequent P � G which is directed by the goal G, the logic program P being used
only when the goal is an atomic formula. While the dynamics of proof search is

Towards Ludics Programming: Interactive Proof Search 255

concerned with partial proofs, sequent calculus theory is a theory of complete
proofs: it is thus difficult to speak about failures, backtrack or pruning of the
search tree [7] (like the cut in Prolog) in this setting.

We propose another approach which considers proof search interactively.

2.1 Searching for Proofs Interactively

The sequent P � G is the current state of the computation but it is also a way
to constrain the future of the computation. In the same way, restrictions on the
logical rules that are allowed (like in linear logic) or proof strategies also impose
constraints on proof search. These constraints on the dynamics of proof search
are of different kinds and are uneasy to relate and compare.

The interactive approach to proof search we are investigating precisely aims
at providing a uniform framework for expressing and analyzing the constraints
on proof search: instead of building a proof depending on a given sequent, we
shall consider building a proof that shall pass some tests, that shall be opposed
to attempts to refute it. The tests will have the form of (para)proofs and thus
will be built in the same system as the one in which we are searching for proofs.

IPS Computation. We shall develop a computational setting as follows. We are
willing to search for a proof D of � A. Formula A is described as a set of tests:
(Ei)i∈I . Proof construction shall proceed by consensus with the tests: D can
be extended with rule R only if the extended object interacts well with all the
tests. At some point, it may become impossible to extend D further: (i) either D
cannot pass some of the tests (ii) or all tests are satisfied and no more constraint
applies to D so that there is no need (and no guideline) to extend it further.
Case (i) is a failure while case (ii) is a success. In case of a failure D�, one
may try another search. Apart from backtracking up to the last choice point
and restarting the search, there is another option: to use D� in order to provide
new tests ED�

j to constrain the search even more.

2.2 Motivations and Intuitions for Ludics

We describe ludics intuitions, with connections towards logic programming:

Monism. Ludics has been introduced by Girard [1] as an interactive theory that
aims at overcoming the traditional distinction between syntax and semantics by
considering that interaction should come first and logic shall be reconstructed
afterwards: designs can be viewed both as an abstraction of multiplicative addi-
tive linear logic (MALL) sequent proofs (syntactical viewpoint) and as a concrete
presentation of game semantics innocent strategies [11] (semantical viewpoint).

Focalization. Andreoli’s Focalization [4] is the root of a polarized approach to
logic [23] and allows to define synthetic connectives and synthetic rules (which
are clusters of connectives or rules of the same polarity) in MALL. MALL connec-
tives can be classified in two sets of connectives: positive connectives (⊗,⊕,1,0)
and negative ones (�,�,⊥,�). Provability cannot be lost during the negative
phase while it can be during the positive phase by making a wrong choice of rule.

256 A. Saurin

Thus there is clearly an active phase (positive) and a passive phase (negative)
and when searching for a proof, one alternates between those two phases.

Proof Normalization. In the cut elimination process, a conversion step corre-
sponds to the selection, by the positive rule, of a continuation for the normaliza-
tion (e.g. selection of one of the �-premises by a ⊕-rule during cut-elimination).
But there is still a problem for an interactive interpretation to hold: we cannot
find a proof for both A and A⊥. Notice that if there cannot be proofs for both
a formula and its negation, it is perfectly legal to attempt to prove both A and
A⊥ [20,21]. A failed attempt to prove A is a tree with some open branches. Let
us add a new rule, the daimon , to mark the fact that the search for a proof has

been stopped: � Γ �. We thus have paraproofs for any sequents, even for � .
The normalization between two paraproofs is a process through which they

test each other . The one that is caught using � is considered as the loser of
the play and the play ends there. Notice that this normalization process is an
exploration of the two paraproofs: the cut visits some parts of the paraproofs.
When � is reached, the paraproofs are said to be orthogonal . A paraproof that
wins an interaction may still contain itself a daimon: it is simply not part of this
precise interaction, but would be detected by some other interactions.

Locations. Whereas in functional programming it matters to know if the types
of functions and arguments match, it is not relevant for proof search to know the
complete structure of formulas to be proved: we only need to know enough to
choose the next rule. In Ludics, we use addresses (or loci): a formula is dealt with
through its address ξ and an inference rule R on ξ creates subloci (ξi, ξj, . . .)
which refer to where the subformulas are (not what they are).

Behaviours. A provable formula may be interpreted as the set of its proofs or
rather its paraproofs. Actually things are even more drastic in Ludics: formulas
are defined interactively by a standard technique of biorthogonality closure which
defines the behaviours. Given a paraproof Π in behaviour A and a paraproof
Π ′ in A⊥, a part of Π can be explored by normalization with Π ′. Sometimes
Π is entirely visited by some Π ′ but usually, there are parts of Π that cannot
be explored, whatever Π ′ ∈ A⊥ you test it with. However, a class of paraproofs
which is highly interesting is the class of paraproofs that can be completely
visited during normalization with elements of A⊥, they are said to be material .

2.3 Searching for Proofs Interactively in MALL

Adding More Proofs: MALL�. If we want to search for proofs by interac-
tion, we need to have enough proof objects to interact with, as noticed in 2.2:
we need to extend logic in order to have more proofs and provable formulas.
In the following, we consider MALL� proofs which are built from unit-only
MALL-formulas (F ::= F ⊗ F | F ⊕ F | 1 | 0 | F � F | F � F | ⊥ | �) by
adding the � rule to MALL proof system, see Figure 1.

Towards Ludics Programming: Interactive Proof Search 257

� 1 1
� Γ, A � ∆, B

� Γ, ∆, A ⊗ B
⊗ � Γ, Ai

� Γ, A0 ⊕ A1
⊕i, i ∈ {0, 1} � Γ, A � ∆, A⊥

� Γ, ∆
cut

� Γ,� � � Γ
� Γ,⊥ ⊥

� Γ, A, B

� Γ, A � B
� � Γ, A � Γ, B

� Γ, A � B
� � Γ

�

Fig. 1. MALL� sequent calculus (In �, Γ contains no negative formula)

D2 =
� 10

�

� 10 � (⊥10 ⊕1 ⊥11)
�|0

D3 =
� ⊥10 ⊕ ⊥11

�

� 10 � (⊥10 ⊕1 ⊥11)
�|1

Fig. 2. MALL� proofs with partial inferences

An Example of IPS in MALL�. We can look for a paraproof D that would
pass tests D0 and D1 which are paraproofs of sequent 1 � 10 � (⊥10 ⊕1 ⊥11):

Di =
� 10

1

� �
� ⊥1i

⊥

� ⊥10 ⊕1 ⊥11
⊕i

� 10 � (⊥10 ⊕1 ⊥11)
�

with i ∈ {0, 1}
D shall be a proof of sequent � ⊥0 ⊕ (110 �1 111) such that paraproofs built

by cutting D with any of the Dis normalize:

Di � 10 � (⊥10 ⊕1 ⊥11) D � ⊥0 ⊕ (110 �1 111)
� cut �cut−elim � �

Performing the cut reduction will impose constraints on D that can be used
as a guide to search for a paraproof on � ⊥0 ⊕ (110 �1 111). We end up with:

D =

� 110
1�0

� 111
1�1

� 110 �1 111
�

� ⊥0 ⊕ (110 �1 111)
⊕1 or D′ =

� �
� ⊥0

⊥

� ⊥0 ⊕ (110 �1 111)
⊕0

In D, the branch ending at �i has been built thanks to Di. D′ is a failure.

Beyond MALL�. Finally, one could even imagine adding paraproofs of fig-
ure 2 (which use only partial � proof rules) to the set of tests. If D2 is in the
normalization environment then D is forced to use ⊕0 as a first rule while
interactive search with D3 would forbid the search of failure D′ by forcing the
selection of ⊕1. D2 and D3 can thus be used to forbid some interactions to occur.

This brief study shows the many possibilities to guide (or constrain) proof
search interactively. However, it is needed to relax some of the logical principles.
For instance, it is needed to add the daimon � which allows to prove any sequent,
but it is also important to admit “partial” logical rules (see D2 and D3) and other
principles of (linear) logic shall be reconsidered (the weakening for instance). This
is one of the reasons why we go to Ludics which has a good theory of interaction.

The following section is devoted to the introduction of Ludics.
1 We index formulas to identify them more easily, anticipating on the use of addresses.

258 A. Saurin

3 Introduction to Ludics

Actions and Designs. In Ludics, proofs are replaced by designs and proof
rules by actions while formulas are now accessed through their location.

An address (or locus) is a finite sequence of integers (written ξ). An action
is either a pair of an address (the focus) and a finite set of integers together
with a polarity (we write (ξ, I)+ or (ξ, I)− and speak of proper actions) or the
daimon (�) which is positive. When forgetting the polarity of a proper action
κ, we speak of a neutral action and write κν . We say that (ξ, I)ε creates
addresses ξ � i (i ∈ I) and that action κ justifies κ′ when they have opposite
polarity and κ creates the focus of κ′. A base is a finite set of polarized addresses
(ξ+ or ξ−) with at most one negative address and such that no address is prefix
of another address. We write ξ � Λ (resp. � Λ) for negative (resp. positive)
bases. A singleton base (ξ �, � ξ) is atomic and � is the empty base.

A design D on a base β is a (possibly infinite) prefix-closed set of finite se-
quences of actions (ie. a forest of actions) such that:

Chronicles. Let χ = (κ0, . . . , κn) ∈ D. In χ, actions have alternating polarities
and addresses occur at most once. If κi ∈ χ, either κi = (ξ, I)ε and ξε ∈ β or κi

is justified by κj with j < i (j = i− 1 for κi negative) or κi = � and i = n;

Positivity. The leaves of the forest are positive;

Positive branching. The tree only branches on positive actions: if χ1, χ2 ∈ D
are not prefix of each other, they first differ on negative actions;

Additive sharing. If κ0, κ1 are distinct actions with the same focus then the
sequences leading to κ0 and κ1 first differ on negative actions with same focus;

Totality. If the base is positive, D �= ∅.
A design is positive or negative according to its base. A slice is a design

where no address occurs twice. A slice of a design D is any slice included in
D. In particular, a negative slice is a tree. When drawing designs and slices, we
adopt Faggian’s convention : positive actions are circled while negative actions
(which are not branching) are not circled. We give in figure 3 and 4 examples of
designs. Notice that D0,D1 are slices while D is not in figure 3.

Another approach to designs is as co-inductively generated by a grammar:
P ::= ��Γ | (ξ, I)+ · {Nξi�Γi

i , i ∈ I, i �= j ⇒ Γi ∩ Γj = ∅, ∀i ∈ I, Γi ⊂ Γ}�ξ,Γ

N ::= {(ξ, I)− ·P�ξI,ΓI

I , I ∈ N ⊂ Pf(ω), ∀I ∈ N , ΓI ⊂ Γ}ξ�Γ

For instance, Faxξ�ξ′ is Faxξ�ξ′ = {(ξ, I)− ·(ξ′, I)+ ·{Faxξ′i�ξi, i ∈ I}, I ∈ Pf (ω)}.

Normalization and Interaction. Interaction is built with cut-nets normal-
ization which reflects linear logic cut-normalization. Designs are cut-free: a cut
is the coincidence of a locus with opposite polarity in the base of two designs.

A cut-net R = (Di)i∈I is a non-empty finite set of designs on bases (βi)i∈I

such that (i) the loci in (βi)i∈I are either equal or disjoint; (ii) a locus ξ appears
in at most two bases (then it occurs with different polarities and is called a cut
in R) and (iii) the cuts define a binary relation over the designs which shall be
connected and acyclic. The base of R is the set of polarized loci of the (βi)i∈I

Towards Ludics Programming: Interactive Proof Search 259

D
〈〉	
i = 〈〉,{0}

0 ∅

〈〉,{1}

1 {i}

1i,{∅}

�

, i ∈ {0, 1} D	〈〉 = 〈〉 {1}

1,{0}

10 ∅

1,{1}

11 ∅

Fig. 3. Designs corresponding to MALL� proofs from section 2.3

Dai−ξ	Λ : I ∈ Pf (ω)
ξ,I

�
Dai	Λ : � Faxξ	ξ′ : I ∈ Pf (ω)

ξ,I

ξ′
I

Faxξ′i	ξi · · · i ∈ I

Fig. 4. Important designs: Dai, Dai− & Fax

which are not cuts. A net with empty base is closed . An action in R is visible
if it is � or if its focus is not sublocus of a cut, otherwise it is hidden . In any
cut-net, there is a main design : the only positive design of the net if such a
design exists or the only negative design of base ξ � Λ such that ξ is not a cut.

Whereas in slices all actions are distinct, a design D may contain several
copies of the same action. To describe an action occurrence, we need additional
information on the position of the action in the design: the branch leading to the
action, called the chronicle for κ and written ChD(κ). Views will allow to find
the chronicle for an action provided we know a certain path in the design. The
positive and negative views for a sequence of neutral actions are2: (i) �ε�+ =
�ε�− = ε; (ii) �s · (ξ, I)�+ = �s�− · (ξ, I)+; (iii) �s · (ξ, I)�− = �t�+ · (ξ, I)− if
s = tu and u is the longest suffix of s such that no action in u creates ξ.

A path p in a slice S (ie. a sequence of actions in S) is a visit path if it
is: (i) of alternating polarities; (ii) made only of proper actions; (iii) downward
closed (if p′ · κ is a prefix of p, all actions below κ in S are in p′). The polarity
of p is its last action polarity. Given a path p, we write pν for the sequence of
neutral actions canonically associated with p. Notice that a visit path cannot
necessarily be realized by interaction. The following is an essential property of
views: If p is a visit path in a slice S with last action κ of polarity ε then �pν�ε

is the chronicle for κ in S, ChS(κ).
The Loci Abstract Machine (LAM [24]), is an abstract machine that com-

putes the interaction of a cut-net R, described as tokens3 travelling on the cut-net.
Let R be a cut-net on a base β. Let TR be the set of all positions reached by
the tokens during normalization.

2 Notice that in case (iii), either t is empty or its last neutral action is (σ, J) with ξ = σj
for some j ∈ J . Moreover, one can trivially extend positive views to sequences ending
with the �: �s ·��+ = �s�− ·�.

3 A token is a pair (s, κ) of a neutral sequence of actions s and an action κ, where s
records the path followed by the token from the initial state up to κ.

260 A. Saurin

– Initialization. If κ is at the root of the main design in R the (ε, κ) ∈ TR;
– Transitions. Let (s, κ) ∈ TR. There are 3 cases:

– Visible. If κ is a visible action of polarity ε, then for each κ′ such that
�sκ�εκ′ ∈ R, (sκ, κ′) ∈ TR (notice �sκ�ε is the chronicle leading to κ);
– Up. If κ is a hidden negative action, then let κ′ be the successor of the
extremal action of �sκ�−, we have (sκ, κ′) ∈ TR;
– Jump. If κ is a hidden positive action, then let κ′ = κ−. If �sκ�− ∈ R
then (s, κ′) ∈ TR. Otherwise normalization fails.

Let R be a cut-net and let TR be the positions reached by the tokens dur-
ing normalization. A normalization path is the sequence of actions which
are visited during the normalization of R: Path(R) is defined to be the set
{s · κν/(s, κ) ∈ TR such that s is maximal}. We also define hide(p) to be the
sequence obtained by removing all hidden actions in p and Hide(R) to be the
set {hide(p), p ∈ Path(R)}. The normal form of a cut-net R is the design
defined to be4: [[R]] = {χ/χ is a prefix of p+ with p ∈ Hide(R)}.

If R is a closed cut-net, we call dispute the normalization path of R. If the
net is {D,E}, we write [D � E] for the dispute.

Orthogonality and Behaviours. Orthogonality describes those normaliza-
tions that were successful: designs D,E are orthogonal if they form a cut-
net and [[D,E]] = �, written D⊥E. If D has base ξε1

1 , . . . , ξεn
n and (Eξi)1≤i≤n

are designs on atomic base ξ−εi

i , (D,Eξ1 , . . . ,Eξn) forms a closed cut-net; if
[[D,Eξ1 , . . . ,Eξn]] = � we write D⊥(Eξi)1≤i≤n. The orthogonal of an atomic
design D is: D⊥ = {E/D⊥E}. A set of designs on the same atomic base, written
E, is called an ethic and its orthogonal is E⊥ = {D/∀E ∈ E,D⊥E}. ≺ is a
relation on designs defined by: D ≺ D′ if, and only if, D⊥ ⊆ D′⊥. ≺ is actually
a partial order (Separation theorem, [1]).

A behaviour G is an ethic which is equal to its bi-orthogonal: G = G⊥⊥.
It is immediate that the orthogonal of an ethic is a behaviour. Let D be a
design, the principal behaviour of D is {D}⊥⊥: it is the smallest behaviour
containing D. If E ∈ G, there exists a smallest design D ⊂ E such that D ∈ G.
It is the incarnation of E in G written |E|G. A design is said to be material
in a behaviour when it is equal to its own incarnation.

4 Interactive Proof Search Algorithm

In this section, we give a machine inspired by Faggian’s LAM, the Searching
LAM (SLAM) allowing to build interactively designs by orthogonality to tests.

Idea of the algorithm. Before going to the formal definitions of IPS procedure,
we sketch how IPS works on a simple example: consider the interactive search
driven by one very simple design provided in figure 5 resulting in a design D.

0. To begin with, D0 is empty and we have visited an empty path: Path0 = ε;
1. E is a negative design so that it is a forest. It may begin with several negative
4 We use notation s+/− to mean: ε+ = ε− = ε; (s · κ)+ = s− · κ+; (s · κ)− = s+ · κ−.

Towards Ludics Programming: Interactive Proof Search 261

E =
ξ,{0,1,2}

ξ0 {1}

ξ01,I01

ξ1 {1}

ξ11,I11

�

D0 = ∅ D1 = κ+
1 D2 = κ+

1

κ−
2

D3 = κ+
1

κ−
2

κ+
3

D4 = κ+
1

κ−
2

κ+
3

κ−
4

D5 = κ+
1

κ−
2

κ+
3

κ−
4

κ+
5

Fig. 5. Interactive search for D

actions on focus ξ, in InitE = {(ξ, {0, 1, 2})−}, one of which shall be followed
during a normalization process. Choose some action κ−1 in InitE and add κ1ν to
the normalization path and κ+

1 as the first action of D: Path1 = 〈(ξ, {0, 1, 2})〉;
2. Design D could have several negative actions above κ+

1 but at this point,
normalization would follow only one action which corresponds to the positive
action after κ−1 in E: κ+

2 = (ξ0, {1})+ and Path2 = 〈κ1ν , κ2ν〉;
3. In E, κ+

2 is followed by actions in {(ξ01, I01)−}, we choose κ−3 in this set and
we extend Path2 with κ3ν and D with κ+

3 : Path3 = 〈κ1ν , κ2ν , κ3ν〉;
4. In E, κ−3 is followed by κ+

4 = (ξ1, {1})+ and thus, Path3 is extended with κ4ν

and D4 with κ−4 which is put right above its justifyer. Path4 =〈κ1ν , κ2ν , κ3ν , κ4ν〉
and the branch leading to κ−4 in D is given by: �Path4�− = κ+

1 , κ
−
4 ;

5. In E, Succ(κ+
4) = {(ξ11, I11)−}. Path5 = 〈κ1ν , . . . , κ5ν〉 and we add κ+

5 ;
6. In E, κ−5 is followed by a unique action, κ+

6 = �. The normalization ends
with E using a � and the final dispute is [D � E] = 〈κ1ν , . . . , κ5ν ,�〉.

At the end of the IPS, we have built a design D on � ξ such that [[D,E]] = �
with � used by E. This example illustrates the basic mechanisms that we shall
encounter while doing IPS. We now introduce formally the IPS process.

4.1 SLAM-1

We first introduce an abstract machine for interactive search of designs in the
restricted case of 4, when the test-environment is made of only one design, E.

Definition 1 (States of SLAM-1). States of SLAM-1 are triples 〈p • E | 〉D
of a sequence of neutral actions p, a set of designs E (current test-environment)
containing at most one positive design and a set of chronicles D (the design
under construction, for which p is a visit path). An initial state is of the form
〈ε • {E} | ∅〉. A final state of the form 〈p • ∅ | D〉.

We saw in 4 that there may be choices to make during IPS when several neg-
ative actions are available. In order to define a deterministic search machine
(for instance a depth-first search strategy with left most choice), we introduce
selection functions which shall parametrize the abstract machine. Those se-
lection functions take as input a state S of the machine together with a set

262 A. Saurin

of negative actions Init and return a subset of Init (which is not empy un-
less Init is itself empty). A selection function Select is said deterministic
when Select(S, Init) is a singleton except when Init = ∅. When taking as se-
lection function the second projection one has the fully non-deterministic ma-
chine. Moreover, the set Init of initial negative actions is obtained as follows:
given a family of negative designs E = (Di = {κi

j
− · Di

j , j ∈ Ji})i∈I , one sets
Init(E) to {κi

j
−
, j ∈ Ji, i ∈ I}. Then, given a sequence of neutral actions p,

a set of negative actions I and a set of chronicles D, one sets +(p, I,D) to be
{κ ∈ Init /κ is justified by an action in �p�−}.

Definition 2 (SLAM-1). Let Select be a selection function and E an atomic
design. SLAM-1 is defined as follows:

Initial State: 〈ε • {E} | ∅〉
Transitions: 〈p • E | D〉 −→ 〈p′ • E′ | D′〉
• If E contains a positive design D+ = κ+ · {D′

j , j ∈ J}. If κ+ = �, then final
state 〈p ·� • ∅ | D〉 is reached. Otherwise, κ+ is proper and we set (i) p′ to
p · κ, (ii) E′ to E \ {D+} ∪ {D′

j, j ∈ J} and (iii) D′ to D ∪ {�p · κ�−}.
• Otherwise E = (Di = {κi

j
− · Di

j , j ∈ Ji})i∈I . Let Ini = +(p, Init(E),D). If
Select(〈p • E | D〉, Ini) �= ∅, one chooses some κ ∈ Select(〈p • E | D〉, Ini),
and considers Di (i ∈ I) the negative design of which κ is an initial action, and
Di

j (j ∈ Ji) the positive design immediately above κ in Di (ie. κ = κi
j). We set

(i) p′ to p · κ, (ii) E′ to E \ {Di} ∪ {Di
j} and (iii) D′ to D ∪ {�p · κ�+}.

If Ini = ∅, final state 〈p • ∅ | D ∪ {�p ·��+}〉 is reached.
A result of the machine consists in the third component of a final state.

4.2 Properties of SLAM-1

We consider here an IPS with test environment E. The sets of chronicles built by
interaction during an evaluation of the machine satisfy the coherence conditions
for designs in section 3:

Proposition 1. The results of SLAM-1 executions are slices.

Proposition 2. If D is a result of SLAM-1,then D ∈ E⊥. D is material in E⊥.

Definition 3 (D�
i). If (〈pi • Ei | Di〉)0≤i≤n is a run of SLAM-1, then for

0 < i < n one may build a design D�
i by adding a daimon if the last action

visited is negative or replacing the last visited rule with a daimon if it is positive.

D�
i are more and more precise:

Proposition 3. For 0 < i < n, D�
i is a slice, it is material in E⊥ and for

0 < i ≤ j < n, one has: {D�
i }⊥⊥ ⊆ {D�

j }⊥⊥ ⊆ E⊥.

The IPS procedure described by SLAM-1 only produces slices as asserted by
proposition 2. As a result, this setting is fairly restricted and moreover the test-
environments considered are very constrained and as a conclusion do not allow

Towards Ludics Programming: Interactive Proof Search 263

much flexibility. For instance it does not allow to build proofs with additive
branching and it does not allow to treat backtracking. For instance one would
like to work with more general test environments such as the ones considered
in section 2.3 when using D0 and D1 to build the two premisses of a with rule
or with D2 or D3 to avoid visiting some branch. We shall now remove this
restriction resulting in a more complex machine that we define in what follows.

4.3 SLAM-n

SLAM-n will consider states storing several tests and the interactive construction
will depend on several designs and not only one: as a consequence there shall be
a mechanism to synchronize the tests that contribute to the same branch. More-
over distinct parts of the test environment may contribute to different additive
branches of the design; it is thus necessary to locate the interactions.

Definition 4 (SLAM-n States). States have the form 〈(pi • (Eij
E)j∈Ji)i∈I | 〉D

where(pi)i∈I are pairwise incomparable sequences of neutral actions,(Eij)i∈I,j∈Ji

are sets of designs such that for i ∈ I either all Eij (j ∈ Ji) contain one positive
design or they contain only negative designs, and D is a set of chronicles.

Definition 5 (SLAM-n). Let Select be a selection function and (Ej)j∈J be
designs on some atomic base ξ �, SLAM-n is defined as follows:

Initial State: 〈(ε • ({Ej})j∈J) | ∅〉

Transitions: 〈(pi • (Eij
E)j∈Ji)i∈I | D〉 −→ 〈(p′i • (E′ij

E)j∈J′
i
)i∈I′ | D′〉

One chooses some i0 ∈ I such that the last action of pi0 is not �.
• If each Ei0j

E contains a positive design D+
i0j = κ+

i0j · {D′
k, k ∈ Ki0j} then let

J ′
i0

= {j ∈ Ji0 , κ
+
i0j is a proper action}. One partitions J ′

i0
in maximal non-

empty subsets (J l
i0

)l∈L such that if ∀l ∈ L, ∀m,n ∈ J l
i0
, κ+

i0m = κ+
i0n (and thus

if k �= l,m ∈ Jk
i0 , n ∈ J l

i0 then κ+
i0m �= κ+

i0n). Let κ′i0l be the action canonically
associated with J l

i0
.

(i) If ∃l ∈ L, �pi0 · κ′i0l�
− ∈ D, SLAM-n is stuck, (ii) otherwise:

– I ′ = I \ {i0} ∪ L, J ′
i = Ji if i ∈ I \ {i0} and J ′

l = Ji0l, l ∈ L
– p′i = pi if i ∈ I \ {i0}, p′l = pi0 · κ′i0l, l ∈ L

– E′ij = Eij if i ∈ I \ {i0}, j ∈ Ji

– E′lj = Ei0j \ {D+
i0j} ∪ {D′

k, k ∈ Ki0j} for l ∈ L, j ∈ Ji0l

– D′ = D ∪ {�pi0 · κ′i0l�
−
, l ∈ L}

• If for any j ∈ Ji0 , Ei0j contains only negative designs: (Djl = {κjl
k

−
·Djl

k , k ∈
Kjl})l∈Lj = Ei0j. Let Initj = Init(Ei0j) and Init = +(pi0 ,∩j∈Ji0

Initj ,D).
(i) If Init �= ∅, let κ be some action in Select(〈(pi • (Eij)j∈Ji)i∈I | D〉, Init),

and for every j ∈ Ji0 , one considers the negative design Djl of which κ is
an initial action in Ei0j and k0 ∈ Kjl such that Djl

k0
is the positive design

immediately above κ in Djl. Then, with I ′ = I and J ′
i = Ji, ∀i ∈ I ′:

264 A. Saurin

E1 = 〈〉 {0,1}

0,{0,1}

00 ∅

1,{0,1}

�

E2 = 〈〉 {0,1}

0,{0,1}

01 ∅

1,{0,1}

�

D = 〈〉,{0,1}

0 {0,1}

00,∅

1 {0,1}

01,∅

1 {0,1}

Fig. 6. An execution of SLAM-n from E1 and E2 not resulting in a design

– p′i = pi for i �= i0 and p′i0 = pi0 · κ
– E′ij = Eij for i ∈ I ′ \{i0}, j ∈ J ′

i and E′i0j = Ei0j \{Djl}∪{Djl
k0
}, ∀j ∈ Ji0

– D′ = D ∪ {�pi0 · κ�+}

(ii) If Init = ∅, then we add chronicle �pi0 ·��+ to the design under construc-
tion moving to the state: 〈(pi • (Eij

E)j∈Ji)i∈I\{i0} | D ∪ {�pi0 ·��+}〉.

SLAM-n contains a case where the machine is stuck. Moreover, when the tests
are chosen totally arbitrarily, the set of chronicles which is produced by SLAM-
n may not be a design as examplified in figure 6: D which results from IPS
with E1 and E2, violates the additive sharing condition. In order to fix this
problem, we slightly modify the definition of +(p, I,D) as follows: +(p, I,D) =
{(σ, I)− /(σ, I)− is justified in �p�− and if ∃χ · (σ, L)+ ∈ D then the first differ-
ence between χ and �p�− involves negative actions on the same focus}.

Proposition 4. If 〈(ε • {(Ei)i∈I}) | ∅〉 is an initial state, then an execution
of SLAM-n that is never stuck (case 1.(i) is never encountered) results in a set
of chronicles interactively built which is a design.

Proposition 5. A final state for an execution which is never stuck (case 1.(i)
of SLAM-n) is of the form 〈(pi ·� • ∅)i∈I | D〉.

4.4 Backtracking

In the present section we briefly explain how backtracking can be dealt
with using generalized environments. We shall consider a final state S′ =
〈(pi ·� • ∅)i∈I | D〉 reached from an initial state S = 〈(ε • ({Ej})j∈J) | ∅〉.
If I �= ∅, then D is a failure (it contains � at �pi ·��+). One shall use those
paths pi, i ∈ I to enrich the test environment with new designs.

Definition 6 (Test(p)). If p is a sequence of neutral actions, Test(p) is:
Test(ε) = ∅; Test(κ) = {κ+}; Test(s · κ · κ′) = {�s · κ · κ′�+

, �s · κ�−} ∪ Test(s).

Proposition 6. Test(pi), i ∈ I is a slice. Moreover, Test(pi) is the smallest
design (as sets of chronicles) realizing interaction pi ·� with the final design D.

In order to model the backtrack instruction, one shall use a variant of Test().
Indeed, Test() contains both too many and too few chronicles to be used to
backtrack: a backtrack design should not allow to interact along pi up to reaching
the daimon and it should be able to interact with any other design.

Towards Ludics Programming: Interactive Proof Search 265

a b c

d e

f g

h

adj(a, b). adj(b, c).
adj(b, d). adj(c, e).
adj(c, f). adj(f, g).
adj(h, g).
p(X,Y) :- adj(X,Z), adj(Z,Y).

Fig. 7. Graph

E1 =
p,{e}

pe {1}

pe1,∅

�

p,{f}

pf {1}

pf1,∅

�

p,{x}

px {1}

x ∈ I1 E2 =
p,{f}

pf {2}

pf2,∅

�

p,{h}

ph {2}

ph2,∅

�

p,{x}

px {2}

x ∈ I2

Fig. 8. Designs E1 and E2 with I1 = {a, b, c, d, g, h}, I2 = {a, b, c, d, e, g}

Definition 7 (Backtrack(p)). Backtrack(p) is the smallest design such that:

1. Backtrack(p) contains all positive chronicles of Test(p) except �p�+;
2. if χ ∈ Backtrack(p) has last action (ξ, I)+, then for any i ∈ I and J ∈ Pf (ω)
such that χ · (ξi, J)− �∈ Test(p), one has χ · (ξi, J)− ·� ∈ Backtrack(p).

Remark 1. In definition 7, Backtrack(p) is drastically infinite because of all the χ·
(ξi, J)− ·� that are added. However, by collecting information during the search
(at step 1. of SLAM-n, when considering the set of initial positive actions in the
environment), one may retain the needed actions and build a finite Backtrack(p)
if original test-environments are made of finitely branching designs.

Proposition 7. 〈(ε • ({Ej})j∈J ∪({Backtrack(pi)})i∈I) | ∅〉 is an initial state
that will not compute disputes (pi)i∈I anymore.

4.5 A Concrete Example

Let G be the graph represented in figure 7. We want to implement the search for
paths of length 2 in this graph using interactive proof search. This corresponds
to the predicates shown in figure 7. For instance, p(c, g) could be represented
as the MALL formula:

⊕
x∈{a,...,h}(adj(c, x) � adj(x, g)). The graph and the

path relation p shall be represented as counter-designs5, as tests that will guide
5 Here is how E1 and E2 are built: Let us choose a location p in which one shall locate

the designs of the environment (on base p �) and the design to construct by ISP
(on base � p). Let us suppose a, b, . . . , g, h are integer codes representing nodes of
the graph in the obvious way (one can choose arbitrary distinct integers). pe will
thus represent the formula (adj(c, e) � adj(e, g)) and pe1 and pe2 will respectively
represent (adj(c, e) and (adj(e, g). E1 represents the arcs having their origin in c and
E2 represents the arcs having g as goal.

266 A. Saurin

p {x}

px,{1}

�

px,{2}

�

p {f}

pf,{1}

pf1 ∅

pf,{2}

pf2 ∅

p {e}

pe,{1}

pe1 ∅

pe,{2}

�

p {h}

ph,{1}

�

ph,{2}

ph2 ∅

Fig. 9. The 8 possible results for an IPS with E1 and E2 (x ∈ {a, b, c, d, g})

an interactive search for a design D. The counter-design environnement could
be made of two designs E1 and E2 of figure 8.

There are 8 choices for the first action in constructing design D, but this leads
then to the designs of figure 9 (8 possible computations) depending on the choice
of the first action (only one being a success).

5 Conclusion

The aim of this paper was to introduce a novel approach to proof search as
computation where the search is not guided by a sequent as in standard proof
search but is contrained by an environment of tests.

Contributions. The contributions of the paper are the following: After moti-
vating the need for an interactive approach for proof-search, we examplified a
“concrete” approach to interactive proof-search on a sequent calculus derived
from MALL sequent calculus. We then introduced ludics concepts by emphasiz-
ing those concepts that are the most relevant for the logic programming com-
munity. We introduced the SLAM, an abstract machine inspired by Faggian’s
LAM [24] and analyzed its search behaviour. Finally, we explained how to treat
backtracking in interactive proof search by enriching the test-environment.

Related Works. In [24], Faggian introduced the LAM and studied some prop-
erties of its execution. Those results will be helpful to develop IPS. Pym and
Ritter [18] give a semantics for proof search which is related with game seman-
tics. They have a treatment of backtracking using relations between intuitionistic
and classical proofs. We shall investigate the connections with our work.

Future Works. Lots of things are still to be done in order to have a computation
model based on interactive proof search. First we shall develop the treatment of
the cut and other pruning operations in the same way we did for backtracking.
We shall work towards extending the expressiveness of interactive proof-search,
mostly in two directions: first-order and exponentials. Fleury and Quatrini [25]
proposed a theory of first-order in Ludics while Faggian and Basaldella pro-
posed very recently an approach to the exponentials in Ludics that would allow
using a formula (here, an action) several times. We shall investigate these two
directions.

Towards Ludics Programming: Interactive Proof Search 267

Aknowledgments. The author thanks Dale Miller for his advice and directions,
Jean-Yves Girard for his comments on this project as well as Claudia Faggian
for helpful discussions regarding the material in this paper.

References

1. Girard, J.Y.: Locus solum. Mathematical Structures in Computer Science 11(3)
(2001)

2. Howard, W.A.: The formulae-as-type notion of construction, 1969. In: Seldin, Hind-
ley (eds.) To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and
Formalism. Academic Press, New York (1980)

3. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation
for logic programming. Annals of Pure and Applied Logic 51 (1991)

4. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation 2(3) (1992)

5. Girard, J.Y.: Linear logic. Theoretical Computer Science 50 (1987)
6. Naish, L.: Negation and Control in Prolog. LNCS, vol. 238. Springer, Heidelberg

(1986)
7. Naish, L.: Pruning in logic programming. Technical Report 95/16, Department of

Computer Science, University of Melbourne, Australia (1995)
8. Miller, D.: Sequent calculus and the specification of computation. In: Berger,

U., Schwichtenberg, H. (eds.) Computational Logic. Nato ASI Series, vol. 165.
Springer, Heidelberg (1999)

9. Griffin, T.: A formulae-as-types notion of control. In: POPL 1990 (1990)
10. Parigot, M.: λµ-calculus: an algorithmic interpretation of classical natural deduc-

tion. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624. Springer, Heidelberg
(1992)

11. Faggian, C., Hyland, M.: Designs, disputes and strategies. In: Bradfield, J.C. (ed.)
CSL 2002 and EACSL 2002. LNCS, vol. 2471, p. 442. Springer, Heidelberg (2002)

12. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative lin-
ear logic. Journal of Symbolic Logic 59(2) (1994)

13. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF. Information and Com-
putation 163 (2000)

14. van Emden, M.H.: Quantitative deduction and its fixpoint theory. Journal of Logic
Programming 3(1) (1986)

15. Cosmo, R.D., Loddo, J.V., Nicolet, S.: A game semantics foundation for logic
programming. In: PLILP/ALP (1998)

16. Loddo, J.V., Cosmo, R.D.: Playing logic programs with the alpha-beta algorithm.
In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS, vol. 1955. Springer, Hei-
delberg (2000)

17. Loddo, J.V.: Généralisation des Jeux Combinatoires et Applications aux Langages
Logiques. Ph.D thesis, Université Paris VII (2002)

18. Pym, D., Ritter, E.: Reductive Logic and Proof-search: proof theory, semantics,
and control, vol. 45. Oxford Logic Guides, Oxford (2004)

19. Pym, D., Ritter, E.: A games semantics for reductive logic and proof-search. In:
Ghica, D., McCusker, G. (eds.) GaLoP 2005 (2005)

20. Miller, D., Saurin, A.: A game semantics for proof search: Preliminary results. In:
Proceedings of MFPS 2005. ENTCS, vol. 155 (2006)

268 A. Saurin

21. Delande, O., Miller, D.: A neutral approach to proof and refutation in MALL. In:
Pfenning, F. (ed.) LICS 2008. IEEE Computer Society Press, Los Alamitos (2008)

22. Galanaki, C., Rondogiannis, P., Wadge, W.W.: An infinite-game semantics for well-
founded negation in logic programming. Annals of Pure and Applied Logic 151(2)
(2008)

23. Laurent, O.: Étude de la polarisation en logique. Thèse de doctorat, Université
Aix-Marseille II (2002)

24. Faggian, C.: Travelling on designs. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL
2002. LNCS, vol. 2471. Springer, Heidelberg (2002)

25. Fleury, M.R., Quatrini, M.: First order in ludics. Mathematical Structures in Com-
puter Science 14(2) (2004)

Declarative Semantics for Active Integrity Constraints

Luciano Caroprese1 and Mirosław Truszczyński2

1 Università della Calabria, 87030 Rende, Italy
2 Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA

Abstract. We study active integrity constraints, a formalism designed to de-
scribe integrity constraints on databases and to specify preferred ways to enforce
them. The original semantics proposed for active integrity constraints is based
on the concept of a founded repair. We point out that groundedness underlying
founded repairs does not prevent cyclic justifications and so, may be inappropri-
ate in some applications. Thus, using a different notion of grounding, with roots
in logic programming and revision programming, we introduce two new seman-
tics: of justified weak repairs, and of justified repairs. We study properties of
these semantics, relate them to earlier semantics of active integrity constraints,
and establish the complexity of basic decision problems.

1 Introduction

Integrity constraints are conditions on databases. If a database violates integrity con-
straints, it needs to be repaired — updated so that the integrity constraints hold again.
Often there are several ways to enforce integrity constraints. The paper is concerned
with the problem to specify preferred ways to update databases.

A database can be viewed formally as a finite set of ground atoms in the language
of first-order logic determined by the database schema and an infinite countable set of
constants. An integrity constraint is a formula in this language. A database satisfies an
integrity constraint if it is its Herbrand model. Since databases and sets of integrity
constraints are finite, without loss of generality, we will limit our attention to the case
when databases are subsets of some finite set At of propositional atoms, and integrity
constraints are clauses in the propositional language generated by At .

Let us consider the database I = {a, b} and the integrity constraint ¬a ∨ ¬b. As,
I does not satisfy ¬a ∨ ¬b, it needs to be “repaired” — replaced by a database that
satisfies the constraint. Assuming At = {a, b, c, d}, the databases ∅, {a}, {b}, {a, c} are
examples of databases that could be considered as replacements for I. Since the class
of replacements of I is quite large, the question arises whether there is a principled way
to narrow it down. One of the most intuitive and commonly accepted postulates is that
the change between the initial database I and the revised database R, given by I ÷R,
be minimal (cf. [1]). In our case, the minimality of change narrows down the class of
possible revisions to {a} and {b}.

In some cases, the minimality of change is not specific enough and may leave too
many candidate revisions. The problem can be addressed by formalisms that allow the
database designer to formulate integrity constraints and, in addition, to state preferred
ways for enforcing them. In this paper, we study a recent formalism of that type: active
integrity constraints (aic’s, for short) [2].

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 269–283, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

270 L. Caroprese and M. Truszczyński

Aic’s explicitly encode both integrity constraints and preferred basic actions to re-
pair them, when the constraints are violated. To specify the meaning of sets of aic’s,
[2] proposed the concept of foundedness, and combined it with the requirement of the
minimality of change to get the semantics of founded repairs. Foundedness reflects a
certain groundedness condition. We show that in some cases this groundedness condi-
tion is too weak to prevent cyclic justifications. To address the problem, we introduce a
new semantics for aic’s, which we call the semantics of justified repairs.

The semantics of justified repairs uses a stronger concept of groundedness than
that behind founded repairs. In general, it is also too weak to imply the minimal-
ity of change property and so, we impose this property on justified repairs explic-
itly. We show that the class of justified repairs is a subclass of the class of founded
repairs.

We also consider a broader class of ways to enforce integrity constraints by drop-
ping the minimality of change postulate. We refer to the elements of that class as weak
repairs. Combining the concept with the appropriate groundedness condition yields the
semantics of founded weak repairs and justified weak repairs. While the minimality
of change condition is a natural requirement to impose on preferred ways to enforce
integrity constraints, including weak repairs in the considerations offers a richer per-
spective. In particular, it brings up the question of identifying classes of aic’s, for which
the groundedness condition alone is sufficient to guarantee change-minimality. We ex-
hibit here two classes of aic’s, for which the groundedness condition behind justified
repairs ensures the minimality of change.

A fundamental property of semantics describing database updates is the invariance
under shifting [3,4]. Informally, shifting consists of changing the membership status
of some facts in a database and the corresponding modification (systematic renaming)
of the integrity constraints. We show that all semantics of aic’s we consider here are
invariant under shifting.

Although we consider just the propositional case our results can be lifted to the
first-order case via grounding (like in the case of stable-model semantics for Logic Pro-
gramming). As a consequence, our framework is able to handle numerical expressions
in the body of the constraints. Indeed, grounding eliminates them and leaves us with the
basic propositional case presented here.

A richer field of semantics of database updates gives rise to a trade-off. On the
one hand the semantics differ in how much they refine the class of (weak) repairs
that enforce integrity constraints, and on the other hand, in the complexity of the exis-
tence of a repair problem. We discuss ways in which this trade-off can be exploited in
practice.

The semantics discussed in the paper are motivated by connections to the seman-
tics of answer sets for disjunctive logic programming on the one hand, and to revision
programming [3], on the other. We exploit them to develop the definition of grounded-
ness for justified weak repairs, and to establish the complexity of deciding the existence
of repairs of particular types. We develop a detailed discussion of these connections
in another paper [5]. Due to space limits, we omit the proofs (they can be found at
www.cs.uky.edu/ai/aic-full.pdf).

www.cs.uky.edu/ai/aic-full.pdf

Declarative Semantics for Active Integrity Constraints 271

2 Integrity Constraints and Database Repairs — Basic Concepts

We consider a finite set At of propositional atoms. We represent databases as subsets
of At . Databases are updated by inserting and deleting atoms. An update action is an
expression of the form +a or−a, where a ∈ At . Update actions +a and−b state that a
and b are to be inserted and deleted, respectively. We say that a set U of update actions
is consistent if it does not contain update actions +a and −a, for any a ∈ At .

Sets of update actions determine database updates. Let D be a database and U a
consistent set of update actions. The result of updatingD by means of U is the database

DB ◦ U = (DB ∪ {a | + a ∈ U}) \ {a | − a ∈ U}.

We have the following straightforward property of the operator ◦, which asserts that if
a set o update actions is consistent, the order in which they are executed is immaterial.

Proposition 1. If U1 and U2 are sets of update actions such that U1 ∪ U2 is consistent,
then for every database I, I ◦ (U1 ∪ U2) = (I ◦ U1) ◦ U2. �

It is common to impose on databases conditions, called integrity constraints, that must
always be satisfied. In the propositional setting, an integrity constraint is a formula

r = L1, . . . , Lm ⊃ ⊥, (1)

where Li, 1 ≤ i ≤ m, are literals (expressions of the form a and not a, where a is an
atom) and ‘,’ stands for the conjunction. Any subset of At (and so, also any database)
can be regarded as a propositional interpretation. We say that a database I satisfies an
integrity constraint r, denoted by I |= r, if I satisfies the propositional formula repre-
sented by r. In this way, an integrity constraint encodes a condition on databases: the
conjunction of its literals must not hold (or equivalently, the disjunction of the corre-
sponding dual literals must hold).

Any language of (propositional) logic could be used to describe integrity constraints
(in the introduction we used the language with the connectives ∨ and ¬). Our present
choice is reminiscent of the syntax used in logic programming. It is not coincidental. In
the context of aic’s the subject of this paper, the negation operator has some similarities
to the default negation operator in logic programming and so, as it is common in the
logic programming literature, we denote it with not rather than ¬.

Given a set η of integrity constraints and a database I, the problem of database
repair consists of updating I so that integrity constraints in η hold.

Definition 1. [WEAK REPAIR AND REPAIR] Let I be a database and η a set of in-
tegrity constraints. A weak repair for 〈I, η〉 is a consistent set U of update actions such
that ({+a | a ∈ I} ∪ {−a | a ∈ At \ I}) ∩ U = ∅ (U consists of “essential” update
actions only), and I ◦ U |= η (constraint enforcement).

A consistent set U of update actions is a repair for 〈I, η〉 if it is a weak repair for
〈I, η〉 and for every U ′ ⊆ U such that I ◦ U ′ |= η, U ′ = U (minimality of change). �

If an original database satisfies integrity constraints (formally, if I |= η), then no change
is needed to enforce the constraints and so U = ∅ is the only repair for 〈I, η〉. However,

272 L. Caroprese and M. Truszczyński

there may be other weak repairs for 〈I, η〉. This points to the problem with weak repairs.
They allow for the possibility of replacing I with a weak repair I′ for 〈I, η〉 even when
I does not violate η. Thus, the minimality of change is a natural and useful property
and, for the most part, we are interested in properties of repairs and their refinements.
However, considering weak repairs explicitly is useful as it offers a broader perspective.

If a set η of integrity constraints is inconsistent, there is no database satisfying it
(constraints cannot be enforced). In such case, the database repair problem is trivial and
not interesting. However, assuming consistency of integrity constraints does not yield
any significant simplifications. Therefore, we do not make this assumption here.

Finally, we note that the problem of the existence of a weak repair is NP-complete
(it is just a simple reformulation of the SAT problem). Since repairs exist if and only if
weak repairs do, the problem of the existence of a repair is NP-complete, too.

3 Active Integrity Constraints

Given no other information but integrity constraints, we have no reason to prefer one
repair over another. If several repairs are possible, guidance on how to select a repair
to execute could be useful. The formalism of active integrity constraints (aic’s, for
short) [2] was designed to address this problem. We will now review it and offer a first
extension by introducing the semantics of founded weak repairs.

For a propositional literal L, we write LD for the dual literal to L. Further, if L = a,
we define ua(L) = +a. If L = not a, we define ua(L) = −a. Conversely, for an
update action α = +a, we set lit(α) = a and for α = −a, lit(α) = not a. We call
+a and −a the duals of each other, and write αD to denote the update action dual to
an update action α. Finally, we extend the notation introduced here to to sets of literals
and sets of update actions, as appropriate.

An active integrity constraint (aic, for short) is an expression of the form

r = L1, . . . , Lm ⊃ α1| . . . |αk (2)

where Li are literals, αj are update actions, and

{lit(α1)D, . . . , lit(αk)D} ⊆ {L1, . . . , Lm} (3)

The set {L1, . . . , Lm} is the body of r; we denote it by body(r). Similarly, the set
{α1, . . . , αk} is the head of r; we denote it by head(r).

An aic with the empty head can be regarded as an integrity constraint (and so, we
write the empty head as ⊥, for consistency with the notation of integrity constraints).
An aic with a non-empty head functions as an integrity constraint (its body must be
false) and it explicitly provides support for the use of update actions in its head (if its
body is true).

The role of the condition (3) is to ensure that an aic supports only those update
actions that can “fix” it (executing them ensures that the resulting database satisfies
the constraint). The condition can be stated concisely as follows: [lit(head(r))]D ⊆
body(r). We call literals in [lit(head(r))]D updatable by r. They are precisely those
literals that can be affected by an update action in head(r). We call every literal in

Declarative Semantics for Active Integrity Constraints 273

body(r) \ [lit(head(r))]D non-updatable by r. We denote the set of literals updatable
by r as up(r) and the set of literals non-updatable by r as nup(r).

With the notation we introduced, we can discuss the intended meaning of an aic r of
the form (2) in more detail. First, r functions as an integrity constraintL1, . . . , Lm ⊃ ⊥.
Second, it provides support for one of the update actionsαi, assuming all non-updatable
literals in r hold in the repaired database. In particular, the constraint a, b ⊃ −a| − b,
given I = {a, b}, provides the support for −a or −b, independently of the repaired
database, as it has no non-updatable literal. In the same context of I = {a, b}, the
constraint a, b ⊃ −a provides support for −a but only if b is present in the repaired
database.

A database I satisfies an aic r, I |= r, if it satisfies the corresponding integrity
constraint. It is now straightforward to adapt the concept of a (weak) repair to the case
of aic’s. Specifically, a set U of update actions is a (weak) repair for a database I with
respect to a set η of aic’s if it is a (weak) repair for I with respect to the set of standard
integrity constraints represented by η.

Let us consider the aic r = a, b ⊃ −b, and let I = {a, b} be a database. Clearly,
I violates r as the condition expressed in the body of r is true. There are two possible
repairs of I with respect to r or, more precisely, with respect to the integrity constraint
encoded by r: performing the update action−a (deleting a), and performing the update
action−b (deleting b). We select the latter as a preferred repair, since r provides support
for the update action −b.

Repairs do not need to obey preferences expressed by the heads of aic’s. To formalize
the notion of “support” and translate it into a method to select “preferred” repairs, [2]
proposed the concept of a founded repair — a repair that is grounded in (“implied” by)
a set of aic’s. The following definition, in addition to founded repairs, introduces a new
semantics of founded weak repairs.

Definition 2. [FOUNDED (WEAK) REPAIR] Let I be a database, η a set of aic’s, and
U a consistent set of update actions.

1. An update action α is founded with respect to 〈I, η〉 and U if there is r ∈ η such
that α ∈ head(r), I ◦U |= nup(r), and I ◦U |= βD , for every β ∈ head(r)\{α}.

2. The set U is founded with respect to 〈I, η〉 if every element of U is founded with
respect to 〈I, η〉 and U .

3. U is a founded (weak) repair for 〈I, η〉 if U is a (weak) repair for 〈I, η〉 and U is
founded with respect to 〈I, η〉. �

Foundedness is indeed a formalization of a certain notion of “groundedness”. Let us
assume that α is founded with respect to 〈I, η〉 and U by means of an aic r ∈ η. Let
us also assume that I �|= r, that is, I |= body(r). By the foundedness, all literals in
body(r), except possibly for lit(αD), are satisfied in I ◦ U . Thus, if U is to enforce
r, it must contain α. We observe that the foundedness does not imply the constraint
enforcement nor the minimality of change.

Example 1. Let I = ∅ and η consist of the following aic’s:
r1 = not a ⊃ +a
r2 = not b, c ⊃ +b
r3 = b,not c ⊃ +c.

274 L. Caroprese and M. Truszczyński

The unique founded repair for 〈I, η〉 is {+a}. The set {+a,+b,+c} is founded, guaran-
tees constraint enforcement (and so, it is a founded weak repair), but it it is not change-
minimal. The set {+b,+c} is founded but does not guarantee constraint enforcement.
Therefore, in the definition of founded (weak) repairs, the property of being a (weak) re-
pair must be enforced explicitly. We also note that foundedness properly narrows down
the class of repairs. If η = {a, b ⊃ −b}, and I = {a, b} (an example we considered
earlier), U = {−a} is a repair for 〈I, η〉 but not a founded repair. �

Next, we show that there could exist founded weak repairs even when no founded repair
exists.

Example 2. Let I = ∅ and η consist of the following aic’s:
not a, b, c ⊃ +a not b, a, c ⊃ +b
not c, a, b ⊃ +c not a ⊃ ⊥

One can check that the only founded sets of update actions are U1 = ∅ (∅ is always
vacuously founded) and U2 = {+a,+b,+c}. Moreover, U3 = {+a} is a repair and
U2 is a weak repair. Thus, U2 is a founded weak repair but, as it is not minimal, not a
founded repair. In fact, there are no founded repairs in this example. �

Finally, we discuss the key issue arising in the context of founded repairs that motivates
much of the remainder of the paper. In some cases, founded repairs, despite combin-
ing foundedness with change-minimality, are still not grounded strongly enough. The
problem is the circularity of support.

Example 3. Let I = {a, b} and let η1 consist of the following aic’s:

r1 = a, b ⊃ −a
r2 = a,not b ⊃ −a
r3 = not a, b ⊃ −b.

One can check that U = {−a,−b} is a repair for 〈I, η1〉. Moreover, it is a founded
repair: −a is founded with respect to 〈I, η1〉 and U , with r2 providing the necessary
support, while −b is founded with respect to 〈I, η1〉 and U because of r3.

The problem is that, arguably,U = {−a,−b} supports itself through circular depen-
dencies. The constraint r1 is the only one violated by I and forcing the need for a repair.
However, according to intuitions we discussed earlier, r1 supports the foundedness of
−a only if b remains in the database. This is not the case here. Thus, the support for the
foundedness of −a in U must come entirely from r2 and r3. The same holds for −b as
it is not even mentioned in the head of r1.

It follows that the foundedness of −a is supported solely by r2, and it requires that
−b be included in the repair. In the same way, the foundedness of −b is supported
solely by r3, and it depends on −a being included in the repair. Thus, the foundedness
of {−a,−b} is “circular”: −a is founded (and so included in U) due to the fact that −b
has been included in U , and −b is founded (and so included in U) due to the fact that
−a has been included in U , but there is no independent justification for having any of
these two actions included. As we noted, r1 does not “found” any of −a nor −b. �

To summarize this section, the semantics of repairs for aic’s enforces constraints and
satisfies the minimality of change property. It has no groundedness properties beyond

Declarative Semantics for Active Integrity Constraints 275

what is implied by the two requirements. The semantics of founded repairs gives prefer-
ence to some ways of repairing constraints over others. It only considers repairs whose
all elements are founded. However, foundedness may be circular and so the associated
concept of groundedness is weak. We revisit this issue in the next section.

On the computational side, the complexity of the semantics of repairs is lower than
that of founded repairs. From the result stated in the previous section, it follows that the
problem of the existence of a repair is NP-complete, while the problem of the existence
of a founded repair is Σ2

P -complete [2]. For the sake of completeness, we also note that
the problem of the existence of a founded weak repair is again “only” NP-complete (the
proof is simple and we omit it).

4 Justified Repairs

In this section, we will introduce another semantics for aic’s that captures a stronger
concept of groundedness than the one behind founded repairs. The goal is to disallow
circular dependencies like the one we discussed in Example 3.

We start by defining when a set of update actions is closed under aic’s. Let η be a set
of aic’s and let U be a set of update actions. If r ∈ η, and for every non-updatable literal
L ∈ body(r) there is an update action α ∈ U such that lit(α) = L then, after applying
U or any of its consistent supersets to the initial database, the result of the update, sayR,
satisfies all non-updatable literals in body(r). To guarantee that R satisfies r, R must
falsify at least one literal in body(r). To this end U must contain at least one update
action from head(r).

Definition 3. [CLOSED SET OF UPDATE ACTIONS] A set U of update actions is closed
under an aic r if nup(r) ⊆ lit(U) implies head(r) ∩ U �= ∅. A set U of update actions
is closed under a set η of aic’s if it is closed under every r ∈ η. �

If a set of update actions is not closed under a set η of aic’s, executing its elements may
fail to enforce constraints. Therefore, closed sets of update actions are important. We
regard minimal such sets as “forced” by η, as all elements in a minimal set of update
actions closed under η are necessary (no nonempty subset can be dropped).

Another key notion in our considerations is that of no-effect actions. Let I be a
database and R a result of updating I. An update action +a (respectively,−a) is a no-
effect action with respect to (I,R) if a ∈ I ∩R (respectively, a /∈ I ∪R). Informally,
a no-effect action does not change the status of its underlying atom. We denote by
ne(I,R) the set of all no-effect actions with respect to (I,R). We note the following
two simple properties reflecting the nature of no-effect actions — their redundancy.

Proposition 2. Let I be a database. Then

1. For every databaseR, R ◦ ne(I,R) = R
2. For every set E of update actions such that E ∪ ne(I, I ◦ E) is consistent, I ◦ E =
I ◦ (E ∪ ne(I, I ◦ E)). �

Our semantics of justified repairs is based on the knowledge-representation principle
(a form of the frame axiom) that remaining in the previous state requires no reason

276 L. Caroprese and M. Truszczyński

(persistence by inertia). Thus, when justifying update actions necessary to transform I
into R based on η we assume the set ne(I,R) as given. This brings us to the notion of
a justified weak repair.

Definition 4. [JUSTIFIED WEAK REPAIR] Let I be a database and η a set of aic’s. A
consistent set U of update actions is a justified action set for 〈I, η〉 if U is a minimal set
of update actions containing ne(I, I ◦ U) and closed under η. If U is a justified action
set for 〈I, η〉, then E = U \ ne(I, I ◦ U) is a justified weak repair for 〈I, η〉. �

Intuitively, a set U of update actions is a justified action set, if it is precisely the set
of update actions forced or justified by η and the no-effect actions with respect to I
and I ◦ U . This “fixpoint” aspect of the definition is reminiscent of the definitions of
semantics of several non-monotonic logics, including (disjunctive) logic programming
with the answer-set semantics. The connection can be made more formal and we take
advantage of it in the section on the complexity and computation.

We will now study justified action sets and justified weak repairs. We start with an
alternative characterization of justified weak repairs.

Theorem 1. Let I be a database, η a set of aic’s and E a consistent set of update
actions. Then E is a a justified weak repair for 〈I, η〉 if and only if E ∩ne(I, I ◦E) = ∅
and E ∪ ne(I, I ◦ E) is a justified action set for 〈I, η〉. �

Justified weak repairs have two key properties for the problem of database update: con-
straint enforcement (hence the term “weak repair”) and foundedness.

Theorem 2. Let I be a database, η a set of aic’s, and E a justified weak repair for
〈I, η〉. Then

1. For every atom a, exactly one of +a or −a is in E ∪ ne(I, I ◦ E)
2. I ◦ E |= η
3. E is founded for 〈I, η〉. �

Theorem 2 directly implies that justified weak repairs are founded weak repairs.

Corollary 1. Let I be a database, η a set of aic’s, and E a justified weak repair for
〈I, η〉. Then, E is a founded weak repair for 〈I, η〉. �

The converse to Corollary 1 does not hold. That is, there are founded weak repairs that
are not justified weak repairs.

Example 4. The database and aic’s from Example 3 illustrate the point. As we noted
there, U = {−a,−b} is a founded repair. Thus, it is also a founded weak repair.

As pointed out, the support for the foundedness of U is circular. The semantics of
justified weak repairs resolves the problem. Indeed, U is not a justified weak repair for
〈I, η1〉. One can check that U ∪ ne(I, I ◦ U) (= {−a,−b}) contains ne(I, I ◦ U)
(= ∅), and is closed under η. But it is not a minimal set of update actions containing
ne(I, I ◦ U) and closed under η. Indeed, ∅ has these two properties, too. Thus, the
notion of groundedness employed by justified weak repairs is stronger.

Declarative Semantics for Active Integrity Constraints 277

In Example 3, the problem is caused by r1. Let us consider a situation, where r1 is
replaced with r′1 = a, b ⊃ −a| − b. The constraint r′1 provides support for −a or −b
independently of the repaired database (as there are no non-updatable literals in r′1). If
−a is selected (with support from r′1), r3 supports −b. If −b is selected (with support
from r′1), r2 supports−a, Thus the cyclic support given by r2 and r3 in the presence of
r1 is broken. Indeed, one can check that {−a,−b} is a justified weak repair. �

While stronger property than foundedness, being a justified weak repair still does not
guarantee change-minimality (and so, the term weak cannot be dropped).

Example 5. Let I ′ = ∅, and η3 be a set of aic’s consisting of

r1 = not a, b ⊃ +a| − b
r2 = a,not b ⊃ −a|+ b

Let us consider the set of update actions E = {+a,+b}. It is easy to verify that E is a
justified weak repair for 〈I ′, η3〉. Therefore, it ensures constraint enforcement and it is
founded. However, E is not minimal as I ′ is consistent with η3, and the empty set of
update actions is its only repair. �

Thus, to have change-minimality, it needs to be enforced directly as in the case of
founded repairs. By doing so, we obtain the notion of justified repairs.

Definition 5. [JUSTIFIED REPAIR] Let I be a database and η a set of aic’s. A set E of
update actions is a justified repair for 〈I, η〉 if E is a justified weak repair for 〈I, η〉,
and for every E ′ ⊆ E such that I ◦ E ′ |= η, E ′ = E . �

Theorem 2 has yet another corollary, this time concerning justified and founded repairs.

Corollary 2. Let I be a database, η a set of aic’s, and E a justified repair for 〈I, η〉.
Then, E is a founded repair for 〈I, η〉. �

Example 4 shows that the inclusion asserted by Corollary 2 is proper. Indeed, we argued
there that {−a,−b} is a founded repair but not a justified weak repair. Thus, {−a,−b}
is not a justified repair, either.

As illustrated by Example 5, in general, justified weak repairs form a proper subclass
of justified repairs. However, in some cases the two concepts coincide — the minimality
is a consequence of the groundedness underlying the notion of a justified weak repair.
One such case is identified in the next theorem. The other important case is discussed
in the next section.

Theorem 3. Let I be a database and η a set of aic’s such that for each update action
α ∈

⋃
r∈η head(r), I |= lit(αD). If E is a justified weak repair for 〈I, η〉, then E is a

justified repair for 〈I, η〉. �

This theorem concerns the case when each update action in the head of an aic, if exe-
cuted, would change the status of the underlying atom in the database. For instance, if
the initial database is empty and all update actions prescribed by aic’s are insert actions,
then justified weak repairs are guaranteed to be minimal and so, are justified repairs.

278 L. Caroprese and M. Truszczyński

5 Normal Active Integrity Constraints and Normalization

An aic r is normal if |head(r)| = 1. We will now study properties of normal aic’s. The
next result shows that for that class of constraints, updating by justified weak repairs
guarantees the minimality of change property and so, the explicit reference to the latter
can be omitted from the definition of justified repairs.

Theorem 4. Let I be a database and η a set of normal aic’s. If E is a justified weak
repair for 〈I, η〉 then E is a justified repair for 〈I, η〉. �

Next, we introduce the operation of normalization of aic’s, which consists of elimi-
nating disjunctions from the heads of rules. For an aic r = φ ⊃ α1| . . . |αn, by rn

we denote the set of normal aic’s {φ ⊃ α1, . . . , φ ⊃ αn}. For a set η of aic’s, we
set ηn =

⋃
r∈η r

n. It is shown in [6] that E is founded for 〈I, η〉 if and only if E is
a founded for 〈I, ηn〉. Thus, E is a founded (weak) repair for 〈I, η〉 if and only if E
is a founded (weak) repair for 〈I, ηn〉. For justified repairs, we have a weaker result.
Normalization may eliminate some justified (weak) repairs.

Theorem 5. Let I be a database and η a set of aic’s.

1. If a set E of update actions is a justified repair for 〈I, ηn〉, then E is a justified
repair for 〈I, η〉;

2. If a set E of update action is a justified weak repair for 〈I, ηn〉, then E is a justified
weak repair for 〈I, η〉. �

The following example shows that the inclusion in the previous theorem is, in general,
proper.

Example 6. Let us consider an empty database I′ = ∅, the set η4 of aic’s

r1 = not a,not b ⊃ +a|+ b
r2 = a,not b ⊃ +b
r3 = not a, b ⊃ +a

its normalized version ηn
4

r1,1 = not a,not b ⊃ +a r2,1 = a,not b ⊃ +b
r1,2 = not a,not b ⊃ +b r3,1 = not a, b ⊃ +a

and the set of update actions E = {+a,+b}. It is easy to verify that E is a justified repair
for 〈I′, η4〉. However, E is not a justified weak repair for 〈I′, ηn

4 〉 (and so, not a justified
repair for 〈I′, ηn

4 〉). Indeed, it is not a minimal set containing ne(I ′, I ′ ◦ E) = ∅ and
closed under ηn

4 , as ∅ is also closed under ηn
4 . �

6 Shifting Theorem

We will now study the concept of shifting [3]. Shifting consists of transforming an
instance 〈I, η〉 of the database repair problem to a syntactically isomorphic instance
〈I ′, η′〉 by changing integrity constraints to reflect the “shift” of I into I ′. A semantics

Declarative Semantics for Active Integrity Constraints 279

for database repair problem has the shifting property if the repairs of the “shifted” in-
stance of the database update problem are precisely the results of modifying the repairs
of the original instance according to the shift from I to I′. The shifting property is
important. If a semantics of database updates has it, the study of that semantics can be
reduced to the case when the input database is empty. In many cases it allows us to relate
a semantics of database repairs to some semantics of logic programs with negation.

Example 7. Let I = {a, b} and let η5 = {a, b ⊃ −a| − b}. There are two founded
repairs for 〈I, η5〉: E1 = {−a} and E2 = {−b}. Let W = {a}. We will now “shift”
the instance 〈I, η5〉 with respect to W . To this end, we will first modify I by changing
the status in I of elements in W , in our case, of a. Since a ∈ I, we will remove
it. Thus, I “shifted” with respect to W becomes J = {b}. Next, we will modify η5
correspondingly, replacing literals and update actions involving a by their duals. That
results in η′5 = {not a, b ⊃ +a| − b}. One can check that the resulting instance 〈J , η′5〉
of the update problem has two founded repairs: {+a} and {−b}. Moreover, they can
be obtained from the founded repairs for 〈I, η5〉 by consistently replacing −a with +a
and +a with −a (the latter does not apply in this example). In other words, the original
update problem and its shifted version are isomorphic. �

The situation presented in Example 7 is not coincidental. In this section we present re-
sults showing that the semantics of (weak) repairs, founded (weak) repairs and justified
(weak) repairs satisfy the shifting property. We start by observing that shifting a data-
base I to a database I ′ can be modeled by means of the symmetric difference operator.
Namely, we have I ′ = I ÷W , where W = I ÷ I′. This identity shows that one can
shift any database I into any database I′ by forming a symmetric difference of I with
some set of atom W (specifically, W = I ÷ I′). We will now extend the operation of
shifting a database with respect to W to the case of literals, update actions and aic’s. To
this end, we introduce a shifting operator TW .

Definition 6. Let W be a database and � a literal or an update action. We define

TW(�) =
{
�D if the atom of � is in W
� if the atom of � is not in W

and we extend this definition to sets of literals or update actions, respectively. Further-
more, if op is an operator on sets of literals or update actions (such as conjunction or
disjunction), for every set X of literals or update actions, we define TW(op(X)) =
op(TW(X)). Finally, for an aic r = φ ⊃ ψ, we set TW(r) = TW(φ) ⊃ TW(ψ) and we
extend the notation to sets aic’s in the standard way. �

To illustrate the last two parts of the definition, we note that when op stands for the
conjunction of a set of literals and X = {L1, . . . , Ln}, where every Li is a literal,
TW(op(X)) = op(TW(X)) specializes to TW(L1, . . . , Ln) = TW(L1), . . . , TW(Ln).
Similarly, for an aic r = L1, . . . , Ln ⊃ α1| . . . |αm we obtain

TW(r) = TW(L1), . . . , TW(Ln) ⊃ TW(α1)| . . . |TW(αm).

Clearly, we overload the notation TW and interpret it based on the type of the argument.
We have the following two results.

280 L. Caroprese and M. Truszczyński

Theorem 6. [SHIFTING THEOREM FOR (WEAK) REPAIRS AND FOUNDED (WEAK)
REPAIRS] Let I and W be databases. For every set η of aic’s and for every consistent
set E of update actions, we have

1. E is a weak repair for 〈I, η〉 if and only if TW(E) is a weak repair for
〈I ÷W, TW(η)〉

2. E is a repair for 〈I, η〉 if and only if TW(E) is a repair for 〈I ÷W, TW(η)〉
3. E is founded for 〈I, η〉 if and only if TW(E) is founded for 〈I ÷W, TW(η)〉.
4. E is a founded (weak) repair for 〈I, η〉 if and only if TW(E) is a founded (weak)

repair for 〈I ÷W, TW(η)〉. �

Theorem 7. [SHIFTING THEOREM FOR JUSTIFIED (WEAK) REPAIRS] Let I and W
be databases. For every set η of aic’s and for every set E of update actions, E is an
justified (weak) repair for 〈I, η〉 if and only if TW(E) is a justified (weak) repair for
〈I, TW(η)〉. �

Theorems 6 and 7 imply that in the context of (weak) repairs, founded (weak) repairs
or justified (weak) repairs, an instance 〈I, η〉 of the database update problem can be
shifted to the instance the empty initial database. That property simplifies studies of
these semantics as it allows us to eliminate one parameter (the initial database) from
considerations.

Corollary 3. Let I be a database and η a set of aic’s. Then E is a weak repair (re-
pair, weak repair, founded weak repair, founded repair, justified weak repair, justified
repair, respectively) for 〈I, η〉 if and only if TI(E) is a weak repair (repair, weak repair,
founded weak repair, founded repair, justified weak repair, justified repair, respectively)
for 〈∅, TI(η)〉. �

Example 8. Let us look at one of the instances of the database repair problem consid-
ered in Example 4, specifically, at 〈I, η2〉. We recall that I = {a, b} and η2 consists of
the constraints:

a, b ⊃ −a| − b
a,not b ⊃ −a
not a, b ⊃ −b.

The set {−a,−b} is the only weak repair for 〈I, η2〉 and, as we noted earlier, it is a
(weak) founded repair and a (weak) justified repair for 〈I, η2〉, as well. Let us “shift”
this instance to I ′ = ∅, To this end, we shift with respect to W = I ÷ I′ = {a, b}.
One can check that ∅ = T{a,b}({a, b}), that is, I ′ = TW (I). Moreover, TW (η2) = η4,
where η4 is the set of aic’s considered in Example 6 above. Thus, indeed, by shifting
〈I, η2〉 with respect to W , we obtain the database repair problem 〈I′, η4〉. It is easy to
verify that T{a,b}({−a,−b}) = {+a,+b} and that {+a,+b} is the only (weak) repair
for 〈I ′, η4〉, which happens also to be a (weak) founded repair and a (weak) justified
repair for 〈I′, η4〉, in agreement with the results of this section. �

7 Complexity and Computation

We noted earlier that the problem of the existence of a (weak) repair is NP-complete,
and the same is true for the problem of the existence of founded weak repairs. On the

Declarative Semantics for Active Integrity Constraints 281

other hand, the problem of the existence of a founded repair is Σ2
P -complete [2]. In this

section, we study the problem of the existence of justified (weak) repairs.
For our hardness results, we will use problems in logic programming. We will con-

sider disjunctive and normal logic programs that satisfy some additional syntactic con-
straints. Namely, we will consider only programs without rules which contain multiple
occurrences of the same atom (that is, in the head and in the body, negated or not;
or in the body — both positively and negatively). We call such programs simple. It is
well known that the problem of the existence of a stable model of a normal logic pro-
gram is NP-complete [7], and of the disjunctive logic program —ΣP

2 -complete [8]. The
proofs in [7,8] imply that the results hold also under the restriction to simple normal and
simple disjunctive programs, respectively (in the case of disjunctive logic programs,
a minor modification of the construction is required). Let ρ be a logic programming
rule, say

ρ = a1| . . . |ak ← β.

We define
aic(ρ) = not a1, . . . ,not ak, β ⊃ +a1| . . . |+ ak.

We extend the operator aic(·) to logic programs in a standard way. We note that if a
rule ρ is simple then body(aic(ρ)) is consistent and nup(aic(ρ)) = body(ρ).

We recall that a set M of atoms is an answer set of a disjunctive logic program P
if M is a minimal set closed under the reduct PM , where PM consists of the rules
obtained by dropping all negative literals from those rules in P that do not contain a
literal not a in the body, for any a ∈ M (we refer to [9] for details). The following
result states a property of the translation needed for hardness arguments.

Theorem 8. Let P be a simple disjunctive logic program. A set M of atoms is an
answer set of P if and only if ua(M) is a justified weak repair for 〈∅, aic(P)〉. �

Example 9. Let us consider Example 6. We observe that η4 is equal to aic(P) where P
is the simple disjunctive logic program consisting of the rules: ρ1 = a | b, ρ2 = b← a
and ρ3 = a← b.We know that E = {+a,+b} is the unique justified repair for 〈I ′, η4〉,
where I ′ = ∅. Moreover, one can check that M = {a, b}, for which E = ua(M),
is the unique answer set of P . Furthermore, since the instance 〈I ′, η4〉 is the result of
shifting 〈I, η2〉, also the repairs of 〈I, η2〉 can be expressed in terms of answer sets of
the disjunctive logic program aic(P). This points to a general translation of instances
of the database repair problem into disjunctive logic programs by combining shifting
with the mapping aic. A detailed study of this relationship is a subject of a separate
paper. �

We now state main results of the section.

Theorem 9. Let I be a database and η a set of normal aic’s. Then checking if there
exists a justified repair (justified weak repair, respectively) for 〈I, η〉 is an NP-complete
problem. �

Theorem 10. Let I be a database and η a set of aic’s. The problem of the existence of
a justified weak repair for 〈I, η〉 is a ΣP

2 -complete problem. �

282 L. Caroprese and M. Truszczyński

Theorem 11. Let I be a database and η a set of aic’s. The problem of the existence of
a justified repair for 〈I, η〉 is a ΣP

2 -complete problem. �

8 Discussion

We recall that given a database I and a set η of aic’s, the goal is to replace I with I ′ so
that I ′ satisfies η. The set of update actions needed to transform I into I ′ must at least
be a repair for 〈I, η〉 (assuming we insist on change-minimality, which normally is the
case). However, it should also obey preferences captured by the heads of constraints
in η. Let us denote by R(I, η), WR(I, η), FR(I, η), FWR(I, η), JR(I, η), and
JWR(I, η) the classes of repairs, weak repairs, founded repairs, founded weak repairs,
justified repairs and justified weak repairs for 〈I, η〉, respectively. Figure 1 shows the
relationships among these classes, with all inclusions being in general proper.

FR(I, ηn)
=

JR(I, ηn) ⊆ JR(I, η) ⊆ FR(I, η) ⊆ R(I, η) = R(I, ηn)

=

⊆ ⊆ ⊆ ⊆

JWR(I, ηn) ⊆ JWR(I, η) ⊆ FWR(I, η) ⊆ WR(I, η) = WR(I, ηn)

=

FWR(I, ηn)

Fig. 1. Relationships among classes of repairs

Thus, given an instance 〈I, η〉 of the database repair problem, one might first at-
tempt to select a repair for 〈I, η〉 from the most restricted set of repairs, JR(I, ηn).
Not only these repairs are strongly tied to preferences expressed by η — the related
computational problems are relatively easy. The problem to decide whether this set
is empty is NP-complete. However, the class JR(I, ηn) is narrow and it may be that
JR(I, ηn) = ∅. If it is so, the next step might be to try to repair I by selecting a re-
pair from JR(I, η). This class of repairs for 〈I, η〉 reflects the preferences captured
by η. Since it is broader than the previous one, there is a better possibility it will be
non-empty. However, the computational complexity grows — the existence problem
for JR(I, η) is Σ2

P -complete. If also JR(I, η) = ∅, it still may be that founded repairs
exist. Moreover, deciding whether a founded repair exists is not harder than the pre-
vious step. Finally, if there are no founded repairs, one still may consider just a repair.
This is not quite satisfactory as it ignores the preferences encoded by η and concentrates
only on the constraint enforcement. However, deciding whether a repair exists is “only”
NP-complete. Moreover, this class subsumes all other classes of repairs and offers the
best chance of success.

We note that if we fail to find a justified or founded repair in the process described
above, we may decide that respecting preferences encoded in aic’s is more important
than the minimality of change postulate. In such case, rather to proceed to seek a repair,
as discussed above, we also have an option to consider justified weak repairs of 〈I, η〉,
where the existence problem is ΣP

2 -complete and, then founded weak repairs for 〈I, η〉,
where the existence problem is NP-complete.

Declarative Semantics for Active Integrity Constraints 283

9 Conclusion

We studied the formalism of aic’s [2], designed for enforcing integrity constraints on
databases in the presence of preferences on alternative ways to do so. The original
semantics proposed for aic’s is based on the concept of a founded repair. Founded re-
pairs are sets of update actions to be performed over the database in order to make it con-
sistent. They are minimal w.r.t. change and supported by aic’s. In some cases, elements
of founded repairs cyclically support each other, which often is undesirable. Therefore,
we introduced several new semantics for aic’s. Two most important of them are the se-
mantics of justified weak repairs and justified repairs. They are based on the concept
of groundedness similar to that underlying the answer-set semantics of logic programs.
We established the relationship of the two new semantics to that of founded repairs. For
each semantics we determined the complexity of the basic existence of repair problem.
Furthermore, we proved that each semantics satisfies the shifting property. Shifting con-
sists of transforming an instance of a database repair problem to another syntactically
isomorphic one by changing aic’s to reflect the “shift” from the original database to the
new one. These latter results are essential for relating repair formalism we studied with
the formalism of Lifschitz-Woo programs [10], a subject of our future work.

Acknowledgments

This work was partially supported by the NSF grant IIS-0325063 and the KSEF grant
KSEF-1036-RDE-008.

References

1. Winslett, M.: Updating Logical Databases. Cambridge University Press, Cambridge (1990)
2. Caroprese, L., Greco, S., Sirangelo, C., Zumpano, E.: Declarative semantics of production

rules for integrity maintenance. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS,
vol. 4079, pp. 26–40. Springer, Heidelberg (2006)

3. Marek, W., Truszczyński, M.: Revision programming. Theoretical Computer Science 190,
241–277 (1998)

4. Pivkina, I.: Revision programming: a knowledge representation formalism. PhD thesis, De-
partment of Computer Science, University of Kentucky (2001),
http://lib.uky.edu/ETD/ukycosc2001d00022/pivkina.pdf

5. Caroprese, L., Truszczyński, M.: Declarative Semantics for Revision Programming and Con-
nections to Active Integrity Constraints. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.)
JELIA 2008. LNCS, vol. 5293. Springer, Heidelberg (2008)

6. Caroprese, L., Greco, S., Zumpano, E.: Active integrity constraints for database consistency
maintenance, Manuscript, IEEE TKDE (submitted, 2008)

7. Marek, W., Truszczyński, M.: Autoepistemic logic. Journal of the ACM 38, 588–619 (1991)
8. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: proposi-

tional case. Annals of Mathematics and Artificial Intelligence 15, 289–323 (1995)
9. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.

New Generation Computing 9, 365–385 (1991)
10. Lifschitz, V., Woo, T.: Answer sets in general nonmonotonic reasoning. In: Proceedings of

KR 1992, pp. 603–614. Morgan Kaufmann, San Francisco (1992)

http://lib.uky.edu/ETD/ukycosc2001d00022/pivkina.pdf

A Folding Algorithm for
Eliminating Existential Variables from

Constraint Logic Programs

Valerio Senni1, Alberto Pettorossi1, and Maurizio Proietti2

1 DISP, University of Rome Tor Vergata, Via del Politecnico 1, I-00133 Rome, Italy
{senni,pettorossi}@disp.uniroma2.it

2 IASI-CNR, Viale Manzoni 30, I-00185 Rome, Italy
proietti@iasi.cnr.it

Abstract. The existential variables of a clause in a constraint logic pro-
gram are the variables which occur in the body of the clause and not in
its head. The elimination of these variables is a transformation technique
which is often used for improving program efficiency and verifying pro-
gram properties. We consider a folding transformation rule which ensures
the elimination of existential variables and we propose an algorithm for
applying this rule in the case where the constraints are linear inequa-
tions over rational or real numbers. The algorithm combines techniques
for matching terms modulo equational theories and techniques for solv-
ing systems of linear inequations. We show that an implementation of
our folding algorithm performs well in practice.

1 Introduction

Constraint logic programming is a very expressive language for writing programs
in a declarative way and for specifying and verifying properties of software sys-
tems [1]. When writing programs in a declarative style or writing specifications,
one often uses existential variables, that is, variables which occur in the body of
a clause and not in its head. For instance, the formula ∀N (N>0 → p(N)), spec-
ifying “the predicate p(N) holds for every positive number N”, can be written
by using the following two clauses:

prop ← ¬q q ← N > 0 ∧ ¬p(N)

where N is an existential variable. However, the use of existential variables may
give rise to inefficient or even nonterminating computations (and this may hap-
pen when an existential variable denotes an intermediate data structure or when
an existential variable ranges over an infinite set). For this reason some trans-
formation techniques have been proposed for eliminating those variables from
logic programs and constraint logic programs [2,3]. In particular, in [3] it has
been shown that by eliminating the existential variables from a constraint logic
program defining a nullary predicate, like prop above, one may obtain a propo-
sitional program and, thus, decide whether or not that predicate holds.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 284–300, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Folding Algorithm for Eliminating Existential Variables 285

The transformation techniques for the elimination of the existential variables
make use of the unfolding and folding rules which have been first proposed in
the context of functional programming by Burstall and Darlington [4], and then
extended to logic programming [5] and to constraint logic programming [6,7,8,9].
In the techniques for eliminating existential variables a particularly relevant role
is played by the folding rule, which can be defined as follows.

Let (i) H and K be atoms, (ii) c and d be constraints, and (iii) G and B
be goals (that is, conjunctions of literals). Given two clauses γ: H ← c ∧ G
and δ: K ← d ∧ B, if there exist a constraint e, a substitution ϑ, and a goal
R such that H ← c ∧ G is equivalent (w.r.t. a given theory of constraints) to
H ← e ∧ (d ∧ B)ϑ ∧ R, then γ is folded into the clause η: H ← e ∧ Kϑ ∧ R.
In order to use the folding rule to eliminate existential variables we also require
that the variables occurring in Kϑ are a subset of the variables occurring in H .

In the literature, no algorithm is provided to determine whether or not, given
a theory of constraints, the suitable e, ϑ, and R which are required for folding,
do exist. In this paper we propose an algorithm based on linear algebra and
term rewriting techniques for computing e, ϑ, and R, if they exist, in the case
when the constraints are linear inequations over the rational numbers (however,
the techniques we will present are valid without relevant changes also when the
inequations are over the real numbers).

For instance, let us consider the clauses:

γ: p(X1, X2, X3) ← X1<1 ∧X1≥Z1+1 ∧ Z2>0 ∧ q(Z1, f(X3), Z2) ∧ r(X2)
δ: s(Y1, Y2, Y3) ←W1<0 ∧ Y1−3≥2W1 ∧W2>0 ∧ q(W1, Y3,W2)

and suppose that we want to fold γ using δ for eliminating the existential vari-
ables Z1 and Z2 occurring in γ. Our folding algorithm FA computes (see Ex-
amples 1–3 in Section 4): (i) the constraint e: X1 < 1, (ii) the substitution ϑ:
{Y1/2X1+1, Y2/a, Y3/f(X3),W1/Z1,W2/Z2}, where a is an arbitrary constant,
and (iii) the goal R: r(X2), and the clause derived by folding γ using δ is:

η: p(X1, X2, X3) ← X1<1 ∧ s(2X1+1, a, f(X3)) ∧ r(X2)

which has no existential variables. (The correctness of this folding can easily be
checked by unfolding η w.r.t. s(2X1+1, a, f(X3)).) In general, there may be zero
or more triples 〈e, ϑ,R〉 that satisfy the conditions for the applicability of the
folding rule. For this reason, our folding algorithm is nondeterministic and in
different runs it may compute different folded clauses.

The paper is organized as follows. In Section 2 we introduce some basic defin-
itions concerning constraint logic programs. In Section 3 we present the folding
rule which we use for eliminating existential variables. In Section 4 we describe
our algorithm for applying the folding rule and we prove the soundness and com-
pleteness of this algorithm with respect to the declarative specification of the
rule. In Section 5 we analyze the complexity of our folding algorithm. We also
describe an implementation of that algorithm and we present an experimental
evaluation of its performance. Finally, in Section 6 we discuss related work and
we suggest some directions for future investigations.

286 V. Senni, A. Pettorossi, and M. Proietti

2 Preliminary Definitions

In this section we recall some basic definitions concerning constraint logic pro-
grams, where the constraints are conjunctions of linear inequations over the ra-
tional numbers. As already mentioned, the results we will present in this paper
are valid also when the constraints are conjunctions of linear inequations over
the real numbers. For notions not defined here the reader may refer to [1,10].

Let us consider a first order language L given by a set Var of variables, a
set Fun of function symbols, and a set Pred of predicate symbols. Let + denote
addition, · denote multiplication, and Q denote the set of rational numbers. We
assume that {+, ·} ∪Q ⊆ Fun (in particular, every rational number is assumed
to be a 0-ary function symbol). We also assume that the predicate symbols ≥
and > denoting inequality and strict inequality, respectively, belong to Pred .

In order to distinguish terms representing rational numbers from other terms
(which, in general, may be considered as finite trees), we assume that L is a typed
language [10] with two basic types: rat, which is the type of rational numbers,
and tree, which is the type of finite trees. We also consider types constructed
from basic types by using the type constructors × and →. A variable X ∈ Var
has either type rat or type tree. We denote by Varrat and Vartree the set
of variables of type rat and tree, respectively. A predicate symbol of arity n
and a function symbol of arity n in L have types of the form τ1×· · ·×τn and
τ1×· · ·×τn → τn+1, respectively, for some types τ1, . . . , τn, τn+1 ∈ {rat, tree}.
In particular, the predicate symbols ≥ and > have type rat×rat, the function
symbols + and · have type rat×rat→ rat, and the rational numbers have
type rat. The function symbols in {+, ·} ∪ Q are the only symbols whose type
is τ1× · · · ×τn→rat, for some types τ1, . . . , τn, with n ≥ 0.

A term u is either a term of type rat or a term of type tree. A term p of
type rat is a linear polynomial of the form a1X1 + . . . + anXn + an+1, where
a1, . . . , an+1 are rational numbers and X1, . . . , Xn are variables in Varrat (a
monomial of the form aX stands for the term a ·X). A term t of type tree is
either a variable X in Vartree or a term of the form f(u1, . . . , un), where f is a
function symbol of type τ1× · · · ×τn → tree, and u1, . . . , un are terms of type
τ1, . . . , τn, respectively.

An atomic constraint is a linear inequation of the form p1 ≥ p2 or p1 > p2. A
constraint is a conjunction c1 ∧ . . .∧ cn, where c1, . . . , cn are atomic constraints.
When n = 0 we write c1∧. . .∧cn as true. A constraint of the form p1≥p2 ∧ p2≥p1
is abbreviated as the equation p1 =p2 (which, thus, is not an atomic constraint).
We denote by LIN Q the set of all constraints.

An atom is of the form r(u1, . . . , un), where r is a predicate symbol, not in
{≥, >}, of type τ1×. . .×τn and u1, . . . , un are terms of type τ1, . . . , τn, respec-
tively. A literal is either an atom (called a positive literal) or a negated atom
(called a negative literal). A goal is a conjunction L1 ∧ . . . ∧ Ln of literals, with
n ≥ 0. Similarly to the case of constraints, the conjunction of 0 literals is denoted
by true. A constrained goal is a conjunction c∧G, where c is a constraint and G
is a goal. A clause is of the form H ← c∧G, where H is an atom and c∧G is a
constrained goal. A constraint logic program is a set of clauses. A formula of the

A Folding Algorithm for Eliminating Existential Variables 287

language L is constructed as usual in first order logic from the symbols of L by
using the logical connectives ∧, ∨, ¬, →, ←, ↔, and the quantifiers ∃, ∀.

If e is a term or a formula then by Varsrat(e) and Varstree(e) we denote,
respectively, the set of variables of type rat and of type tree occurring in e. By
Vars(e) we denote the set of all variables occurring in e, that is, Varsrat(e) ∪
Varstree(e). Similar notation will also be used for sets of terms or sets of formulas.
Given a clause γ: H ← c ∧ G, by EVars(γ) we denote the set of the existential
variables of γ, that is, Vars(c ∧ G) − Vars(H). The constraint-local variables
of γ are the variables in the set Vars(c) − Vars({H,G}). Given a set X =
{X1, . . . , Xn} of variables and a formula ϕ, by ∀X ϕ we denote the formula
∀X1 . . . ∀Xn ϕ and by ∃X ϕ we denote the formula ∃X1 . . . ∃Xn ϕ. By ∀(ϕ) and
∃(ϕ) we denote the universal closure and the existential closure of ϕ, respectively.
In what follows we will use the notion of substitution as defined in [10] with
the following extra condition: for any substitution {X1/t1, . . . , Xn/tn}, for i =
1, . . . , n, the type of Xi is equal to the type of ti.

Let Lrat denote the sublanguage of L given by the set Varrat of variables,
the set {+, ·} ∪Q of function symbols, and the set {≥, >} of predicate symbols.
We denote by Q the interpretation which assigns to every function symbol or
predicate symbol of Lrat the usual function or relation on Q. For a formula ϕ of
Lrat (in particular, for a constraint), the satisfaction relationQ |= ϕ is defined as
usual in first order logic. A Q-interpretation is an interpretation I for the typed
language L which agrees with Q for each formula ϕ of Lrat, that is, for each ϕ of
Lrat, I |= ϕ iff Q |= ϕ. The definition of a Q-interpretation for typed languages
is a straightforward extension of the one for untyped languages [1]. We say that
a Q-interpretation I is a Q-model of a program P if for every clause γ ∈ P
we have that I |= ∀(γ). Similarly to the case of logic programs, we can define
stratified constraint logic programs and we have that every such program P has
a perfect Q-model [1,6,9], denoted by M(P).

A solution of a set C of constraints is a ground substitution σ of the form
{X1/a1, . . . , Xn/an}, where {X1, . . . , Xn} = Vars(C) and a1, . . . , an ∈ Q, such
that Q |= c σ for every c ∈ C. A set of constraints is said to be satisfiable if it
has a solution. We assume that we are given a function solve that takes a set C
of constraints in LIN Q as input and returns a solution σ of C, if C is satisfiable,
and fail otherwise. The function solve can be implemented, for instance, by
using the Fourier-Motzkin or the Khachiyan algorithms [11]. We assume that we
are also given a function project such that for every constraint c ∈ LIN Q and
for every finite set of variables X ⊆ Varrat, Q |= ∀X ((∃Y c) ↔ project(c,X)),
where Y = Vars(c) −X and Vars(project(c,X))⊆X . The project function can
be implemented, for instance, by using the Fourier-Motzkin variable elimination
algorithm or the algorithm presented in [12].

A clause γ : H ← c ∧G is said to be in normal form if (i) every term of type
rat occurring in G is a variable, (ii) each variable of type rat occurs at most
once in G, (iii) Varsrat(H) ∩Varsrat(G) = ∅, and (iv) γ has no constraint-local
variables. It is always possible to transform any clause γ1 into a clause γ2 in
normal form such that γ1 and γ2 have the same Q-models. (In particular, the
constraint-local variables of any given clause can be eliminated by applying the

288 V. Senni, A. Pettorossi, and M. Proietti

project function.) The clause γ2 is called a normal form of γ1. Without loss of
generality, when presenting the folding rule and the corresponding algorithm for
its application, we will assume that the clauses are in normal form.

Given two clauses γ1 and γ2, we write γ1 ∼= γ2 if there exist a normal form
H ← c1 ∧ B1 of γ1, a normal form H ← c2 ∧ B2 of γ2, and a variable renam-
ing ρ such that: (1) H = Hρ, (2) B1 =AC B2ρ, and (3) Q |= ∀ (c1 ↔ c2ρ),
where =AC denotes equality modulo the equational theory of associativity and
commutativity of conjunction. We refer to this theory as the AC∧ theory [13].

Proposition 1. (i)∼= is an equivalence relation. (ii) If γ1 ∼= γ2 then, for every
Q-interpretation I, I |=γ1 iff I |=γ2. (iii) If γ2 is a normal form of γ1 then γ1∼=γ2.

3 The Folding Rule

In this section we introduce our folding transformation rule which is a variant
of the rules considered in the literature [6,7,8,9]. In particular, by using our
variant of the folding rule we may replace a constrained goal occurring in the
body of a clause where some existential variables occur, by an atom which has
no existential variables in the folded clause.

Definition 1 (Folding Rule). Let γ: H ← c ∧ G and δ: K ← d ∧ B be
clauses in normal form without variables in common. Suppose also that there
exist a constraint e, a substitution ϑ, and a goal R such that: (1) γ ∼= H ←
e ∧ dϑ ∧Bϑ ∧R; (2) for every variable X in EVars(δ), the following conditions
hold: (2.1) Xϑ is a variable not occurring in {H, e,R}, and (2.2) Xϑ does not
occur in the term Y ϑ, for every variable Y occurring in d∧B and different from
X ; (3) Vars(Kϑ) ⊆ Vars(H). By folding clause γ using clause δ we derive the
clause η : H ← e ∧Kϑ ∧R.

Condition (3) ensures that no existential variable of η occurs in Kϑ. However,
in e or R some existential variables may still occur. These variables may be
eliminated by further folding steps using clause δ again or other clauses. In
Theorem 1 below we establish the correctness of the folding rule w.r.t. the perfect
model semantics. That correctness follows immediately from [7,8,9].

A transformation sequence is a sequence P0, . . . , Pn of programs such that, for
k = 0, . . . , n−1, program Pk+1 is derived from program Pk by an application
of one of the following transformation rules: definition, unfolding, folding. For
a detailed presentation of the definition and unfolding rules we refer to [9]. An
application of the folding rule is defined as follows. For k = 0, . . . , n, by Defsk we
denote the set of clauses introduced by the definition rule during the construction
of P0, . . . , Pk. Program Pk+1 is derived from program Pk by an application of
the folding rule if Pk+1 = (Pk − {γ}) ∪ {η}, where γ is a clause in Pk, δ is a
clause in Defsk, and η is the clause derived by folding γ using δ as indicated in
Definition 1.
Theorem 1. [9] Let P0 be a stratified program and let P0, . . . , Pn be a transfor-
mation sequence. Suppose that, for k = 0, . . . , n−1, if Pk+1 is derived from Pk by
folding clause γ using clause δ ∈ Defsk, then there exists j, with 0<j<n, such

A Folding Algorithm for Eliminating Existential Variables 289

that δ ∈ Pj and Pj+1 is derived from Pj by unfolding δ w.r.t. a positive literal in
its body. Then P0 ∪Defsn and Pn are stratified and M(P0 ∪Defsn) = M(Pn).

4 An Algorithm for Applying the Folding Rule

Now we will present an algorithm for determining whether or not a clause
γ : H ← c ∧ G can be folded using a clause δ : K ← d ∧ B, according to
Definition 1. The objective of our folding algorithm is to find a constraint e,
a substitution ϑ, and a goal R such that γ ∼= H ← e ∧ dϑ ∧ Bϑ ∧ R holds
(see Point (1) of Definition 1), and also Points (2) and (3) of Definition 1 hold.
Our algorithm computes e, ϑ, and R, if they exist, by applying two procedures:
(i) the goal matching procedure, called GM, which matches the goal G against
B and returns a substitution α and a goal R such that G =AC Bα ∧ R, and
(ii) the constraint matching procedure, called CM, which matches the constraint
c against dα and returns a substitution β and a new constraint e such that c
is equivalent to e ∧ dα β in the theory of constraints. The substitution ϑ to be
found is αβ, that is, the composition of the substitutions α and β. The output
of the folding algorithm is either the clause η : H ← e∧Kϑ∧R, or fail if folding
is not possible. Since Definition 1 does not determine e, ϑ, and R in a unique
way, our folding algorithm is nondeterministic and, as already said, in different
runs it may compute different output clauses.

4.1 Goal Matching

Let us now present the goal matching procedure GM. This procedure uses the
notion of binding which is defined as follows: a binding is a pair of the form
e1/e2, where e1, e2 are either both goals or both terms. Thus, the notion of set
of bindings is a generalization of the notion of substitution.

Goal Matching Procedure: GM
Input: two clauses in normal form without variables in common γ : H ← c∧G
and δ : K ← d ∧B.
Output: a substitution α and a goal R such that: (1) G =AC Bα∧R; (2) for
every variable X in EVars(δ), the following conditions hold: (2.1) Xα is
a variable not occurring in {H,R}, and (2.2) Xα does not occur in the
term Y α, for every variable Y occurring in d ∧ B and different from X ;
(3) Varstree(Kα) ⊆ Vars(H). If such α and R do not exist, then fail.
Consider a set Bnds of bindings initialized to the singleton {B/G}. Consider
also the following rewrite rules (i)–(x). When the left hand side of a rule is
written as Bnds1∪Bnds2 =⇒ . . . then we assume that Bnds1 ∩ Bnds2 = ∅.
(i) {(L1∧B1) / (G1∧L2∧G2)} ∪ Bnds =⇒ {L1/L2, B1/(G1∧G2)} ∪ Bnds

where: (1) L1 and L2 are both positive or both negative literals and have
the same predicate symbol with the same arity, and (2) B1, G1, and G2
are goals (possibly, the empty conjunction true);

(ii) {¬A1/¬A2} ∪ Bnds =⇒ {A1/A2} ∪ Bnds ;

290 V. Senni, A. Pettorossi, and M. Proietti

(iii) {a(s1, . . . , sn)/a(t1, . . . , tn)} ∪ Bnds =⇒ {s1/t1, . . . , sn/tn} ∪ Bnds ;
(iv) {a(s1, . . . , sm)/b(t1, . . . , tn)}∪Bnds =⇒ fail, if a is syntactically different

from b or m �= n;
(v) {a(s1, . . . , sn)/X} ∪ Bnds =⇒ fail, if X is a variable;
(vi) {X/s} ∪ Bnds =⇒ fail, if X is a variable and X/t ∈ Bnds for some t

syntactically different from s;
(vii) {X/s} ∪ Bnds =⇒ fail, if X ∈ EVars(δ) and one of the following three

conditions holds: (1) s is not a variable, or (2) s ∈ Vars(H), or (3) there
exists Y ∈ Vars(d ∧ B) different from X such that: (3.1) Y/t ∈ Bnds ,
for some term t, and (3.2) s ∈ Vars(t);

(viii) {X/s, true/G2} ∪ Bnds =⇒ fail, if X ∈ EVars(δ) and s ∈ Vars(G2);
(ix) {X/s} ∪ Bnds =⇒ fail, if X ∈ Varstree(K) and Vars(s) �⊆ Vars(H);
(x) Bnds =⇒ {X/s} ∪ Bnds , where s is an arbitrary ground term of type

tree, if X ∈ Varstree(K) − Vars(B) and there is no term t such that
X/t ∈ Bnds .

IF there exist a set of bindings α (which, by construction, is a substitution)
and a goal R such that: (c1) {B/G} =⇒∗ {true/R}∪α (where true/R �∈ α),
(c2) no α′ exists such that α =⇒ α′, and (c3) α is different from fail (that is,
α is a maximally rewritten, non-failing set of bindings such that (c1) holds)
THEN return α and R ELSE return fail.

Rule (i) associates each literal in B with a literal in G in a nondeterministic
way. Rules (ii)–(vi) are a specialization to our case of the usual rules for match-
ing [14]. Rules (vii)–(x) ensure that any pair 〈α,R〉 computed by GM satisfies
Conditions (2) and (3) of the folding rule, or if no such pair exists, then GM
returns fail.

Example 1. Let us apply the procedure GM to the clauses γ and δ presented in
the Introduction, where the predicates p, q, r, and s are of type rat×tree×tree,
rat×tree×rat, tree, and rat×tree×tree, respectively, and the function f
is of type tree→tree. The clauses γ and δ are in normal form and have no
variables in common. The procedure GM performs the following rewritings,
where the arrow r=⇒ denotes an application of the rewrite rule r:

{q(W1, Y3,W2)/(q(Z1, f(X3), Z2) ∧ r(X2))}
i=⇒ {q(W1, Y3,W2)/q(Z1, f(X3), Z2), true/r(X2)}
iii=⇒ {W1/Z1, Y3/f(X3), W2/Z2, true/r(X2)}
x=⇒ {W1/Z1, Y3/f(X3), W2/Z2, Y2/a, true/r(X2)}

In the final set of bindings, the term a is an arbitrary constant of type tree. The
output of GM is the substitution α : {W1/Z1, Y3/f(X3), W2/Z2, Y2/a} and the
goal R : r(X2).

The termination of the goal matching procedure can be shown via an argument
based on the multiset ordering of the size of the bindings. Indeed, each of the
rules (i)–(ix) replaces a binding by a finite number of smaller bindings, and
rule (x) can be applied at most once for each variable in the head of clause δ.

A Folding Algorithm for Eliminating Existential Variables 291

4.2 Constraint Matching

Given two clauses in normal form γ : H ← c ∧G and δ : K ← d ∧B, if the goal
matching procedure GM returns the substitution α and the goal R, then we
can construct two clauses in normal form: H ← c∧Bα∧R and Kα← dα∧Bα
such that G =AC Bα ∧ R. The constraint matching procedure CM takes in
input these two clauses, which, for reasons of simplicity, we now rename as
γ′ : H ← c∧B′∧R and δ′ : K ′ ← d′∧B′, respectively, and returns a constraint e
and a substitution β such that: (1) γ′ ∼= H ← e ∧ d′β ∧ B′ ∧ R, (2) B′β =B′,
(3) Vars(K ′β)⊆Vars(H), and (4) Vars(e)⊆Vars({H,R}). If such e and β do
not exist, then the procedure CM returns fail.

Now, let ẽ denote the constraint project(c,X), where X = Vars(c)−Vars(B′)
(see Section 2 for the definition of the project function). Lemma 1 below shows
that, for any substitution β, if there exists a constraint e satisfying Condi-
tions (1)–(4) above, then we can always take e to be the constraint ẽ. Thus,
by Lemma 1 the procedure CM should only search for a substitution β such
that Q |= ∀(c ↔ (ẽ ∧ d′β)).

Lemma 1. Let γ′ : H ← c∧B′∧R and δ′ : K ′ ← d′∧B′ be the input clauses of the
constraint matching procedure. For every substitution β, there exists a constraint
e such that: (1) γ′ ∼= H ← e ∧ d′β ∧ B′ ∧ R, (2) B′β = B′, (3) Vars(K ′β) ⊆
Vars(H), and (4) Vars(e) ⊆ Vars({H,R}) iff Q |= ∀(c ↔ (ẽ ∧ d′β)) and
Conditions (2) and (3) hold.

Now we introduce some notions and we state some properties (see Lemma 2
and Theorem 2) which will be exploited by the constraint matching proce-
dure CM for reducing the equivalence between c and ẽ ∧ d′β, for a suitable
β, to a set of equivalences between the atomic constraints occurring in c and
ẽ ∧ d′β.

A conjunction a1 ∧ . . .∧ am of (not necessarily distinct) atomic constraints is
said to be redundant if there exists i, with 0≤ i ≤ m, such that Q |= ∀((a1∧ . . .∧
ai−1 ∧ ai+1 ∧ . . . ∧ am) → ai). In this case we also say that ai is redundant in
a1∧ . . .∧am. Thus, the empty conjunction true is non-redundant and an atomic
constraint a is redundant iff Q |= ∀(a). Given a redundant constraint c, we can
always derive a non-redundant constraint c′ which is equivalent to c, that is,
Q |= ∀(c ↔ c′), by repeatedly eliminating from the constraint at hand an atomic
constraint which is redundant in that constraint.

Without loss of generality we can assume that any given constraint c is of the
form p1 ρ1 0∧ . . .∧pm ρm 0, where m≥0 and ρ1, . . . , ρm ∈ {≥, >}. We define the
interior of c, denoted interior (c), to be the constraint p1 > 0 ∧ . . . ∧ pm > 0. A
constraint c is said to be admissible if both c and interior(c) are satisfiable and
non-redundant. For instance, the constraint c1 : X−Y ≥0 ∧ Y ≥0 is admissible,
while the constraint c2 : X−Y ≥0 ∧ Y ≥0 ∧X>0 is not admissible (indeed, c2
is non-redundant and interior (c2) : X−Y >0∧ Y >0∧X>0 is redundant). The
following Lemma 2 characterizes the equivalence of two constraints when one of
them is admissible.

292 V. Senni, A. Pettorossi, and M. Proietti

Lemma 2. Let us consider an admissible constraint a of the form a1 ∧ . . .∧ am

and a constraint b of the form b1∧. . .∧bn, where a1, . . . , am, b1, . . . , bn are atomic
constraints (in particular, they are not equalities). We have that Q |= ∀ (a ↔ b)
holds iff there exists an injection µ : {1, . . . ,m} → {1, . . . , n} such that for
i= 1, . . . ,m, Q |= ∀ (ai ↔ bµ(i)) and for j = 1, . . . , n, if j �∈ {µ(i) | 1≤ i≤m},
then Q |= ∀ (a→ bj).
In order to see that admissibility is a needed hypothesis for Lemma 2, let us
consider the non-admissible constraint c3 : X−Y ≥ 0 ∧ Y ≥ 0 ∧ X+Y > 0. We
have that Q |= ∀(c2 ↔ c3) and yet there is no injection which has the properties
stated in Lemma 2.

Lemma 2 will be used to show that if there exists a substitution β such that
Q |= ∀(c ↔ (ẽ ∧ d′β)), where c is an admissible constraint and ẽ is defined
as in Lemma 1, then CM computes such a substitution β. Indeed, given the
constraint c, of the form a1 ∧ . . . ∧ am, and the constraint ẽ ∧ d′, of the form
b1 ∧ . . . ∧ bn, CM computes: (1) an injection µ from {1, . . . ,m} to {1, . . . , n},
and (2) a substitution β such that: (2.i) for i= 1, . . . ,m, Q |= ∀(ai ↔ bµ(i)β),
and (2.ii) for j = 1, . . . , n, if j �∈ {µ(i) | 1≤ i≤m}, then Q |= ∀(c→ bjβ).

In order to compute β satisfying the property of Point (2.i), we make use of
the following Property P1: given the satisfiable, non-redundant constraints p>0
and q > 0, we have that Q |= ∀(p > 0 ↔ q > 0) holds iff there exists a rational
number k>0 such that Q |= ∀(kp− q = 0) holds. Property P1 holds also if we
replace p>0 and q>0 by p≥0 and q≥0, respectively.

Finally, in order to compute β satisfying the property of Point (2.ii), we make
use of the following Theorem 2 which is a generalization of the above Property
P1 and it is an extension of Farkas’ Lemma to the case of systems of weak and
strict inequalities [11].

Theorem 2. Suppose that p1 ρ1 0 , . . . , pm ρm 0, pm+1 ρm+1 0 are atomic con-
straints such that, for i= 1, . . . ,m + 1, ρi ∈ {≥, >} and Q |= ∃(p1 ρ1 0 ∧ . . . ∧
pm ρm 0). Then Q |= ∀(p1 ρ1 0 ∧ . . . ∧ pm ρm 0 → pm+1 ρm+1 0) iff there exist
k1≥ 0, . . . , km+1≥ 0 such that: (i) Q |= ∀ (k1p1 + · · · + kmpm + km+1 = pm+1),
and (ii) if ρm+1 is > then (

∑
i∈I ki) > 0, where I = {i | 1 ≤ i ≤ m+ 1,

ρi is >}.
As we will see below, the constraint matching procedure CM may generate
bilinear polynomials (see rules (i)–(iii)), that is, non-linear polynomials of a
particular form, which we now define. Let p be a polynomial and 〈P1, P2〉 be
a partition of a (proper or not) superset of Vars(p). The polynomial p is said
to be bilinear in the partition 〈P1, P2〉 if the monomials of p are of the form:
either (i) kXY , where k is a rational number, X ∈P1, and Y ∈P2, or (ii) kX ,
where k is a rational number and X is a variable, or (iii) k, where k is a rational
number. Let us consider a polynomial p which is bilinear in the partition 〈P1, P2〉
where P2 = {Y1, . . . , Ym}. The normal form of p, denoted nf (p), w.r.t. a given
ordering Y1, . . . , Ym of the variables in P2, is a bilinear polynomial which is
derived by: (i) computing the bilinear polynomial p1Y1 + · · · + pmYm + pm+1
such that Q |= ∀ (p1Y1 + · · · + pmYm + pm+1 = p), and (ii) erasing from that
bilinear polynomial every summand piYi such that Q |= ∀ (pi = 0).

A Folding Algorithm for Eliminating Existential Variables 293

Constraint Matching Procedure: CM
Input: two clauses in normal form γ′ : H ← c∧B′ ∧R and δ′ : K ′ ← d′ ∧B′.
Output: a constraint e and a substitution β such that: (1) γ′ ∼= H ← e ∧
d′β ∧ B′ ∧ R, (2) B′β = B′, (3) Vars(K ′β) ⊆ Vars(H), and (4) Vars(e) ⊆
Vars({H,R}). If such e and β do not exist, then fail.
IF c is unsatisfiable THEN return an arbitrary ground, unsatisfiable con-
straint e and a substitution β of the form {U1/a1, . . . , Us/as}, where {U1, . . . ,
Us} = Varsrat(K ′) and a1, . . . , as are arbitrary rational numbers ELSE, if c
is satisfiable, we proceed as follows.
Let X be the set Vars(c) − Vars(B′), Y be the set Vars(d′) − Vars(B′),
and Z be the set Varsrat(B′). Let e be the constraint project(c,X). Without
loss of generality, we may assume that: (i) c is a constraint of the form
p1 ρ1 0 ∧ . . . ∧ pm ρm 0, where for i = 1, . . . ,m, pi is a linear polynomial and
ρi ∈ {≥, >}, and (ii) e ∧ d′ is a constraint of the form q1 π1 0 ∧ . . . ∧ qn πn 0,
where for j = 1, . . . , n, qi is a linear polynomial and πi ∈ {≥, >}.
Let us consider the following rewrite rules (i)–(v) which are all of the form:

〈f1 ↔ g1, S1, σ1〉 =⇒ 〈f2 ↔ g2, S2, σ2〉
where: (1) f1, g1, f2, and g2 are constraints, (2) S1 and S2 are sets of con-
straints, and (3) σ1 and σ2 are substitutions. In the rewrite rules (i)–(v)
below, whenever S1 is written as A ∪B, we assume that A ∩B = ∅.
(i) 〈p ρ 0 ∧f ↔ g1 ∧ q ρ 0 ∧ g2, S, σ〉 =⇒

〈f ↔ g1∧g2, {nf (V p−q) = 0, V >0}∪ S, σ〉
where V is a new variable and ρ ∈ {≥, >};

(ii) 〈true ↔ q≥0 ∧ g, S, σ〉 =⇒
〈true ↔ g, {nf (V1p1+. . .+Vmpm+Vm+1−q)=0,

V1≥0, . . . , Vm+1≥0} ∪ S, σ〉
where V1, . . . , Vm+1 are new variables;

(iii) 〈true ↔ q>0 ∧ g, S, σ〉 =⇒
〈true ↔ g, {nf (V1p1+. . .+Vmpm+Vm+1−q)=0,

V1≥0, . . . , Vm+1≥0, (
∑

i∈I Vi)>0} ∪ S, σ〉
where V1, . . . , Vm+1 are new variables and I={i | 1≤ i≤m+1, ρi is >};

(iv) 〈f ↔ g, {pU+q = 0}∪S, σ〉 =⇒ 〈f ↔ g, {p = 0, q = 0}∪S, σ〉
if U ∈ X ∪ Z;

(v) 〈f ↔ g, {aU+q = 0}∪S, σ〉 =⇒
〈f ↔ (g{U/− q

a}), {nf (p{U/− q
a})ρ 0 | p ρ 0 ∈ S}, σ{U/− q

a}〉
if U ∈Y , Vars(q) ∩ Vars(R) = ∅, and a ∈ (Q− {0});

IF there exist a set C of constraints and a substitution σY such that:
(c1) 〈c ↔ e ∧ d′, ∅, ∅〉 =⇒∗ 〈true ↔ true, C, σY 〉, (c2) there is no triple T
such that 〈true ↔ true, C, σY 〉 =⇒ T , (c3) for every constraint f ∈C, we
have that Vars(f)⊆W , where W is the set of the new variables introduced
during the rewriting steps from 〈c ↔ e ∧ d′, ∅, ∅〉 to 〈true ↔ true, C, σY 〉,
and (c4) C is satisfiable and solve(C) = σW ,
THEN construct a substitution σG of the form {U1/a1, . . . , Us/as}, where
{U1, . . . , Us}=Varsrat(K ′σY σW)−Vars(H) and a1,. . . , as are arbitrary ratio-
nal numbers, and return the constraint e and the substitution β = σY σWσG

ELSE return fail.

294 V. Senni, A. Pettorossi, and M. Proietti

Note that in order to apply rules (iv) and (v), pU and aU , respectively, should be
the leftmost monomials. The procedure CM is nondeterministic (see rule (i)). By
induction on the number of rule applications, we can show that the polynomials
occurring in the second components of the triples are all bilinear in the partition
〈W,X∪Y ∪Z〉, where W is the set of the new variables introduced during the
application of the rewrite rules. The normal forms of the bilinear polynomials
which occur in the rewrite rules are all computed w.r.t. the fixed variable ordering
Z1, . . . , Zh, Y1, . . . , Yk, X1, . . . , Xl, where {Z1, . . . , Zh} = Z, {Y1, . . . , Yk} = Y ,
and {X1, . . . , Xl} = X .

The termination of the procedure CM is a consequence of the following facts:
(1) each application of rules (i), (ii), and (iii) reduces the number of atomic con-
straints occurring in the first component of the triple 〈f ↔ g, S, σ〉 at hand;
(2) each application of rule (iv) does not modify the first component of the triple
at hand, does not introduce any new variables, and replaces an equation occur-
ring in the second component of the triple at hand by two smaller equations;
(3) each application of rule (v) does not modify the number of atomic constraints
in the first component of the triple at hand and eliminates all occurrences of a
variable. Thus, the termination of CM can be proved by a lexicographic combi-
nation of two linear orderings and a multiset ordering.

Example 2. Let us consider again the clauses γ and δ of the Introduction and
let α be the substitution computed by applying the procedure GM to γ and δ
as shown in Example 1. Let us also consider the clauses γ′ and δ′, where γ′ is γ
and δ′ is δα, that is,
δ′: s(Y1, a, f(X3)) ← Z1<0 ∧ Y1−3≥2Z1 ∧ Z2>0 ∧ q(Z1, f(X3), Z2)
Now we apply the procedure CM to clauses γ′ and δ′. The constraint X1<1 ∧
X1≥Z1+1 ∧ Z2>0 occurring in γ′ is satisfiable. The procedure CM starts off
by computing the constraint e as follows:

e = project(X1<1 ∧X1≥Z1+1 ∧ Z2>0, {X1}) = X1<1

Now CM performs the following rewritings, where: (i) all polynomials are bi-
linear in 〈{V1, . . . , V7}, {X1, Y1, Z1, Z2}〉, (ii) their normal forms are computed
w.r.t. the variable ordering Z1, Z2, Y1, X1, and (iii) r=⇒k denotes k applications
of rule r. (We have underlined the constraints that are rewritten by an appli-
cation of a rule. Note also that the atomic constraints occurring in the initial
triple are the ones in γ′ and δ′, rewritten into the form p > 0 or p ≥ 0.)

〈(1−X1>0 ∧X1−Z1−1≥0 ∧ Z2>0) ↔
(1−X1>0 ∧ −Z1>0 ∧ Y1−3−2Z1 ≥0 ∧ Z2>0), ∅, ∅〉
i=⇒ 〈(X1−Z1−1≥0∧ Z2>0) ↔ (−Z1>0 ∧ Y1−3−2Z1≥0 ∧ Z2>0),

{(1−V1)X1+V1−1=0, V1>0}, ∅〉
i=⇒ 〈Z2>0 ↔ (−Z1>0 ∧ Z2>0),

{(1−V1)X1+V1−1=0, V1>0, (2−V2)Z1−Y1+V2X1−V2+3=0, V2>0}, ∅〉
i=⇒ 〈true ↔ −Z1>0,

{(1−V1)X1+V1−1=0, V1>0, (2−V2)Z1−Y1+V2X1−V2+3=0, V2>0,

A Folding Algorithm for Eliminating Existential Variables 295

(V3−1)Z2=0, V3>0}, ∅〉
iii=⇒ 〈true ↔ true,

{(1−V1)X1+V1−1=0, V1>0, (2−V2)Z1−Y1+V2X1−V2+3=0, V2>0,
(V3−1)Z2=0, V3>0, (1−V5)Z1+V6Z2+(V5−V4)X1+V4−V5+V7 =0,
V4≥0, V5≥0, V6≥0, V7≥0, V4+V6+V7>0}, ∅〉

iv=⇒6〈true ↔ true,
{1−V1=0, V1−1=0, V1>0, 2−V2=0,−Y1+V2X1−V2+3=0, V2>0,
V3−1=0, V3>0, 1−V5=0, V6 =0, V5−V4 =0, V4−V5+V7 =0,
V4≥0, V5≥0, V6≥0, V7≥0, V4+V6+V7>0}, ∅〉

v=⇒ 〈true ↔ true,
{1−V1=0, V1−1=0, V1>0, 2−V2=0, V2>0,
V3−1=0, V3>0, 1−V5=0, V6 =0, V5−V4 =0, V7−V5+V4 =0,
V4≥0, V5≥0, V6≥0, V7≥0, V4+V6+V7>0}, {Y1/V2X1−V2+3}〉

Let C be the second component of the final triple of the above sequence of rewrit-
ings. We have that C is satisfiable and has a unique solution given by the follow-
ing substitution: σW =solve(C)={V1/1, V2/2, V3/1, V4/1, V5/1, V6/0, V7/0}. The
substitution σY computed in the third component of the final triple of the above
sequence of rewritings is {Y1/V2X1−V2+3}. Since Varsrat(s(Y1, a, f(X3))σY σW)−
Vars(H)={X1, X3}−{X1, X2, X3}=∅, we have that σG is the identity substi-
tution. Thus, the output of the procedure CM is the constraint e = X1<1 and
the substitution β = σY σWσG = {Y1/2X1+1} ∪ σW .

4.3 The Folding Algorithm

Now we are ready to present our folding algorithm.

Folding Algorithm: FA
Input: two clauses in normal form without variables in common γ : H ← c∧G
and δ : K ← d ∧B.
Output: the clause η : H ← e ∧ Kϑ ∧ R, if it is possible to fold γ using δ
according to Definition 1, and fail, otherwise.
IF there exist a substitution α and a goal R which are the output of an
execution of the procedure GM when given in input the clauses γ and δ
AND there exist a constraint e and a substitution β which are the output of
an execution of the procedure CM when given in input the clauses γ′ : H ←
c ∧Bα ∧R and δ′ : Kα← dα ∧Bα
THEN return the clause η : H ← e ∧Kαβ ∧R ELSE return fail.

The following theorem states that the folding algorithm FA terminates (Point 1),
it is sound (Point 2), and, if the constraint c is admissible, then FA is complete
(Point 3). The proof of this result can be found in [15].

Theorem 3 (Termination, Soundness, and Completeness of FA). Let
the input of the algorithm FA be two clauses γ and δ in normal form without
variables in common. Then: (1) FA terminates; (2) if FA returns a clause η,

296 V. Senni, A. Pettorossi, and M. Proietti

then η can be derived by folding γ using δ according to Definition 1; (3) if it is
possible to fold γ using δ according to Definition 1 and the constraint occurring
in γ is either unsatisfiable or admissible, then FA does not return fail.

Example 3. Let us consider clause γ: p(X1,X2,X3) ← X1 < 1 ∧ X1 ≥ Z1+1
∧ Z2 > 0 ∧ q(Z1, f(X3), Z2) ∧ r(X2) and clause δ: s(Y1, Y2, Y3) ← W1 < 0 ∧
Y1−3≥2W1 ∧W2>0 ∧ q(W1, Y3,W2) of the Introduction. Let the substitution
α : {W1/Z1, Y3/f(X3), W2/Z2, Y2/a} and the goal R : r(X2) be the result of
applying the procedure GM to γ and δ as shown in Example 1, and let the con-
straint e :X1<1 and the substitution β : {Y1/2X1+1}∪σW be the result of apply-
ing the procedure CM to γ and δα as shown in Example 2. Then, the output of
the folding algorithm FA is the clause η : p(X1, X2, X3) ← e∧s(Y1, Y2, Y3)αβ∧R,
that is: η : p(X1, X2, X3) ← X1<1 ∧ s(2X1+1, a, f(X3)) ∧ r(X2).

5 Complexity of the Algorithm and Experimental Results

Let us first analyze the time complexity of our folding algorithm FA by assuming
that: (i) each rule application during the goal matching procedure GM and the
constraint matching procedure CM takes constant time, and (ii) each computa-
tion of the functions nf, solve, and project takes constant time. In these hypothe-
ses our FA algorithm is in NP (w.r.t. the number of occurrences of symbols in
the input clauses). To show this result, it is sufficient to show that both the goal
matching procedure GM and the constraint matching procedure CM are in NP.

We have that GM is in NP w.r.t. the number of occurrences of symbols in
the two goals B and G appearing in the input clauses. Indeed, rule (i) of GM
chooses a mapping from the set of the occurrences of the literals of B to the set
of occurrences of the literals of G and each application of any other rule of GM
consumes at least one symbol of the input clauses.

We have that also CM is in NP w.r.t. the number N of occurrences of sym-
bols in the initial triple 〈c ↔ e ∧ d′, ∅, ∅〉. Indeed, rule (i) of CM chooses a
mapping from the set of occurrences of the atomic constraints in c to the set
of occurrences of the atomic constraints in e ∧ d′. Moreover, the length of any
sequence of applications of the other rules of CM is polynomial in N as we
now show. First, we may assume that the applications of rules (iv) and (v) are
done after the applications of rules (i), (ii), and (iii). Since each application of
rules (i), (ii), and (iii) reduces the number of constraints occurring in the first
component of the triple at hand, we may have at most N applications of these
three rules. Moreover, each application of rules (i), (ii), and (iii) introduces at
most m+1 new variables, with m+1 ≤ N . Hence, at most N2 new variables are
introduced. Rule (iv) can be applied at most M times, where M is the number
of variable occurrences in the second component of the triple at hand. Finally,
each application of rule (v) eliminates all occurrences of one variable in Y , which
is a subset of the variables occurring in the input triple and, therefore, this rule
can be applied at most N times. Moreover, for each application of rule (v), the
cardinality of the second component of the triple at hand does not change and the

A Folding Algorithm for Eliminating Existential Variables 297

number of variable occurrences in each constraint in that component is bounded
by the cardinality of X ∪ Y ∪ Z (which is at most N). Thus, M is bounded by
a polynomial of the value of N .

A more detailed time complexity analysis of our folding algorithm FA where
we do not assume that the functions nf, solve, and project are computed in
constant time, is as follows. (i) nf takes polynomial time in the size of its argu-
ment, (ii) solve takes polynomial time in the number of variables of its argument
by using Khachiyan’s method [11], and (iii) project takes O(2v) time, where
v = |Vars(c) ∩ Vars(B′)| (see [12] for the complexity of variable elimination
from linear constraints). Since the project function is applied only once at the
beginning of the procedure CM, we get that the computation of our FA algo-
rithm requires nondeterministic polynomial time plus O(2v) time.

Note that since matching modulo the equational theory AC∧ is NP-complete
[13,16], one cannot hope for a folding algorithm whose asymptotic time com-
plexity is significantly better than our FA algorithm.

In the following Table 1 we report some experimental results for our algorithm
FA, implemented in SICStus Prolog 3.12, on a Pentium IV 3GHz. We have
considered the example D0 of the Introduction, the four examples D1–D4 for
which folding can be done in one way only (Number of Foldings=1), and the four
examples N1–N4 for which folding can be done in more than one way (Number
of Foldings>1).

The Number of Variables row indicates the number of variables in clause
γ (to be folded) plus the number of variables in clause δ (used for folding).
The Time row indicates the seconds required for finding the folded clause (or
the first folded clause, in examples N1–N4). The Total-Time row indicates the
seconds required for finding all folded clauses. (Note that even when there ex-
ists one folded clause only, Total-Time is greater than Time because, after the
folded clause has been found, FA checks that no other folded clauses can be
computed.)

In example D1 clause γ is p(A) ← A< 1 ∧ A≥B+1 ∧ q(B) and clause δ is
r(C) ← D<0∧C−3≥2D∧q(D). In example N1 clause γ is p← A>1∧3>A∧
B > 1∧ 3 > B ∧ q(A) ∧ q(B) and clause δ is r ← C > 1 ∧ 3 > C ∧ D > 1 ∧
3>D∧ q(C)∧ q(D). Similar clauses (with more variables) have been used in the
other examples.

Our algorithm FA performs reasonably well in practice. However, when the
number of variables (and, in particular, the number of variables are of type rat)
increases, the performance rapidly deteriorates.

Table 1. Execution times of the folding algorithm FA for various examples

Example D0 D1 D2 D3 D4 N1 N2 N3 N4
Number of Foldings 1 1 1 1 1 2 4 4 16
Number of Variables 10 4 8 12 16 4 8 12 16
Time (in seconds) 0.01 0.01 0.08 3.03 306 0.02 0.08 0.23 1.09
Total-Time (in seconds) 0.02 0.02 0.14 4.89 431 0.03 49 1016 11025

298 V. Senni, A. Pettorossi, and M. Proietti

6 Related Work and Conclusions

The elimination of existential variables from logic programs and constraint logic
programs is a program transformation technique which has been proposed for
improving program performance [2] and for proving program properties [3]. This
technique makes use of the definition, unfolding, and folding rules [5,6,7,8,9]. In
this paper we have considered constraint logic programs, where the constraints
are linear inequations over the rational (or real) numbers, and we have focused
on the problem of automating the application of the folding rule. Indeed, the
applicability conditions of the many folding rules for transforming constraint
logic programs which have been proposed in the literature [3,6,7,8,9], are spec-
ified in a declarative way and no algorithm is given to determine whether or
not, given a clause γ to be folded by using a clause δ, one can actually per-
form that folding step. The problem of checking the applicability conditions of
the folding rule is not trivial (see, for instance, the example presented in the
Introduction).

In this paper we have considered a folding rule which is a variant of the
rules proposed in the literature, and we have given an algorithm, called FA,
for checking its applicability conditions. To the best of our knowledge, ours is
the first algorithmic presentation of the folding rule. The applicability condi-
tions of our rule consist of the usual conditions (see, for instance, [9]) together
with the extra condition that, after folding, the existential variables should be
eliminated. Thus, our algorithm FA is an important step forward for the full
automation of the above mentioned program transformation techniques [2,3]
which improve program efficiency or prove program properties by eliminating
existential variables.

We have proved the termination and the soundness of our algorithm FA. We
have also proved that if the constraint appearing in the clause γ to be folded
is admissible, then FA is complete, that is, it does not return fail whenever
folding is possible. The class of admissible constraints is quite large. We have
also implemented the folding algorithm and our experimental results show that
it performs reasonably well in practice.

Our algorithm FA consists of two procedures: (i) the goal matching procedure,
and (ii) the constraint matching procedure. The goal matching procedure solves
a problem similar to the problem of matching two terms modulo an associative,
commutative (AC, for short) equational theory [17,18]. However, in our case we
have the extra conditions that: (i.1) the matching substitution should be con-
sistent with the types (either rational numbers or trees), and (i.2) after folding,
the existential variables should be eliminated. Thus, we could not directly use
the AC-matching algorithms available in the literature.

The constraint matching procedure solves a generalized form of the matching
problem, modulo the equational theory Q of linear inequations over the rational
numbers. That problem can be seen as a restricted unification problem [19].
In [19] it is described how to obtain, under certain conditions, an algorithm
for solving a restricted unification problem from an algorithm that solves the
corresponding unrestricted unification problem. To the best of our knowledge,

A Folding Algorithm for Eliminating Existential Variables 299

for the theory Q of constraints a solution is provided in the literature neither
for the restricted unification problem nor for the unrestricted one. Moreover,
one cannot apply the so called combination methods either [20]. These methods
consist in constructing a matching algorithm for a given theory which is the
combination of simpler theories, starting from the matching algorithms for those
simpler theories. Unfortunately, as we said, we cannot use these combination
methods for the theory Q because some applicability conditions are not satisfied
and, in particular, Q is neither collapse-free nor regular [20].

In the future we plan to adapt our folding algorithm FA to other constraint
domains such as the linear inequations over the integers. We will also perform a
more extensive experimentation of our folding algorithm using the MAP program
transformation system [21].

Acknowledgements

We thank the anonymous referees for helpful suggestions. We also thank John
Gallagher for comments on a draft of this paper.

References

1. Jaffar, J., Maher, M.: Constraint logic programming: A survey. Journal of Logic
Programming 19/20, 503–581 (1994)

2. Proietti, M., Pettorossi, A.: Unfolding-definition-folding, in this order, for avoiding
unnecessary variables in logic programs. Theo. Comp. Sci. 142(1), 89–124 (1995)

3. Pettorossi, A., Proietti, M., Senni, V.: Proving properties of constraint logic pro-
grams by eliminating existential variables. In: Etalle, S., Truszczyński, M. (eds.)
ICLP 2006. LNCS, vol. 4079, pp. 179–195. Springer, Heidelberg (2006)

4. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. Journal of the ACM 24(1), 44–67 (1977)

5. Tamaki, H., Sato, T.: Unfold/fold transformation of logic programs. In: Tärnlund,
S.Å. (ed.) Proc. ICLP 1984, pp. 127–138. Uppsala University, Uppsala (1984)

6. Maher, M.J.: A transformation system for deductive database modules with perfect
model semantics. Theoretical Computer Science 110, 377–403 (1993)

7. Etalle, S., Gabbrielli, M.: Transformations of CLP modules. Theoretical Computer
Science 166, 101–146 (1996)

8. Bensaou, N., Guessarian, I.: Transforming constraint logic programs. Theoretical
Computer Science 206, 81–125 (1998)

9. Fioravanti, F., Pettorossi, A., Proietti, M.: Transformation rules for locally strat-
ified constraint logic programs. In: Lau, K.K., Bruynooghe, M. (eds.) Program
Development in Computational Logic. LNCS, vol. 3049, pp. 292–340. Springer,
Heidelberg (2004)

10. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987)

11. Schrijver, A.: Theory of Linear and Integer Programming. J. Wiley & Sons, Chich-
ester (1986)

12. Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Com-
put. 5(1-2), 3–27 (1988)

300 V. Senni, A. Pettorossi, and M. Proietti

13. Baader, F., Snyder, W.: Unification theory. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. I, pp. 445–532. Elsevier Science, Amster-
dam (2001)

14. Terese: Term Rewriting Systems. Cambridge University Press (2003)
15. Senni, V.: Transformation Techniques for Constraint Logic Programs with Appli-

cation to Protocol Verification. PhD thesis, University of Rome “Tor Vergata”,
Rome, Italy (2008)

16. Benanav, D., Kapur, D., Narendran, P.: Complexity of matching problems. Journal
of Symbolic Computation 3(1-2), 203–216 (1987)

17. Livesey, M., Siekmann, J.: Unification of A+C Terms (Bags) and A+C+I Terms
(Sets). TR 3/76, Institut für Informatik I, Universität Karlsruhe (1976)

18. Stickel, M.E.: A unification algorithm for associative-commutative functions. J.
ACM 28(3), 423–434 (1981)

19. Bürckert, H.J.: Some relationships between unification, restricted unification, and
matching. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 514–524.
Springer, Heidelberg (1986)

20. Ringeissen, C.: Matching in a class of combined non-disjoint theories. In: Baader,
F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 212–227. Springer, Heidelberg (2003)

21. The MAP transformation system,
http://www.iasi.cnr.it/∼proietti/system.html

http://www.iasi.cnr.it/~proietti/system.html

Negative Ternary Set-Sharing�

Eric Trias,1,2,�� Jorge Navas,1 Elena S. Ackley,1 Stephanie Forrest1,
and M. Hermenegildo1,3

1 University of New Mexico, USA
2 Air Force Institute of Technology, USA

3 Technical U. of Madrid (Spain) and IMDEA-Software

Abstract. The Set-Sharing domain has been widely used to infer at compile-
time interesting properties of logic programs such as occurs-check reduction,
automatic parallelization, and finite-tree analysis. However, performing abstract
unification in this domain requires a closure operation that increases the number
of sharing groups exponentially. Much attention has been given to mitigating this
key inefficiency in this otherwise very useful domain. In this paper we present
a novel approach to Set-Sharing: we define a new representation that leverages
the complement (or negative) sharing relationships of the original sharing set,
without loss of accuracy. Intuitively, given an abstract state shV over the finite
set of variables of interest V , its negative representation is ℘(V) \ shV . Using
this encoding during analysis dramatically reduces the number of elements that
need to be represented in the abstract states and during abstract unification as the
cardinality of the original set grows toward 2|V|. To further compress the num-
ber of elements, we express the set-sharing relationships through a set of ternary
strings that compacts the representation by eliminating redundancies among the
sharing sets. Our experiments show that our approach can compress the number
of relationships, reducing significantly the memory usage and running time of all
abstract operations, including abstract unification.

1 Introduction

In abstract interpretation [11] of logic programs sharing analysis has received consid-
erable attention. Two or more variables in a logic program are said to share if in some
execution of the program they are bound to terms that contain a common variable. A
variable in a logic program is said to be ground if it is bound to a term that does not
contain free variables in all possible executions of the program. Set-Sharing is an im-
portant type of combined sharing and groundness analysis. It was originally introduced
by Jacobs and Langen [17,19] and its abstract values are sets of sets of variables that
keep track in a compact way of the sharing patterns among variables.
� The authors gratefully acknowledge the support of the National Science Foundation (grants

CCR-0331580 and CCR-0311686, and DBI-0309147), the Santa Fe Institute, the Air
Force Institute of Technology, the Prince of Asturias Chair in Information Science and
Technology at UNM, and by EU projects 215483 S-Cube, IST-15905 MOBIUS, Span-
ish projects ITEA2/PROFIT FIT-340005-2007-14 ES PASS, MEC TIN2005-09207-C03-01
MERIT/COMVERS, and Comunidad de Madrid project S-0505/TIC/0407 PROMESAS.

�� The views expressed in this article are those of the author and do not reflect the official policy
or position of the United States Air Force, Department of Defense, or the U.S. Government.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 301–316, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

302 E. Trias et al.

Example 1 (Set-Sharing abstraction). Let V = {X1, X2, X3, X4} be a set of variables.
The abstraction in Set-Sharing of a substitution θ = {X1 �→ f(U1, U2, V1, V2,W1),
X2 �→ g(V1, V2,W1), X3 �→ g(W1,W1), X4 �→ a} will be {{X1}, {X1, X2}, {X1,
X2, X3}}. Sharing group {X1} in the abstraction represents the occurrence of run-
time variables U1 and U2 in the concrete substitution, {X1, X2} represents V1 and V2,
and {X1, X2, X3} represents W1. Note that X4 does not appear in the sharing groups
because X4 is ground. Note also that the number of (occurrences of) shared run-time
variables is abstracted away.

Set-Sharing has been used to infer several interesting properties and perform opti-
mization and verification of programs at compile-time, most notably but not limited to:
occurs-check reduction (e.g., [27]), automatic parallelization (e.g., [25,6]), and finite-
tree analysis (e.g., [2]). The accuracy of Set-Sharing has been improved by extend-
ing it with other kinds of information, the most relevant being freeness and linearity
information [24,17,25,9,15], and also information about term structure [25,18,3,23].
Sharing in combination with other abstract domains has also been studied [8,14,10].
The significance of Set-Sharing is that it keeps track of sharing among sets of vari-
ables more accurately than other abstract domains such as e.g. Pair-Sharing [27] due
to better groundness propagation and other factors that are relevant in some of its ap-
plications [5]. In addition, Set-Sharing has attracted much attention [7,10] because its
algebraic properties allow elegant encodings into other efficient implementations (e.g.,
ROBDDs [4]). In [25],the first comparatively efficient algorithms were presented for the
basic operations needed for set sharing-based analyses.

However, Set-Sharing has a key computational disadvantage: the abstract unifica-
tion (amgu, for short) implies potentially exponential growth in the number of sharing
groups due to the up-closure (also called star-union) operation which is the heart of
that operation. Considerable attention has been given in the literature to reducing the
impact of the complexity of this operation. In [29], Zaffanella et al. extended the Set-
Sharing domain for inferring pair-sharing to support widening. Although significant
efficiency gains are achieved, this approach loses precision with respect to the origi-
nal Set-Sharing. A similar approach is followed in [26] but for inferring set-sharing in a
top-down framework. Other relevant work was presented in [21] in which the up-closure
operation was delayed and full sharing information was recovered lazily. However, this
interesting approach shares some of the disadvantages of Zaffanella’s widening. There-
fore, the authors refined the idea in [20] reformulating the amgu in terms of the closure
under union operation, collapsing those closures to reduce the total number of closures
and applying them to smaller descriptions without loss of accuracy. In [10] the authors
show that the Set-Sharing domain is isomorphic to the dual negative of Pos [1], de-
noted by coPos. This insight improved the understanding of Set-Sharing analysis, and
led to an elegant expression of the combination with groundness dependency analysis
based on the reduced product of Sharing and Pos. In addition, this work pointed out the
possible implementation of coPos through ROBDDs leading to more efficient imple-
mentations of Set-Sharing analyses, although this point was not investigated further.

In this paper we introduce a novel approach to Set-Sharing: we define a new repre-
sentation that leverages the complement (or negative) sharing relationships of the orig-
inal sharing set, without loss of accuracy. Intuitively, given an abstract state shV over
the finite set of variables of interest V , its negative representation is ℘(V) \ shV . Using

Negative Ternary Set-Sharing 303

this encoding during analysis dramatically reduces the number of elements that need
to be represented in the abstract states and during abstract unification as the cardinality
of the original set grows toward 2|V|. To further compress the number of elements, we
express the set-sharing relationships through a set of ternary strings that compacts the
representation by eliminating redundancies among the sharing sets. It is important to
notice that our work is not based on [10]. Although they define the dual negated posi-
tive Boolean functions, coPos does not represent the entire complement of the positive
set. Moreover, they do not use coPos as a means of compressing relationships but as
a way of representing Sharing through Boolean functions. We also represent Sharing
through Boolean functions, but that is where the similarity ends.

2 Set-Sharing Encoded by Binary Strings

The presentation here follows that of [29,10] since the notation used and the abstract uni-
fication operation obtained are rather intuitive, but adapted for handling binary strings
rather than sets of sets of variables.

Therefore, unless otherwise stated, here and in the rest of paper we will represent
the set-sharing domain using a set of strings rather than a set of sets of variables. An
algorithm for this conversion and examples are presented in [28].

Definition 1 (Binary sharing domain, bSH). Let alphabet Σ = {0, 1}, V be a fixed
and finite set of variables of interest in arbitrary order, and Σl the finite set of all strings
over Σ with length l, 0 ≤ l ≤ |V|. Let bSH l = ℘0(Σl) be the proper power set (i.e.,
℘(Σl) \ {∅}) that contains all possible combinations over Σ with length l. Then, the
binary sharing domain is defined as bSH =

⋃
0≤l≤|V|

bSH l.

Let F and P be sets of ranked (i.e., with a given arity) functors of interest; e.g., the
function symbols and the predicate symbols of a program. We will use Term to denote
the set of terms constructed from V andF∪P . Although somehow unorthodox, this will
allow us to simply write g ∈ Term whether g is a term or a predicate atom, since all
our operations apply equally well to both classes of syntactic objects. We will denote by
t̂ the binary representation of the set of variables of t ∈ Term according to a particular
order among variables. Since t̂ will be always used by a bitwise operation with some
string of length l, the length of t̂must be l. If not, t̂ is adjusted with 0’s in those positions
associated with variables represented in the string but not in t.

Definition 2 (Binary relevant sharing rel(bsh, t), irrelevant sharing irrel(bsh, t)).
Given t ∈ Term, the set of binary strings in bsh ∈ bSH l of length l that are relevant
with respect to t is obtained by a function rel(bsh, t) : bSH l×Term→ bSH l defined
as:

rel(bsh, t) = {s | s ∈ bsh, (s
∧

t̂) �= 0l}

where
∧

represents the bitwise AND operation and 0l is the all-zeros string of length l.
Consequently, the set of binary strings in bsh ∈ bSH l that are irrelevant with respect
to t is a function irrel(bsh, t) : bSH l × Term → bSH l where irrel(bsh, t) is the
complement of rel(bsh, t), i.e., bsh \ rel(bsh, t).

304 E. Trias et al.

Definition 3 (Binary cross-union, ×∪). Given bsh1, bsh2 ∈ bSH l, their cross-union is
a function ×∪ : bSH l × bSH l → bSH l defined as

bsh1×∪bsh2 = {s | s = s1
∨
s2, s1 ∈ bsh1, s2 ∈ bsh2}

where
∨

represents the bitwise OR operation.

Definition 4 (Binary up-closure, (.)∗). Let l be the length of strings in bsh ∈ bSH l,
then the up-closure of bsh, denoted bsh∗ is a function (.)∗ : bSH l → bSH l that
represents the smallest superset of bsh such that s1

∨
s2 ∈ bsh∗ whenever s1, s2 ∈

bsh∗: bsh∗ = {s | ∃n ≥ 1 ∃t1, . . . , tn ∈ bsh, s = t1
∨
. . .
∨
tn}

Definition 5 (Binary abstract unification, amgu). The abstract unification is a func-
tion amgu : V × Term× bSH l → bSH l defined as

amgu(x, t, bsh) = irrel(bsh, x = t) ∪ (rel(bsh, x)×∪rel(bsh, t))∗

The design of the analysis must be completed by defining the following abstract oper-
ations that are required by an analysis engine: init (initial abstract state), equivalence
(between two abstract substitutions), join (defined as the union), and project. In the
interest of brevity, we define only the project operation because the other three opera-
tions are trivial. We refer the reader to [28] for the rest of operations.

Definition 6 (Binary projection, bsh|t). The binary projection is a function bsh|t:
bSH l × Term → bSHk (k ≤ l) that removes the i-th positions from all strings (of
length l) in bsh ∈ bSH l, if and only if the i-th positions of t̂ (denoted by t̂[i]) is 0, and
it is defined as bsh|t = {s′ | s ∈ bsh, s′ = π(s, t)}

where π(s, t) is the binary string projection defined as

π(s, t) =

⎧⎨⎩
ε, if s = ε, the empty string
π(s′, t), if s = s′ai and t̂[i] = 0
π(s′, t)ai, if s = s′ai and t̂[i] = 1

and s′ai is the concatenation of character a to string s′ at position i.

3 Ternary Set-Sharing

In this section, we introduce a more efficient representation for the Set-Sharing domain
defined in Sec. 2 to accommodate a larger number of variables for analysis. We ex-
tend the binary string encoding discussed above to the ternary alphabet Σ∗ = {0, 1, ∗},
where the ∗ symbol denotes both 0 and 1 bit values. This representation effectively com-
presses the number of elements in the set into fewer strings without changing what is
represented (i.e., without loss of accuracy). To handle the ternary alphabet, we redefine
the binary operations covered in Sec. 2.

Definition 7 (Ternary Sharing Domain, tSH). Let alphabet Σ∗ = {0, 1, ∗}, V be a
fixed and finite set of variables of interest in an arbitrary order as in Def. 1, and Σl∗ the
finite set of all strings over Σ∗ with length l, 0 ≤ l ≤ |V|. Then, tSH l = ℘0(Σl

∗) and
hence, the ternary sharing domain is defined as tSH =

⋃
0≤l≤|V|

tSH l.

Negative Ternary Set-Sharing 305

Prior to defining how to transform the binary string representation into the correspond-
ing ternary string representation, we introduce two core definitions, Def. 8 and Def. 9,
for comparing ternary strings. These operations are essential for the conversion and set
operations. In addition, they are used to eliminate redundant strings within a set and to
check for equivalence of two ternary sets containing different strings.

Definition 8 (Match, M). Given two ternary strings, x, y ∈ Σl∗, of length l, match is a
function M : Σl

∗ ×Σl
∗ → B, such that ∀i 1 ≤ i ≤ l,

xMy =
{

true, if (x[i] = y[i]) ∨ (x[i] = ∗) ∨ (y[i] = ∗)
false, otherwise

Definition 9 (Subsumed By ×⊆ and Subsumed In ×�). Given two ternary strings s1,
s2 ∈ Σl

∗, ×⊆ : Σl
∗ × Σl

∗ → B is a function such that s1 ×⊆s2 if and only if every string
matched by s1 is also matched by s2 (s1 ×⊆s2 ⇐⇒ ∀s ∈ tSH l, if s1Ms then s2Ms).
For convenience, we augment this definition to deal with sets of strings. Given a ternary
string s ∈ Σl

∗ and a ternary sharing set, tsh ∈ tSH l, ×� : Σl
∗× tSH l → B is a function

such that s ×�tsh if and only if there exists some element s′ ∈ tsh such that s ×⊆s′.

Figure 1 gives the pseudo code for an algorithm which converts a set of binary strings
into a set of ternary strings. The function Convert evaluates each string of the input and
attempts to introduce ∗ symbols using PatternGenerate, while eliminating redundant
strings using ManagedGrowth.

PatternGenerate evaluates the input string bit-by-bit to determine where the ∗ sym-
bol can be introduced. The number of ∗ symbols introduced depends on the sharing set
represented and k, the desired minimum number of specified bits, where 0 ≤ k ≤ l (the
string length). For a given set of strings of length l, parameter k controls the compres-
sion of the set. For k = l (all bits specified), there is no compression and tsh = bsh.
For a non-empty bsh, k = 1 introduces the maximum number of ∗ symbols. For now,
we will assume that k = 1, and experimental results in Sec. 5 shows the best overall k
value for a given l. The Specified function returns the number of specified bits (0 or 1)
in x.

ManagedGrowth checks if the input string y subsumes other strings from tsh. If no
redundant string exists, then y is appended to tsh only if y itself is not redundant to an
existing string in tsh. Otherwise, y replaces all the redundant strings.

Example 2 (Conversion from bSH to tSH). Assume the following sharing set of binary
strings bsh = {1000, 1001, 0100, 0101, 0010, 0001}. Then, a ternary string represen-
tation produced by applying Convert is tsh ={100*, 0010, 010*, *001}.

Definition 10 (Ternary-or
∨

and Ternary-and
∧

). Given two ternary strings, x, y ∈
Σl

∗ of length l, ternary-or and ternary-and are two bitwise-or functions defined as∨
,
∧

: Σl
∗ × Σl

∗ → Σl
∗ such that z = x

∨
y and w = x

∧
y, ∀i 1 ≤ i ≤ l, where:

z[i] =

⎧⎨⎩
∗ if (x[i] = ∗ ∧ y[i] = ∗)
0 if (x[i] = 0 ∧ y[i] = 0)
1 otherwise w[i] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∗ if (x[i] = ∗ ∧ y[i] = ∗)
1 if (x[i] = 1 ∧ y[i] = 1)
∨ (x[i] = 1 ∧ y[i] = ∗)
∨ (x[i] = ∗ ∧ y[i] = 1)

0 otherwise

306 E. Trias et al.

0 Convert(bsh, k)
1 tsh ← ∅
2 foreach s ∈ bsh
3 y ← PatternGenerate(tsh, s, k)
4 tsh ← ManagedGrowth(tsh, y)
5 return tsh
6 ManagedGrowth(tsh, y)
7 Sy = {s | s ∈ tsh, s ×⊆y}
8 if Sy = ∅ then
9 if y ×/�tsh then
10 append y to tsh
11 else
12 remove Sy from tsh
13 append y to tsh
14 return tsh

15 PatternGenerate(tsh, x, k)
16 m ← Specified(x)
17 i ← 0
18 x′ ← x
19 l ← length(x)
20 while m > k and i < l
21 Let bi be the value of x′ at position i
22 if bi = 0 or bi = 1 then
23 x′ ← x′ with position i replaced by bi

24 if x′ ×� tsh then
25 x′ ← x′ with position i replaced by ∗
26 else
27 x′ ← x′ with position i replaced by bi

28 m ← Specified(x′)
29 i ← i + 1
30 return x′

Fig. 1. A deterministic algorithm for converting a set of binary strings bsh into a set of ternary
strings tsh, where k is the desired minimum number of specified bits (non-∗) to remain

Definition 11 (Ternary set intersection, ∩). Given tsh1, tsh2 ∈ tSH l, ∩ : tSH l ×
tSH l → tSH l is defined as

tsh1 ∩ tsh2 = {r | r = s1
∧

s2, s1Ms2, s1 ∈ tsh1, s2 ∈ tsh2}

For convenience, we define two binary patterns, 0-mask and 1-mask, in order to sim-
plify further operations. The former takes an l-length binary string s and returns a set
with a single string having a 0 where s[i] = 1 and ∗’s elsewhere, ∀i 1 ≤ i ≤ l. The latter
also takes an l-length binary string s, but returns a set of strings with a 1 where s[i] = 1
and ∗’s elsewhere, ∀i 1 ≤ i ≤ l. For instance, 0-mask(0110) and 1-mask(0110) return
{∗00∗} and {∗1 ∗ ∗, ∗ ∗ 1∗}, respectively.

Definition 12 (Ternary relevant sharingrel(tsh, t), irrelevant sharing irrel(tsh, t)).
Given t ∈ Term with length l and tsh ∈ tSH l with strings of length l, the set of
strings in tsh that are relevant with respect to t is obtained by a function rel(tsh, t) :
tSH l × Term→ tSH l defined as

rel(tsh, t) = tsh ∩ 1-mask(t̂)

In addition, irrel(tsh, t) is defined as

irrel(tsh, t) = (tsh ∩ 1-mask(t̂)) ∩ 0-mask(t̂)

Ternary cross-union,×∪, and ternary up-closure, (.)∗, operations are as defined in Def. 3
and in Def. 4, respectively, except the binary version of the bitwise OR operator is
replaced with its ternary counterpart defined in Def. 10 in order to account for the ∗
symbol. In addition, the ternary abstract unification (amgu) is defined exactly as the
binary version, Def.5, using the corresponding ternary definitions.

Example 3 (Ternary abstract unification). Let tsh = {100*, 010*, 0010, *001} as in
Example 2. Consider again the analysis of X1 = f(X2, X3), the result is:

Negative Ternary Set-Sharing 307

A = rel(tsh,X1) = {100∗}
B = rel(tsh, f(X2, X3)) = {010∗, 0010}
A×∪B = {110∗, 101∗}
(A×∪B)∗ = {110∗, 101∗, 111∗}
C = irrel(tsh,X1 = f(X2, X3)) = {0001}
amgu(X1, f(X2, X3), tsh) = C ∪ (A×∪B)∗ = {0001, 110∗, 101∗, 111∗}

Here briefly, we describe the ternary projection. The other ternary operations required
by any analysis framework can be be found in [28]. The ternary projection, tsh|t,
is defined similarly as binary projection, see Def. 6. However, the projection domain
and range is extended to accommodate the ∗ symbol. For example, let tsh = {100*,
010*, 0010, *001} as in Example 2. Then, the projection of tsh over the term t =
f(X1, X2, X3) is tsh|t = {100, 010, 001}. Note that since all zeros is meaningless in
a set-sharing representation, it is not included here.

4 Negative Ternary Set-Sharing

In this section, we extend the use of the ternary representation discussed in the previous
section.1 In certain cases, a more compact representation of sharing relationships among
variables can be captured equivalently by working with the complement (or negative)
set of the original sharing set. A ternary string t can either be in or not in the set tsh ∈
tSH . This mutual exclusivity together with the finiteness of V allows for checking t’s
membership in tsh by asking if t is in tsh, or, equivalently, if t is not in its complement,
tsh. The same reasoning is applicable to binary strings (i.e., bSH). Given a set of l-
bit binary strings, its complement or negative set contains all the l-bit ternary strings
not in the original set. Therefore, if the cardinality of a set is greater than half of the
maximum size (i.e., 2|V|−1), then the size of its complement will not be greater than
2|V|−1. It is this size differential that we exploit. In Set-Sharing analysis, as we consider
programs with larger numbers of variables of interest, the potential number of sharing
groups grows exponentially toward 2|V|, whereas the number of sharing groups not in
the sharing set decreases toward 0.

The idea of a negative set representation and its associated algorithms extends the
work by Esponda et al. in [12,13]. In that work, a negative set is generated from the
original set in a similar manner to the conversion algorithms shown in Figs. 1 and 2.
However, they produce a negative set with unspecified bits in random positions and with
less emphasis on managing the growth of the resulting set. The technique was originally
introduced as a means of generating Boolean satisfiability (SAT) formulas where, by
leveraging the difficulty of finding solutions to hard SAT instances, the contents of
the original set are obscured without using encryption [12]. In addition, these hard-
to-reverse negative sets are still able to answer membership queries efficiently while
remaining intractable to reverse (i.e., to obtain the contents of the original set). In this
paper, we are not interested in this security property, but use the negative approach
simply to address the efficiency issues faced by traditional Set-Sharing domain.

1 Note that we could have also used the binary representation described in Sec. 2 but we chose
the ternary encoding in order to achieve more compactness.

308 E. Trias et al.

0 NegConvert(sh, k)
1 tnsh ← U
2 foreach t ∈ sh
3 tnsh ← Delete(tnsh, t, k)
4 return tnsh

0 NegConvertMissing(bsh, k)
1 tnsh ← ∅
2 bnsh ← U \ bsh
3 foreach t ∈ bnsh
4 tnsh ← Insert(tnsh, t, k)
5 return tnsh

10 Delete(tnsh, x, k)
11 Dx ← ∀t ∈ tnsh, xMt
12 tnsh′ ← tnsh with Dx removed
13 foreach y ∈ Dx

14 foreach unspecified bit position qi of y
15 if bi (the ith bit of x) is specified, then
16 y′ ← y with position qi replaced by bi

17 tnsh′ ← Insert(tnsh′, y′, k)
18 return tnsh′

20 Insert(tnsh, x, k)
21 m ← Specified(x)
22 if m < k then
23 P ← select (k −m) unspecified bit positions in x
24 VP ← every possible bit assignment of length |P |
25 foreach v ∈ VP

26 y ← x with positions P replaced by v
27 tnsh′ ← ManagedGrowth(tnsh, y)
28 else
29 y ← PatternGenerate(tnsh, x, k)
30 tnsh′ ← ManagedGrowth(tnsh, y)
31 return tnsh′

Fig. 2. NegConvert, NegConvertMissing, Delete and Insert algorithms used to transform pos-
itive to negative representation; k is the desired number of specified bits (non-*’s) to remain

The conversion to the negative set can be accomplished using the two algorithms
shown in Figure 2. NegConvert uses the Delete operation to remove input strings of
the set sh from U , the set of all l-bit strings U = {∗l}, and then, the Insert operation
to return U \ sh which represents all strings not in the original input. Alternatively,
NegConvertMissing uses the Insert operation directly to append each string missing
from the input set to an empty set resulting in a representation of all strings not in the
original input. Although as shown in Table 1 both algorithms have similar complexities,
depending on the size of the original input it may be more efficient to find all the strings
missing from the input and transform them with NegConvertMissing, rather than ap-
plying NegConvert to the input directly. Note that the resulting negative set will use
the same ternary alphabet described in Def. 7. For clarity, we will denote it by tNSH
such that tNSH ≡ tSH .

For simplicity, we describe only NegConvert since NegConvertMissing uses the
same machinery. Assume a transformation from bsh to tnsh calling NegConvert with
k = 1. We begin with tnsh = U = {∗ ∗ ∗∗} (line 1), then incrementally Delete each
element of bsh from tnsh (line 2-3). Delete removes all strings matched by x from

Negative Ternary Set-Sharing 309

Table 1. Summary of conversions: l-length strings; α = |Result| · l; if m < k then δ = k −m
else δ = 0, where m = minimum specified bits in entire set, k = number of specified bits
desired; bnsh = U \ bsh; β = O(2l) time to find bnsh

Transformation Time Complexity Size Complexity
bSH → tSH O(|bsh|αl) O(|bsh|)
bSH/tSH → tNSH O(|bsh|α(α2δ + 1)) O(|tnsh|(l −m)2δ)
tNSH → tSH O(|tnsh|α(α2δ + 1)) O(|tsh|(l −m)2δ)
bSH → tNSH O(β + |bnsh|(α2δ + 1)) O(|bnsh|2δ)

tnsh (line 11-12). If the set of matched strings, Dx, contains unspecified bit values (*
symbols), then all string combinations not matching x must be re-inserted back into
tnsh (line 13-17). Each string y′ not matching x is found by setting the unspecified
bit to the opposite bit value found in x[i] (line 16). Then, Insert ensures string y′ has
at least k specified bits (line 22-26). This is done by specifying k − m unspecified
bits (line 23) and appending each to the result using ManagedGrowth (line 24-26). If
string x already has at least k specified bits, then the algorithm attempts to introduce
more ∗ symbols using PatternGenerate (line 28) and appends it while removing any
redundancy in the resulting set using ManagedGrowth (line 29).

Example 4 (Conversion from bSH to tNSH). Consider the same sharing set as in Ex-
ample 2: bsh = {1000, 1001, 0100, 0010, 0101, 0001}. A negative ternary string rep-
resentation is generated by applying the NegConvert algorithm to obtain {0000, 11**,
1*1*, *11*, **11}. Since a string of all 0’s is meaningless in a set-sharing representa-
tion, it is removed from the set. Thus, tnsh = {11**, 1*1*, *11*, **11}.

NegConvertMissing would return the same result for Example 4, and, in general, an
equivalent negative representation. Table 1 illustrates the different transformation func-
tions and their complexities for a given input. Transformation bSH → tSH can be per-
formed by the Convert algorithm described in Fig. 1. Transformations bSH/tSH →
tNSH and bSH → tNSH are done by NegConvert and NegConvertMissing, re-
spectively. Both transformations show that we can convert a positive representation into
negative with corresponding difference in time and memory complexity. Depending on
the size of the original input we may prefer one transformation over another. If the input
size is relatively small, less than 50% of the maximum size, then NegConvert is of-
ten more efficient than NegConvertMissing. Otherwise, we may prefer to insert those
strings missing in the input set. In our implementation, we continuously track the size
of the relationships to choose the most efficient transformation. Finally, transformation
tNSH → tSH is performed by NegConvert to revert back to the ternary positive
from a negative representation.

Consider now the same set of variables and order among them as in Example 4 but
with a slightly different set of sharing groups encoded as bsh = {1000, 1100, 1110}
or tsh = {1*00, 1110}. Then, a negative ternary string representation produced by
NegConvert is tnsh ={00**, 01**, 0*1*, 0**1, 1**1, *01*}. This example shows
that the number of elements, or size, of the negative result can be greater than the pos-
itive, |tnsh| = 6 > |bsh| = 3 and |tsh| = 2, unlike Example 4 where |bsh| = 6,

310 E. Trias et al.

and |tnsh| = 4 < |bsh|. As the size of |bsh| increases, the complement set that the
negative must represent (2|V| − |bsh|) decreases. This illustrates how selecting the ap-
propriate set-sharing representation affects the size of the converted result. Thus, the
size of the original sharing set at specific program points will be used by the analysis
to produce the most compact working set. The negative sharing set representation al-
lows us to represent more variables of interest enabling larger problem instances to be
evaluated.

We now define the negative abstract unification operations, along with key ancillary
operations required by our engine to use the negative representation.

Definition 13 (Negative relevant sharing and irrelevant sharing). Given t ∈ Term
and tnsh ∈ tNSH l with strings of length l, the set of strings in tnsh that are negative
relevant with respect to t is obtained by a function rel(tnsh, t) : tNSH l × Term →
tNSH l defined as:

rel(tnsh, t) = tnsh ∩ 0-mask(t̂),
In addition, irrel(tnsh, t) is defined as:

irrel(tnsh, t) = tnsh ∩ 1-mask(t̂).
where ∩ ≡ ∪ and defined in [13].

Because the negative representation is the complement, it is not only more compact for
large positive set-sharing instances, but also, and perhaps more importantly, it enables
us to use inverse operations that are more memory- and computationally efficient than
in the positive representation. However, the negative representation does have its lim-
itations. Certain operations that are straightforward in the positive representation are
NP-Hard in the negative representation [12,13].

A key observation given in [12] is that there is a mapping from Boolean formulas
to the negative set-sharing domain such that finding which strings are not represented
is equivalent to finding satisfying assignments to the corresponding Boolean formula.
This is known to be an NP-Hard problem. As mentioned before, this fact is exploited
in [12] for privacy enhancing applications. In [28] we show that negative cross-union,
×∪, is NP-Complete.

Due to the interdependent nature of the relationship between the elements of a neg-
ative set, it is unclear how a precise negative cross-union can be accomplished without
going through a positive representation. Therefore, we accomplish the negative cross-
union by first identifying the represented positive strings and then applying cross-union
accordingly. Rather than iterating through all possible strings in U and performing
cross-union on strings not in tnsh, we achieve a more efficient negative cross-union, ×∪,
by converting tnsh to tsh first, i.e., using NegConvert from Table 1 and performing
ternary cross-union on strings t ∈ tsh. In this way, the ternary representation continues
to provide a compressed representation of the sharing set. Note that the negative up-
closure operation, ∗, suffers the same drawback as cross-union. Therefore, it is handled
the same way as negative cross-union.

Definition 14 (Negative union, ∪). Given two negative sets with same length strings,
tnsh1 and tnsh2, the Negative Union returns a negative set representing the set union
of tnsh1 ∪ tnsh2, and is defined in [13] as:

Negative Ternary Set-Sharing 311

tnsh1 ∪ tnsh2 = {z|(xMy) ⇒ z = x
∧
y, x ∈ tnsh1, y ∈ tnsh2}

where
∧

is the ternary AND operator.

Definition 15 (Negative abstract unification, amgu). The negative abstract unifica-
tion is a function amgu : V × Term× tNSH l → tNSH l defined as

amgu(x, t, tnsh) = irrel(tnsh, x = t) ∪ (rel(tnsh, x) ×∪ rel(tnsh, t))∗
,

Example 5 (Negative abstract unification). Let tnsh = {11**, 1*1*, *11*, **11} be
the same sharing set as in Example 4. Consider the analysis of X1 = f(X2, X3):

A = rel(tnsh, X1) = {11 ∗ ∗, 1 ∗ 1∗, ∗11∗, ∗ ∗ 11, 0 ∗ ∗∗}
B = rel(tnsh, f(X2, X3)) = {11 ∗ ∗, 1 ∗ 1∗, ∗11∗, ∗ ∗ 11, ∗00∗}
A×∪B = {00 ∗ ∗, 01 ∗ ∗, 0 ∗ 0∗, ∗00∗}
(A×∪B)

∗
= {01 ∗ ∗, 0 ∗ 1∗, 100∗}

C = irrel(tnsh, X1 = f(X2, X3)) = {11 ∗ ∗, 1 ∗ 1∗, ∗11∗, ∗ ∗ 11, 1 ∗ ∗∗,
∗1 ∗ ∗, ∗ ∗ 1∗}

= {1 ∗ ∗∗, ∗1 ∗ ∗, ∗ ∗ 1∗}
amgu(X1, f(X2, X3), tnsh) = C ∪ (A×∪B)

∗
= {01 ∗ ∗, 0 ∗ 1∗, 0 ∗ ∗0, 100∗}

Here, we define the negative projection and refer the reader to [28] for the remaining
operations:

Definition 16 (Negative projection, tnsh|t). The negative projection is a function
tnsh|t: tNSH l × Term → tNSHk (k ≤ l) that selects elements of tnsh projected
onto the binary representation of t ∈ Term and is defined as

tnsh|t = π(tnsh, Υt),

Υt = positions where t̂[i] = 1, ∀i1 ≤ i ≤ l and Negative Project π as defined in [13].

We find that the resulting negative set will contain strings that have a bit value projected
in column(s) specified by Υ if and only if all possible binary combination of all strings
created with the projected column(s) appear in the negative set. For example, given
tnsh = {000, 011, 10*, 11*}, the πΥ=1,2(tnsh) = {10, 11}.

5 Experimental Results

We developed a proof-of-concept implementation to measure experimentally the rela-
tive efficiency in terms of running time and memory usage obtained with the two new
representations, tSH and tNSH . Our first objective is to study the implications of
the conversions in the representation for analysis. Note that although both tSH and
tNSH do not imply a loss of precision, the sizes of the resulting representations and
their conversion times can vary significantly from one to another. An essential issue is
to determine experimentally the best overall k parameter for the conversion algorithms.
Second, we study the core abstract operation of the traditional set-sharing, amgu, under
two different metrics. One is the running time to perform the abstract unification. The
other metric expresses the memory usage through the size of the representation in terms

312 E. Trias et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000

N
um

be
r

of
 S

tr
in

gs
 (

O
ut

pu
t)

Number of Binary Strings (Input)

k = 1

bSH
tSH

tNSH

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000

N
um

be
r

of
 S

tr
in

gs
 (

O
ut

pu
t)

Number of Binary Strings (Input)

k = 4

bSH
tSH:

tNSH:

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000

N
um

be
r

of
 S

tr
in

gs
 (

O
ut

pu
t)

Number of Binary Strings (Input)

k = 7

bSH
tSH:

tNSH:

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000

N
um

be
r

of
 S

tr
in

gs
 (

O
ut

pu
t)

Number of Binary Strings (Input)

k = 10

bSH
tSH:

tNSH:

Fig. 3. Compression level after conversions from bSH to tSH and tNSH for k = 1, 4, 7 & 10

of number of strings during key steps in the unification. All experiments have been con-
ducted on an IntelR CoreTM Duo CPU T2350 at 1.86GHz with 1GB of RAM running
Ubuntu 7.04, and were performed with 12-bit strings since we consider this value large
enough to show all the relevant features of our approach. In general, within some upper
bound, the more variables considered the better the expected efficiency.

The first experiment determines the best k value suitable for the conversion algo-
rithms, shown in Figs. 1 and 2. We submit a set of 12-bit strings in random order using
different k values. We evaluate size of the output (see Fig. 3) for a given k value. As
expected, bSH (x = y line) results in no compression; tSH slowly increases with in-
creasing input size, remaining below bSH (for k = 7 and k = 10) due to the compres-
sion provided by the ∗ symbol and by having little redundancy; tNSH , the complement
set, starts larger than bSH but quickly tapers off as the input size increases past 50%
of |U|. Since the k parameter helps determine the minimum number of specified bits in
the set, there is a direct relationship between the k parameter and the size of the output
due to compression by the ∗ symbol. A smaller k value, i.e., k = 1, introduces the max-
imum number of ∗ symbols in the set. However, for a given input, a small k value does
not necessarily result in the best compression factor (see k = 1 of Fig. 3). This result
may be counter-intuitive, but it is due to the potentially larger number of unmatched
strings that must be re-inserted back into the set determined by all the strings that must
be represented by the converted result, see line 13-17 of Fig. 2. In addition, a small k
value results in a set with more ternary strings than the number of binary strings repre-
sented. This occurs when multiple ternary strings, none of which subsumes any other,
represent the same binary string. This redundancy in the ternary representation is not
prevented by ManagedGrowth, and is apparent in Fig. 3 when |tSH | and |tNSH | ex-
ceed the maximum size of binary sharing relationships (i.e., 4096). One way to reduce
the number of redundant strings is to sort the binary input by Hamming distance before
conversion. In the subsequent tests, sorting was performed to maximize compression.
We have found empirically that a k setting near (or slightly larger than) l/2 is the best

Negative Ternary Set-Sharing 313

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r

of
 S

tr
in

gs

Number of Binary Strings

bSH
tSH

tNSH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(n

or
m

al
iz

ed
)

Number of Binary Strings

bSH
tSH

tNSH

Fig. 4. Memory usage (avg. # of strings) and time normalized for conversions with k = 7

overall value considering both the result size and time complexity. We use k = 7 in
the following experiments. It is interesting to note that a k value of log2(l) results in
polynomial time conversion of the input (see the Complexity column of Table 1) but it
may not result in the maximum compression of the set (see k = 4 of Fig. 3). Therefore,
k may be adjusted to produce results based on acceptable performance level depending
on which parameter is more important to the user, the level of compression (memory
constraints) or execution time.

Our second experiment shows the comparison in terms of memory usage (Fig. 4,
left) and running time (Fig. 4, right) of the conversion algorithms for transforming an
initial set of binary strings, bSH , into its corresponding set of ternary strings, tSH , or
its complement (negative), tNSH . We generated random sets of binary strings (over
30 runs) using k = 7 and we converted the set of binary strings using the Convert
algorithm described in Fig. 1 for tSH , and NegConvertMissing in Fig. 2 for tNSH .
The plot on the left shows that the number of positive ternary strings,|tSH |, used for
encoding the input binary strings always remains below |bSH |, and this number in-
creases slowly with increasing input size. It important to notice that for large values of
|bSH |, tSH compacts worse than expected and the compression factor is lower. The
main cause is the use of the parameter k = 7 that implies only the use of 5 or less
∗ symbols for compression. Conversely, the number of negative sharing relationships,
|tNSH |, is greater than |bSH | and |tSH | up to between 40% and 50%, respectively.
However, when the load exceeds those thresholds tNSH compresses much better than
its alternatives. For instance, for the maximum number of binary sharing relationships,
tNSH compresses them to only one negative string. On the other hand, the rightmost
plot shows the average time consumed over 30 runs for both conversion algorithms.
Again, tNSH scales better than the positive ternary solution, tSH , after a threshold
established around 50% of the maximum number of binary sharing relationships. Our
proof-of-concept implementation is not really optimized, since our objective is to study
the relative performance between the three representations, and thus times are normal-
ized to the range [0, 1]. We argue that comparisons that we report between representa-
tions are fair since the three cases have been implemented with similar efficiency, and
useful since the absolute performance of the base representation is well understood.

Finally, our third experiment shows the efficiency in terms of the memory usage (in
Fig. 5, left) and running time (in Fig. 5, right) when performing the abstract unification
for k = 7. Several characteristics of the abstract unification influence the memory us-
age and its performance. Given an arbitrary set of variables of interest V (|V| = 12),

314 E. Trias et al.

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000

St
ri

ng
s

Po
st

-a
m

gu
 (

lo
gs

ca
le

d)

Strings Pre-amgu

bSH
tSH

tNSH

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

es
 (

no
rm

al
iz

ed
 a

nd
 lo

gs
ca

le
d)

Number of strings

bSH
tSH

tNSH

Fig. 5. Memory usage (avg. # of strings) and time normalized for amgu over 30 runs with k = 7

we constructed x ∈ V by selecting one variable and t ∈ Term as a term consisting
of a subset of the remaining variables, i.e., V \ {x}. We tested with different values
of t. Another important aspect is the input sharing set, bSH . Again, we reduced the
influence of this factor by generating randomly 30 different sets. In the leftmost plot,
the x-axis illustrates the number of input binary strings considered during the amgu.
In the case of the positive and negative ternary amgu, the input binary strings were
first converted to their corresponding compressed representations. The y-axis shows the
number of strings after the unification. The plot shows that exceeding a threshold lower
than 500 in the number of input binary sharing relationships, both tSH and tNSH
yield a significant smaller number of strings than the binary solution after unification.
Moreover, when the number of the input binary strings is smaller than 50% of its max-
imum value, tSH compresses more efficiently than tNSH . However, if this value is
exceeded then this trend is reversed: the negative encoding yields a better compression
as the cardinality of the original set grows toward 2|V|. The rightmost plot shows the
size of the random binary input sets in the x-axis, and the average time consumed for
performing the abstract unification in its y-axis, normalized again from 0 to 1. This
graph shows that the execution times behave similarly to the memory usage during ab-
stract unification. Both tSH and tNSH run much faster than bSH . The differences are
significant (a factor of 10) for most x-values, reaching a factor of 1000 for large values
of |bSH |. When the load exceeds a 50−60%-threshold, tNSH scales better than tSH
by a factor of 10. The main difference with respect to the memory usage depicted in the
leftmost plot is that for a smaller load, tSH runs as fast as tNSH during unification.
The main reason is that the ternary relevant and irrelevant sharing operations are less
efficient than their negative counterparts, i.e., intersection is an expensive operation in
the positive whereas negative intersection is very efficient (positive union).

6 Conclusions

We have presented a novel approach to Set-Sharing that leverages the complement (neg-
ative) sharing relationships of the original sharing set, without any loss of accuracy. In
this work, we based the negative representation on ternary strings. We also showed
that the same ternary representation can be used as a positive encoding to efficiently
compact the original binary sharing set. This provides the user the option of work-
ing with whichever set sharing representation is more efficient for a given problem
instance.

Negative Ternary Set-Sharing 315

The capabilities of our negative approach to compress sharing relationships are or-
thogonal to the use of the ternary representation. Hence, the negative relationships may
be encoded using other representations such as BDDs [16]. Concretely, Zero-suppressed
BDDs [16] are particularly interesting because they were designed to represent sets of
combinations (i.e., sets of sets). In addition, ZBDDs may be also applicable to similar
sharing-related analyses in object-oriented languages (e.g., [22]).

Our experimental evaluation has shown that our approach can reduce significantly
the memory usage of the sharing relationships and the running time of the abstract
operations, including the abstract unification. Our experiments also show how to set
up key parameters in our algorithms in order to control the desired compression and
time complexities. We have shown that we can obtain a reasonable compression in
polynomial time by tuning appropriately those parameters. Thus, we believe our results
can contribute to the practical, scalable application of Set-Sharing.

References

1. Armstrong, T., Marriott, K., Schachte, P., Søndergaard, H.: Boolean functions for depen-
dency analysis: Algebraic properties and efficient representation. In: LeCharlier, B. (ed.)
SAS 1994. LNCS, vol. 864. Springer, Heidelberg (1994)

2. Bagnara, R., Gori, R., Hill, P.M., Zaffanella, E.: Finite-tree analysis for constraint logic-based
languages. Information and Computation 193(2), 84–116 (2004)

3. Bruynooghe, M., Codish, M., Mulkers, A.: Abstract unification for a composite domain de-
riving sharing and freeness properties of program variables. Verification and Analysis of
Logic Languages (1994)

4. Bryant, R.E.: Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams.
ACM Comput. Surv. 24(3), 293–318 (1992)

5. Bueno, F., Garcı́a de la Banda, M.: Set-Sharing is not always redundant for Pair-Sharing.
In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998. Springer, Heidelberg
(2004)

6. Bueno, F., Garcı́a de la Banda, M., Hermenegildo, M.: Effectiveness of Global Analysis in
Strict Independence-Based Automatic Program Parallelization. In: 1994 Intl. Symposium on
Logic Programming (1994)

7. Codish, M., Lagoon, V., Bueno, F.: An algebraic approach to sharing analysis of logic pro-
grams. In: Proc. of the Fourth Intl. Static Analysis Symposium (1997)

8. Codish, M., Mulkers, A., Bruynooghe, M., Garcı́a de la Banda, M., Hermenegildo, M.: Im-
proving Abstract Interpretations by Combining Domains. In: PEPM 1993 (1993)

9. Codish, M., Dams, D., Filé, G., Bruynooghe, M.: On the design of a correct freeness analysis
for logic programs. The Journal of Logic Programming 28(3), 181–206 (1996)

10. Codish, M., Søndergaard, H., Stuckey, P.J.: Sharing and groundness dependencies in logic
programs. ACM Transactions on Prog. Languages and Systems 21(5), 948–976 (1999)

11. Cousot, P., Cousot, R.: Abs Interp: a Unified Lattice Model for Static Analysis of Programs
by Construction or Approx of Fixpoints. In: POPL 1977 (1977)

12. Esponda, F., Ackley, E.S., Forrest, S., Helman, P.: On-line negative databases (with experi-
mental results). Intl. Journal of Unconventional Computing 1(3), 201–220 (2005)

13. Esponda, F., Trias, E.D., Ackley, E.S., Forrest, S.: A relational algebra for negative databases.
Technical Report TR-CS-2007-18, University of New Mexico (2007)

14. Fecht, C.: An efficient and precise sharing domain for logic programs. In: Kuchen, H., Swier-
stra, S.D. (eds.) PLILP 1996. LNCS, vol. 1140, pp. 469–470. Springer, Heidelberg (1996)

316 E. Trias et al.

15. Hill, P.M., Zaffanella, E., Bagnara, R.: A correct, precise and efficient integration of set-
sharing, freeness and linearity for the analysis of finite and rational tree languages. In: TPLP
2004 (2004)

16. Minato, S.: ZBDDs for Set Manipulation in Combinatorial Problems. In: DAC 1993 (1993)
17. Jacobs, D., Langen, A.: Static Analysis of Logic Programs for Independent And-Parallelism.

Journal of Logic Programming 13(2, 3), 291–314 (1992)
18. King, A., Soper, P.: Depth-k Sharing and Freeness. In: ICLP 1994 (1994)
19. Langen, A.: Advanced techniques for approximating variable aliasing in Logic Programs.

PhD thesis, Computer Science Dept., University of Southern CA (1990)
20. Li, X., King, A., Lu, L.: Collapsing Closures. In: Etalle, S., Truszczyński, M. (eds.) ICLP

2006. LNCS, vol. 4079. Springer, Heidelberg (2006)
21. Li, X., King, A., Lu, L.: Lazy Set-Sharing Analysis. In: Hagiya, M., Wadler, P. (eds.) FLOPS

2006. LNCS, vol. 3945. Springer, Heidelberg (2006)
22. Méndez-Lojo, M., Hermenegildo, M.: Precise Set Sharing Analysis for Java-style Programs.

In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905. Springer,
Heidelberg (2008)

23. Mulkers, A., Simoens, W., Janssens, G., Bruynooghe, M.: On the Practicality of Abstract
Equation Systems. In: ICLP 1995 (1995)

24. Muthukumar, K., Hermenegildo, M.: Combined Determination of Sharing and Freeness of
Program Variables Through Abstract Interpretation. In: ICLP 1991 (1991)

25. Muthukumar, K., Hermenegildo, M.: Compile-time Derivation of Variable Dependency Us-
ing Abstract Interpretation. JLP 13(2/3), 315–347 (1992)

26. Navas, J., Bueno, F., Hermenegildo, M.: Efficient top-down set-sharing analysis using
cliques. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819. Springer, Heidelberg
(2005)

27. Søndergaard, H.: An application of abstract interpretation of logic programs: occur check
reduction. In: Robinet, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213. Springer, Hei-
delberg (1986)

28. Trias, E., Navas, J., Ackley, E.S., Forrest, S., Hermenegildo, M.: Efficient Representations
for Set-Sharing Analysis. TR-CLIP9/2008.0, Univ. of New Mexico (2008)

29. Zaffanella, E., Bagnara, R., Hill, P.M.: Widening Sharing. In: Nadathur, G. (ed.) PPDP 1999.
LNCS, vol. 1702. Springer, Heidelberg (1999)

Termination of Narrowing
Using Dependency Pairs�

Maŕıa Alpuente, Santiago Escobar, and José Iborra

Technical University of Valencia (UPV), Spain
{alpuente,sescobar,jiborra}@dsic.upv.es

Abstract. In this work, we extend the dependency pair approach for
automated proofs of termination in order to prove the termination of nar-
rowing. Our extension of the dependency pair approach generalizes the
standard notion of dependency pairs by taking specifically into account
the dependencies between the left-hand side of a rewrite rule and its own
argument subterms. We demonstrate that the new narrowing dependency
pairs exactly capture the narrowing termination behavior and provide an
effective termination criterion which we prove to be sound and complete.
Finally, we discuss how the problem of analyzing narrowing chains can be
recast as a standard analysis problem for traditional (rewriting) chains,
so that the proposed technique can be effectively mechanized by reusing
the standard DP infrastructure.

1 Introduction

In recent years, the dependency pair (DP) method for automating the termi-
nation proofs of term rewriting has achieved tremendous success, as witnessed
by the large number of publications and tools since its introduction in [6] and
subsequent reformulation in [9] (see [11,13] for extensive references thereof).

Narrowing is a generalization of term rewriting that allows free variables in
terms (as in logic programming) and replaces pattern matching by syntactic uni-
fication so that it subsumes both rewriting and SLD-resolution [12]. Narrowing
has many important applications including execution of functional–logic pro-
gramming languages [12], verification of security policies [15] and cryptographic
protocols [8], equational unification [14], and symbolic reachability [16], among
others. Termination of narrowing itself is, therefore, of great interest to these
applications.

Termination of narrowing is a more restrictive property than termination of
rewriting or termination of pure logic programs due to the high degree of non-
determinism caused by the interaction of rule selection, redex selection, and
unification. In recent works [2,4], we identified some non–trivial classes of TRSs
where narrowing terminates. The results in [4] generalize previously known cri-
teria for termination of narrowing, which were essentially restricted before to
� This work has been partially supported by the EU (FEDER) and Spanish MEC

project TIN2007-68093-C02-02, Integrated Action Hispano-Alemana HA2006-0007,
and UPV-VIDI grant 3249 PAID0607.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 317–331, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

318 M. Alpuente, S. Escobar, and J. Iborra

either confluent term rewriting systems (TRSs) [14] or to left–flat TRSs (i.e.,
each argument of the left–hand side of a rewrite rule is either a variable or a
ground term) that are compatible with a termination ordering [7], among other
applicability conditions. Roughly speaking, we proved in [4] that confluence is a
superfluous requirement for the termination of narrowing. We also weakened the
left–flatness condition required in [7] to the requirement that every non-ground,
strict subterm of the left–hand side (lhs) of every rewrite rule must be a rigid
normal form, i.e., unnarrowable. Finally, in [2] we proved modular termination
of a restriction of narrowing, called basic narrowing [14], in several hierarchical
combinations of TRSs, which provides new algorithmic criteria to prove termi-
nation of narrowing via termination of basic narrowing (cf. [4]).

In [17], the notions of dependency pairs and dependency graphs, which were
originally developed for term rewriting, were adapted to the logic programming
domain, leading to automated termination analyses that are directly applicable
to any definite logic program. Two different adaptations of the DP technique
for narrowing have been proposed recently. In [18,19], the original dependency
pair technique of [6] was adapted to the termination of narrowing, whereas [20]
adapts the logic programming dependency pair approach of [17] instead, to prove
termination of narrowing w.r.t. a given set of queries that are supplemented with
call modes . Unfortunately, these two methods apply only to two particular classes
of TRSs: right–linear TRSs (i.e., no repeated variables occur in the right–hand
sides of the rules) or constructor systems (the arguments of the lhs’s of the rules
are constructor –i.e., data– terms). These two classes are overly restrictive for
many practical uses of narrowing, such as the applications mentioned above.
In this work, we are interested in developing automatable methods for proving
termination of narrowing in TRSs that resist all previous techniques.

Example 1. Consider our running example, which is the non–right–linear, non–
constructor–based, non–confluent TRS, adapted from [15], that is shown in Fig-
ure1 1. This TRS models a security (filtering) and routing policy that allows
packets coming from external networks to be analyzed. We do not describe the
intended meaning of each symbol since it is not relevant for this work, but note
the kind of expressivity that is assumed in the domain of rule–based policy
specification, that does not fit in the right–linear restriction or the construc-
tor discipline. Narrowing is terminating for this TRS, but it cannot be proved
by using any of the existing methods [2,4,18,19,20]. In this paper, we provide
techniques that allow us to prove it automatically.

The main contributions of this paper are as follows:

– We present a new method for proving the termination of narrowing that
is based on a suitable extension of the DP technique to narrowing that is
applicable to any class of TRSs. Our method generalizes the standard notion
of dependency pairs to narrowing by taking the dependencies between the
lhs of a rewrite rule and its own argument subterms specifically into account.

1 In this paper, variables are written in italic font and function symbols are in type-
writer font.

Termination of Narrowing Using Dependency Pairs 319

filter(pckt(src, dst, established)) → accept
filter(pckt(eth0, dst, new)) → accept
filter(pckt(194.179.1.x:port, dst, new)) → filter(pckt(secure, dst, new))
filter(pckt(158.42.x.y:port, dst, new)) → filter(pckt(secure, dst, new))
filter(pckt(secure, dst:80, new)) → accept
filter(pckt(secure, dst:other, new)) → drop
filter(pckt(ppp0, dst, new)) → drop
filter(pckt(123.123.1.1:port, dst, new)) → accept
pckt(10.1.1.1:port, ppp0, s) → pckt(123.23.1.1:port, ppp0, s)
pckt(10.1.1.2:port, ppp0, s) → pckt(123.23.1.1:port, ppp0, s)
pckt(src, 123.123.1.1:port, new) → natroute(pckt(src, 10.1.1.1:port, established),

pckt(src, 10.1.1.2:port, established))
natroute(a, b) → a
natroute(a, b) → b

Fig. 1. The FullPolicy TRS

– We demonstrate that the new narrowing dependency pairs exactly capture
the termination of narrowing behavior. We provide a termination criterion
based on narrowing chains which we demonstrate to be sound and complete.

– This allows us to develop a technique that is more general in all cases and,
for general calls (i.e., without considering call modes) strictly subsumes the
DP methods for proving termination of narrowing of [18,19,20], as well as
all previous (decidable) termination of narrowing criteria [2,4,7,14].

– We have implemented a tool for proving the termination of narrowing auto-
matically that is based on our technique, and we made it publicly available.

Plan of the Paper

After recalling some preliminaries in Section 2, in Section 3 we discuss the
problem of echoing, which we identify as being ultimately responsible for the
non–termination of narrowing. In Section 4, we develop the notion of narrowing
dependency pairs and provide a sound and complete criterion for the termination
of narrowing that is based on analyzing narrowing chains. In Section 5, we dis-
cuss the effective automation of our method, which mainly consists of two steps:
DP extraction and argument filtering transformation. Section 6 concludes. More
details and proofs of all technical results can be found in [3].

2 Preliminaries

In this section, we briefly recall the essential notions and terminology of term
rewriting. For missing notions and definitions on equations, orderings and rewrit-
ing, we refer to [21].
V denotes a countably infinite set of variables, and Σ denotes a set of func-

tion symbols, or signature, each of which has a fixed associated arity. Terms
are viewed as labelled trees in the usual way, where T (Σ,V) and T (Σ) denote
the non-ground term algebra and the ground algebra built on Σ ∪ V and Σ,
respectively. Positions are defined as sequences of natural numbers used to ad-
dress subterms of a term, with ε as the root (or top) position (i.e., the empty
sequence). Concatenation of positions p and q is denoted by p.q, and p < q is the
usual prefix ordering. The root symbol of a term is denoted by root(t). Given

320 M. Alpuente, S. Escobar, and J. Iborra

S ⊆ Σ ∪ V , PosS(t) denotes the set of positions of a term t that are rooted by
function symbols or variables in S. Pos{f}(t) with f ∈ Σ ∪ V will be simply
denoted by Posf (t), and PosΣ∪V(t) will be simply denoted by Pos(t). t|p is the
subterm at the position p of t. t[s]p is the term t with the subterm at the position
p replaced with term s. By Var(s), we denote the set of variables occurring in
the syntactic object s. By x̄, we denote a tuple of pairwise distinct variables.
A fresh variable is a variable that appears nowhere else. A linear term is one
where every variable occurs only once.

A substitution σ is a mapping from the set of variables V into the set of terms
T (Σ,V) with a (possibly infinite) domain D(σ), and image I(σ). A substitution
is represented as {x1 �→ t1, . . . , xn �→ tn} for variables x1, . . . , xn and terms
t1, . . . , tn. The application of a substitution θ to term t is denoted by tθ, using
postfix notation. Composition of substitutions is denoted by juxtaposition, i.e.,
the substitution σθ denotes (θ ◦ σ). We write θ|̀Var(s) to denote the restriction
of the substitution θ to the set of variables in s; by abuse of notation, we often
simply write θ|̀s. Given a term t, θ = ν [t] iff θ|̀Var(t) = ν|̀Var(t), that is, ∀x ∈
Var(t), xθ = xν. A substitution θ is more general than σ, denoted by θ ≤ σ,
if there is a substitution γ such that θγ = σ. A unifier of terms s and t is a
substitution ϑ such that sϑ = tϑ. The most general unifier of terms s and t,
denoted by mgu(s, t), is a unifier θ such that for any other unifier θ′, θ ≤ θ′.

A term rewriting system (TRS) R is a pair (Σ,R), where R is a finite set of
rewrite rules of the form l → r such that l, r ∈ T (Σ,V), l �∈ V , and Var(r) ⊆
Var(l). For TRS R, l→ r << R denotes that l → r is a new variant of a rule inR
such that l → r contains only fresh variables, i.e., contains no variable previously
met during any computation (standardized apart). We will often write just R
or (Σ,R) instead of R = (Σ,R). A TRS R is called left–linear (respectively
right–linear) if, for every l → r ∈ R, l (respectively r) is a linear term. Given
a TRS R = (Σ,R), the signature Σ is often partitioned into two disjoint sets
Σ = C , D, where D = {f | f(t1, . . . , tn) → r ∈ R} and C = Σ \ D. Symbols
in C are called constructors, and symbols in D are called defined functions. The
elements of T (C,V) are called constructor terms. We let Def(R) denote the set
of defined symbols in R. A constructor system is a TRS whose lhs’s are terms
of the form f(c1, . . . , ck) where f ∈ D and c1, . . . , ck are constructor terms. A
term whose root symbol is a defined function is called root-defined .

A rewrite step is the application of a rewrite rule to an expression. A term
s ∈ T (Σ,V) rewrites to a term t ∈ T (Σ,V), denoted by s

p→R t, if there exist
p ∈ PosΣ(s), l → r ∈ R, and substitution σ such that s|p = lσ and t = s[rσ]p.
When no confusion can arise, we omit the subscript in →R . We also omit the
reduced position p when it is not relevant. A term s is a normal form w.r.t. the
relation →R (or simply a normal form), if there is no term t such that s→R t.
A term is a reducible expression or redex if it is an instance of the left hand side
of a rule in R. A term s is a head normal form if there are no terms t, t′ s.t.
s→∗

R t′ ε→R t. A term t is said to be terminating w.r.t. R if there is no infinite
reduction sequence t→R t1 →R t2 →R A TRS R is (→)-terminating (also
called strongly normalizing or noetherian) if every term is terminating w.r.t. R.

Termination of Narrowing Using Dependency Pairs 321

A TRS R is confluent if, whenever t→∗
R s1 and t→∗

R s2, there exists a term w
s.t. s1 →∗

R w and s2 →∗
R w.

A term s ∈ T (Σ,V) narrows to a term t ∈ T (Σ,V), denoted by s
p
�θ,R t,

if there exist p ∈ PosΣ(s), l → r << R, and substitution θ such that θ =
mgu(s|p, l) and t = (s[r]p)θ. We use >ε→R (resp. >ε

�θ,R) to denote steps in which
the selected redex (resp. narrex , i.e. narrowable expression) is below the root.

3 The echoing Problem

The dependency pair technique [6] is one of the most powerful methods for
automated termination analyses. The technique focuses on the dependency rela-
tions between defined function symbols, paying particular attention to strongly
connected components within a graph of functional dependencies, in order to
produce automated termination proofs. The dependency graph is typically ex-
tracted by considering the dependencies between the lhs’s of a rewrite rule and
all proper subterms of the rhs of the rule.

An adaptation of the DP method to narrowing is given in [19] that requires the
TRS to have the so-called Top Reduced Almost Terminating (TRAT) property,
defined as follows. Given a property P on terms, a term t is said to be a minimal
P term if t satisfies P but none of the proper subterms of t does. Given a
TRS R and a binary relation ⇒ (being →R or �R), an infinite derivation
t ⇒ t1 ⇒ t2 . . . is called almost terminating if t is a minimal non–terminating
term w.r.t. ⇒. An almost terminating derivation t ⇒ t1 ⇒ t2 . . . is called top
reduced if it contains a derivation step at the root position. We say that ⇒
has the TRAT property if, for every non-terminating term t, there exists a top
reduced almost-terminating sequence stemming from one subterm of t.

Let us briefly recall the notion of context. A context is a term with several
occurrences of a fresh symbol �. If C[] contains k occurrences of symbol � at
positions p1, . . . , pk, we write C[t1, . . . , tk] to denote the term (C[t1]p1) · · · [tk]pk

.
In [19] it is proved that every monotone relation has the TRAT property. Since

the rewriting relation is monotone (i.e., t→R s implies C[t] →R C[s]), then it
has the TRAT property for every TRS R (cf. [13, Lemma 1]). In term rewriting
this ensures that, in every almost terminating, infinite term rewriting derivation,
a rewriting step is given at the root. Unfortunately, the narrowing relation is not
monotone: t �σ,R s does not entail C[t] �σ,R C[s] but C[t] �σ,R (Cσ)[s]
instead.

Example 2. [7] Consider the TRS consisting of the rule f(f(x)) → x, and the
non–linear term c(f(x), x). Then there does not exist an infinite narrowing
derivation for the subterms, f(x) and x, whereas c(f(x), x) is infinitely narrowed
without ever performing a narrowing step at the root:

c(f(x), x) �{x �→f(x′)} c(x′, f(x′)) �{x′ �→f(x′′)} c(f(x′′), x′′) . . .

As shown by the above example, in the presence of non linearity the non–
monotony of narrowing has undesirable effects for its termination, since narrexes

322 M. Alpuente, S. Escobar, and J. Iborra

can be brought into the context by the substitution computed at the preceding
narrowing step, thus causing other terms in the context to grow. This echoing
effect plays a fatal role in the (non–) termination of narrowing.

There are some classes of TRSs in which narrowing exhibits a monotone or
monotone–like behaviour and thus enjoys the TRAT property. [19] considers two
such classes: right–linear TRS (w.r.t. linear goals), and constructor systems. We
note that these two classes are a particular case of a larger characterization of
narrowing termination that we formalized in [4] by the QSRNC (Quasi stable
rigidly normalized condition), though in [4] we do not make the relation with
TRAT explicit.

The inspiration for this work comes from realizing that monotonicity is not
really a necessary condition for the termination of narrowing, provided the par-
tially computed substitutions do not echo, i.e., they do not bring narrexes into
the context that might either introduce a term that does not terminate or echo
again. Let us introduce the idea by means of one example.

Example 3. Consider the non–linear input call c(f(x), x) in the non–constructor
TRS consisting of rules f(g(x)) → x and g(x) → x. The only possible derivation
for this term is finite, whereas the TRS, together with the considered non–linear
input term, do not fit in any of the characterizations given for TRAT [18,19,20]
or any decidable criteria for the termination of narrowing [2,4,7,14]. Note that
the argument g(x) of the lhs of the first rule is a narrex.

Let us start with some lessons learnt from the termination of rewriting that
would be good to transfer to the termination of narrowing. In rewriting (and
narrowing), if a TRS is not terminating then there must be a minimal non-
terminating term. In rewriting such a minimal non-terminating term is rooted
by a defined symbol but this is not true for narrowing. As in [13], let us denote
the set of all minimal non-terminating terms w.r.t. rewriting (resp. narrowing)
by T ∞ (resp. T ∞

�). The following definition is crucial.

Definition 1 (Echoing terms). Let R be a TRS. We define the set of minimal
echoing terms w.r.t. R, denoted by T �, as follows: s ∈ T � if, given a fresh binary
symbol c and a variable x ∈ Var(s), then c(s, x) ∈ T ∞

� but s �∈ T ∞
� , and there is

no proper subterm s’ of s such that s′ ∈ T �.

Now, we provide our key result for the termination of narrowing. We write s � t
to denote that t is a subterm of s, and s � t if t is a proper subterm of s.

Lemma 1. Let R be a TRS. For every term t ∈ T ∞
� , we have that either

1. (top) there exists a rewrite rule l → r ∈ R, substitutions σ, ρ, a term t′,
and a non-variable subterm u of r such that t >ε

�∗
ρ,R t′ ε

�σ,l→r rσ � u and
u ∈ T ∞

� ;
2. (hybrid) there are terms t′, t′′, u, substitutions ρ, σ, a position p, and a

variable x such that t >ε
�∗

ρ,R t′
p
�σ,R t′′, x ∈ Var(t′|p), xσ � u, and u ∈ T ∞

� ;
3. (echoing) there are terms t′, t′′, u, substitutions ρ, σ, a position p, and a vari-

able x such that t >ε
�∗

ρ,R t′
p
�σ,R t′′, x∈Var (t′|p), xσ � u, and t′|p, u∈T �.

Termination of Narrowing Using Dependency Pairs 323

Informally, the lemma above distinguishes three different kinds of minimal
non–terminating terms. The top case is the usual one shared by rewriting and
narrowing non–termination; the other two cases are due to non–monotonicity
and thus unique to narrowing. In the pure echoing case, the narrowing of
an echoing subterm introduces into the context a new echoing subterm that
reproduces the process again, as in Example 2. In the hybrid echoing case,
the reduction of an echoing subterm introduces into the context a minimal non–
terminating narrex that spawns an infinite narrowing derivation, as in Example 4
below.

Example 4. Consider the following TRS:

f(g(x)) → a g(x) → g(x)

g(x) ∈ T ∞
� is a minimal non–terminating term for rewriting. f(x) �∈ T ∞

� , since
only the derivation f(x) �{x �→g(x′)} a can be proven. However, given a fresh
symbol c, there is a hybrid infinite narrowing derivation stemming from the
term c(f(x), x) ∈ T ∞

� . Therefore, f(x) ∈ T �.

4 Narrowing Dependency Pairs

In this section, we develop the notion of narrowing dependency pairs, and provide
a sound and complete criterion for the termination of narrowing that is based
on analyzing narrowing chains.

The intuitive idea behind our method is as follows. In order to construct the set
of dependency pairs, we not only relate the lhs of each rule with the root–defined
subterms occurring in the corresponding rhs, as in standard rewriting DP, but
also with its own root–defined subterms, i.e., those terms whose root symbol
is a defined function. The resulting set of dependency pairs faithfully captures
the behaviour of infinite narrowing derivations which incrementally compute
an infinite substitution, or more precisely, where the substitution computed by
narrowing contains an infinite term.

Suppose we split the substitution σ computed by a narrowing step t �l→r,σ s
into two pieces, σ ≡ σ|̀l,σ|̀t. The σ|̀l part of the substitution has the usual effect
of propagating narrexes from the left hand side to the right hand side of the
rule. On the other hand, the σ|̀t part is responsible for the echoing of narrexes
to the context that can fire a new narrowing step. These narrexes come from the
subterms of the left hand side of the rule, as in Example 2 above, or from the
term being narrowed itself, e.g. when c(z, h(g(x), z)) is narrowed to c(g(x), 0)
by using the rule h(y, y) → 0 and most general unifier {z �→ g(x), y �→ g(x)}.

Although the narrexes coming from proper subterms of the narrex selected
at the preceding step might cause non–termination, standard (rewriting) termi-
nation analyses already cope with them. However, narrexes coming from proper
subterms of the lhs of the rules are specific to narrowing, and thus we focus on
them in our notion of narrowing dependency pairs.

324 M. Alpuente, S. Escobar, and J. Iborra

(1) filter#(pckt(194.179.1.x:p, dst, new)) → filter#(pckt(secure, dst, new))
(2) filter#(pckt(194.179.1.x:p, dst, new)) → pckt#(secure, dst, new)
(3) filter#(pckt(158.42.x.y:p, dst, new)) → filter#(pckt(secure, dst, new))
(4) filter#(pckt(158.42.x.y:p, dst, new)) → pckt#(secure, dst, new)
(5) pckt#(10.1.1.1:p, ppp0, s) → pckt#(123.23.1.1:p, ppp0, s)
(6) pckt#(10.1.1.2:p, ppp0, s) → pckt#(123.23.1.1:p, ppp0, s)
(7) filter#(pckt(123.123.1.1:p, dst, new)) → pckt#(123.123.1.1:p, dst, new)
(8) pckt#(src, 123.123.1.1:p, new) → pckt#(src, 10.1.1.1:p, established)
(9) pckt#(src, 123.123.1.1:p, new) → pckt#(src, 10.1.1.2:p, established)
(10) filter#(pckt(src, dst, established)) → pckt#(src, dst, established)
(11) filter#(pckt(eth0, dst, new)) → pckt#(eth0, dst, new)
(12) filter#(pckt(194.179.1.x:p, dst, new)) → pckt#(194.179.1.x:p, dst, new)
(13) filter#(pckt(158.42.x.y:p, dst, new)) → pckt#(158.42.x.y:p, dst, new)
(14) filter#(pckt(secure, dst:80, new)) → pckt#(secure, dst:80, new)
(15) filter#(pckt(secure, dst:other, new)) → pckt#(secure, dst:other, new)
(16) filter#(pckt(ppp0, dst, new)) → pckt#(ppp0, dst, new)
(17) pckt#(src, 123.123.1.1;p, new) → natroute#(pckt(src, 10.1.1.1:p, established),

pckt(src, 10.1.1.2:p, established))

Fig. 2. Dependency pairs of FullPolicy

Notation Let R be a TRS defined over a signature Σ = D , C . Let Σ# denote
the extension of Σ with {f# | f ∈ D}, where f# is a fresh symbol with the same
arity as f . If t ∈ T (Σ,V) is of the form f(s1, . . . , sn) with f a defined symbol,
then t# denotes the term f#(s1, . . . , sn).

The following definition extends the traditional, vanilla DPs with a novel kind
of dependency pairs, which we call ll–dependency pairs.

Definition 2 (Narrowing Dependency Pair). Given a TRS R, we have two
types of narrowing dependency pairs:

– a lr–dependency pair (or standard2 DP) of R is a pair l# → t# where
l→ r ∈ R, r � t, and root(t) ∈ D.

– a ll–dependency pair (ll-DP) of R is a pair l# → u# where l→ r ∈ R, l �u,
and root(u) ∈ D.

The set of all (narrowing) dependency pairs of R is denoted by NDPR .

Example 5. The TRS f(f(x)) → x of Example 2 has no lr–dependency pairs and
the single ll–dependency pair f#(f(x)) → f#(x).

Example 6. For the TRS of Example 1 we obtain the narrowing dependency
pairs shown in Figure 2.

Recall that our purpose is to prove that there are no infinite narrowing deriva-
tions. Since dependency pairs model all function calls in R, this is equivalent to
proving that there are no infinite chains of narrowing dependency pairs.

For narrowing we consider suitable the following definition of chain. As in
[11,19], we assume that different occurrences of dependency pairs are variable
disjoint. In the following, P is usually a set of dependency pairs.
2 Modern formulations exclude pairs l# → u# when l � u. This refinement could be

applied to lr-DPs in our definition, but the pair would not be actually discarded,
since it is also computed as a ll-DP.

Termination of Narrowing Using Dependency Pairs 325

Definition 3 (Narrowing Chain). Let P ,R be two TRS’s. A (possibly infi-
nite) sequence of narrowing dependency pairs s1 → t1, s2 → t2, . . . , sn → tn ∈ P
is called a (P,R)-narrowing chain if there exist terms u1, u2, . . . , un and sub-
stitutions σ1, ρ1, σ2, ρ2, . . . , σn, ρn s.t. u1

ε
�σ1,s1→t1 t1σ1

>ε
�∗

ρ1,R u2
ε

�σ2,s2→t2

t2σ2
>ε
�∗

ρ2,R u3 · · ·un
ε

�σn,sn→tn
tnσn.

We often omit the (P ,R) prefix when referring to narrowing chains when it is
clear from the context. The following result establishes the soundness of analyz-
ing narrowing chains.

Lemma 2. Let R be a TRS. For every (NDPR ,R)–narrowing chain s1 → t1,
. . . , sn → tn, there exists a narrowing derivation in R which gives at least one
reduction step for every pair in the chain.

Namely, there are contexts C1[], . . . , Cn+1[], positions p1, . . . , pn+1, terms u1,
. . . , un, and substitutions τ1, . . . , τn, ρ1, . . . , ρn−1 s.t. τi = mgu(ui, si) for i ∈
{1, . . . , n}, and C1[u1]p1

p1
�τ1,R C2[t1τ1]p2

>p2
� ∗

ρ1,R C2ρ1[u2]p2

p2
�τ2,R C3[t2τ2]p3

>p3
� ∗

ρ2,R C3ρ2[u3]p3 · · ·Cnρn−1[un]pn

pn
�τn,R Cn+1[tnτn]pn+1 .

Now we are able to show that, whenever there are no infinite narrowing chains,
narrowing does terminate.

Theorem 1 (Termination Criterion). A TRS R is terminating for narrow-
ing if and only if no infinite (NDPR ,R)–narrowing chain exists.

Example 7. Consider the ll-DP d ≡ f#(f(x)) → f#(x) of Example 5. There is
a narrowing chain f#(x) �{x �→f(x′)},d f#(x′) �{x′ �→f(x′′)},d f#(x′′) · · · .

5 Automating the Method

In order to automate the task of proving the absence of narrowing chains, it
would be very convenient to reformulate the problem using only rewriting chains,
as it is done e.g. in [19,20,17], since this allows us to reuse existing tools and
techniques of the rewriting DP literature. We develop our method inspired by
[18] but we provide all results without requiring TRAT, which is the main novel
contribution of this section. Let us recall the notion of argument filtering.

Definition 4 (Argument Filtering). [6] An argument filtering (AF) for a
signature Σ is a mapping π that assigns to every n-ary function symbol f ∈ Σ
an argument position i ∈ {1, . . . , n}, or a (possibly empty) list [i1, . . . , im] of
argument positions with 1 ≤ ii < . . . < im ≤ n. The signature Σπ consists of all
function symbols f s.t. π(f) is some list [i1, . . . , im], where in Σπ the arity of f
is m. Every AF π induces a mapping from T (Σ,V) to T (Σπ,V):

π(t) =

{
t if t is a variable
π(ti) if t = f(t1, . . . , tn) and π(f) = i
f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im]

326 M. Alpuente, S. Escobar, and J. Iborra

We extend π to a TRS R as π(R) = {π(l) → π(r) | l → r ∈ R and π(l) �= π(r)}.
For any argument filtering π and ordering >, we define s ≥π t ⇐⇒ π(s) >
π(t) or π(s) ≡ π(t). We also define the filtering of a position p w.r.t. a term
t as follows. Given a n-ary symbol f ∈ Σ and i ∈ {1, . . . , n}, π(i, f) = j if
π(f) = [i1, . . . , ij , . . . , ik], ij = i. Given a term t and a position p ∈ Pos(t), the
filtering of p w.r.t. t is defined as follows:

π(p, t) =

⎧⎨⎩
ε if p = ε
π(q, t) if p = q.i, i ∈ N, π(root(t|q)) = i
π(q, t).π(i, root(t|q)) if p = q.i, i ∈ N, π(root(t|q)) = [i1, .., i, .., ik]

Example 8. Consider the TRS of Example 1 and the argument filtering π(pckt)
= [1, 3] and π(f) = [1, . . . , ar(f)] for any other f ∈ Σ. Let us consider the term
t = filter(pckt(secure, dst, new)), its filtered version is π(t) =
filter(pckt(secure, new)) and the filtering of position 1.3 is π(1.3, π(t)) = 1.2
where π(1.2, π(t)) is undefined.

Definition 5. Given a TRS R and an AF π, we say that π is a sound AF for
R iff π(R) is a TRS, i.e., the rhs’s of the rules do not contain extra variables
not appearing in the corresponding lhs.

Our main result in this section is Theorem 2 below that relates infinite narrow-
ing (P ,R)–chains to infinite rewriting (π(P), π(R))–chains. In order to prove
this result, we first need two auxiliary lemmata. The first one establishes a cor-
respondence between rewriting derivations in R and derivations in the filtered
TRS π(R).

Lemma 3. Given a TRS R, a sound AF π, and terms s and t, s→∗
R t implies

π(s) →∗
π(R) π(t). Moreover, the derivation in π(R) uses the same rules in the

same order at the corresponding filtered positions (whenever the filtered position
exists).

The next lemma extends the correspondence established in Lemma 3 to narrow-
ing, which can be done only when the original filtered term is ground. The key
point is that the correspondence holds regardless of the substitution computed
by narrowing. It is in fact a (one-way) lifting lemma from narrowing derivations
in R to rewriting sequences in π(R).

Lemma 4. Given a TRS R and a sound AF π, let s and t be terms s.t. π(s)
is ground. Then s �∗

σ,R t implies π(s) →∗
π(R) π(t). Moreover, the derivation in

π(R) uses the same rules in the same order at the corresponding filtered positions
(whenever the filtered position exists).

Let us recall here the standard definition of chain for rewriting.

Definition 6 (Chain). [6,11] Let P ,R be two TRS’s. A (posibly infinite) se-
quence of pairs s1 → t1, s2 → t2, . . . from P is a (P ,R)–chain if there exists a
substitution σ with tiσ →R si+1 for all i.

Termination of Narrowing Using Dependency Pairs 327

The following result allows us to prove the absence of narrowing chains by an-
alyzing standard rewriting chains. This is very useful because it means that we
can reuse all the DP infrastructure available for rewriting.

Theorem 2. Let R be a TRS over a signature Σ, P be a TRS over a signature
Σ#, and π a sound AF over Σ# s.t. π(t) is ground for at least one pair s→ t ∈ P
in every (P,R)–narrowing chain. If there exists no infinite (π(P), π(R))–chain,
then there exists no infinite (P,R)–narrowing chain.

The following straightforward consequence of Theorems 1 and 2 characterizes
termination of narrowing as a rewriting problem.

Corollary 1. Let R be a TRS over a signature Σ, and π a sound AF over Σ#

s.t. π(t) is ground for at least one pair s → t ∈ NDPR in every (NDPR ,R)–
narrowing chain. If there exists no infinite (π(NDPR), π(R))–chain, then nar-
rowing terminates in R.

5.1 Extending the DP Framework to Narrowing

By means of Theorem 2, it is possible now to recast the problem of termination
of narrowing in the DP framework of [9]. In this framework a DP problem is
a tuple (P ,R) of two TRSs, R and P , where initially P = NDPR . If there is
no associated infinite narrowing chain, we say that the problem is finite. Termi-
nation methods are then formulated as DP processors that take a DP problem
and return a new set of DP problems. A DP processor is sound if the input
problem is finite whenever all the output problems are. We speak of narrowing
DP problems to distinguish them from the standard ones.

In the usual style [20,17], we show here how to adapt a few of the most
important DP processors, and then give one that transforms a narrowing DP
problem into a rewriting one, which allows us to use any of the existing DP
processors for termination of rewriting.

The following definition adapts the standard notion of dependency graph
to our setting by simply considering narrowing dependency pairs instead of
vanilla DPs.

Definition 7 (Dependency Graph). Given a (narrowing) DP problem
〈P ,R〉 its (resp. narrowing) dependency graph is the directed graph where the
nodes are the elements of P, and there is an edge from s→ t ∈ P to u→ v ∈ P
if s→ t, u→ v is a (resp. narrowing) chain from P.

The theorem below establishes that the narrowing dependency graph of a nar-
rowing DP problem is equal to the dependency graph of the rewriting DP prob-
lem defined by the same TRS and DP set.

Theorem 3. Given a narrowing DP problem 〈P ,R〉, its narrowing dependency
graph is the same as the dependency graph of the rewriting DP problem defined
by 〈P ,R〉.

328 M. Alpuente, S. Escobar, and J. Iborra

��������14

���
��

��
��

������������

����������������� ��������15

�� ���
��

��
��

������������ ��������16

����
��
��
�

�� ���
��

��
��

��������17

������������

����
��
��
�

��

��������10	
 ����	
 �����������5 �������6

�������1
��

�� 		
�� ������ ������ �� ���� ������ ������ ������ ��

��

	

			
 ����	
 ����	
 �� ��	
 ����

�������7 �������8 �������9 �������3

����
������ ������ ������ ������ ������ ������

��	
�� ��	
�� ��	
�� ��	
�� ��	

��

�������2

���������

����������

����������������� �������4

�� ���������

���������� ��������11

���������

�� ��������� ��������12

������������

���������

��

��������13

�����������������

������������

���������

Fig. 3. Estimated dependency graph of FullPolicy

1 3
��

 �� ��

Fig. 4. Filtered FullPolicy

1

2����������
3

���
��

��
��

�

����

Fig. 5. Dependency Graph

It is well known that computing the exact dependency graph is undecidable and
thus several approximations [11] are used to compute an estimated dependency
graph which includes the exact graph. The following approximation is commonly
used.

Definition 8 (Estimated Dependency Graph). [9] Let 〈P ,R〉 be a DP
problem. Let CAPR(t) be the result of replacing 3 all the proper subterms of
t with a defined root symbol by a fresh variable, and REN(t) the linearization of
t (replacing all ocurrences of a non linear variable with independent fresh vari-
ables). The nodes of the estimated dependency graph (EDG) are the pairs of P
and there is an edge from s# → t# to u# → v# iff REN(CAPR(t)) and u are
unifiable.

Example 9. For the problem of Example 1 and the set of DPs obtained in Ex-
ample 6, the EDG is shown in Figure 5.1.

For finite TRSs, infinite chains show up as cycles in the dependency graph4. We
can analyze separately every chain, that is, every cycle in the dependency graph.
This is accomplished by the following DP processor.

Theorem 4 (Dependency Graph Processor). [9] For a DP problem 〈P ,R〉,
let Proc be the processor that returns problems {〈P1,R〉, . . . , 〈Pn,R〉}, where
P1, . . . ,Pn are the sets of nodes of every cycle in the estimated dependency graph.
Proc is sound.

Example 10. In the graph obtained in the EDG of Example 9, the only cycle
consists of (1) and (3). Thus the dependency graph processor deletes all the
other dependency pairs, and returns the problems { ({(1),(3)}, R), ({(1)}, R),
({(3)}, R)} corresponding to the graph shown in Figure 4.

3 This function was first defined for approximating loops in dependency graphs in [5],

where it is called
◦
t.

4 The converse does not hold, not every cycle corresponds to an infinite chain.

Termination of Narrowing Using Dependency Pairs 329

The next processor we adapt is the standard reduction pair processor. The fol-
lowing is the standard notion of reduction pair.

Definition 9 (Reduction Pair). A reduction pair (-, .) consists of a quasi-
rewrite ordering - and an ordering . with the following properties: (i) . is
closed under substitutions and well founded, and (ii) (. ◦ -) ⊆ ..

For a narrowing DP problem 〈P ,R〉, this processor tries to find a reduction pair
(-, .) and a suitable filtering π s.t. all the filtered R-rules are weakly decreasing
w.r.t. -, and all filtered P pairs are weakly or strictly decreasing. For any TRS
P and relation ., let P� = {s→ t | s . t}.

Theorem 5 (Reduction Pair processor). Let (P,R) be a narrowing DP
problem s.t. P is a cycle5, (-, .) be a reduction pair, and π be an argument
filtering s.t. π(t) is ground for at least one pair s→ t ∈ π(P). Then Procπ(P ,R)
returns {(P \ P�π ,R)} if P�π ∪ P�π = P, P�π is not empty, and R�π = R;
{(P ,R)} otherwise.

Note that it is not enough to consider all the pairs in a strongly connected com-
ponent (SCC) at once, as it is commonly done in rewriting, and that we consider
cycles instead. The reason is that the condition of Theorem 2, groundness of one
DP rhs per chain (cycle), would not be ensured when working with SCCs instead.

Example 11. Consider a TRS R with the Dependency Graph of Figure 5. Our
dependency graph processor decomposes this problem into three subproblems
corresponding to the cycles {1}, {3} and {1,2,3}. A SCC problem would consider
only the last of these three. Suppose we did indeed use SCCs. The reduction pair
processor defined above can synthetize a filtering π2 s.t. the rhs of (2) is ground
and an ordering s.t. (3) can be oriented strictly; upon doing so it will remove (3)
of the DP problem, thus leaving only {1,2}. This eliminates two cycles at once,
{3} and {1,2,3}. But this is unsound, since we cannot eliminate the cycle in {3}
unless we find an argument filtering π3 s.t. the rhs of (3) is ground and there is
a suitable ordering.

We claim that it is straightforward to adapt most of the standard DP processors
in order to deal with the grounding AF requirement, and due to lack of space we
will present only one more processor, which can be used to transform a narrowing
DP problem into an ordinary one. Afterwards, any existing DP processor for
rewriting becomes applicable.

Theorem 6 (Argument Filtering Processor). Let (P, R) be a narrowing
DP problem s.t. P is a cycle, and π be an argument filtering s.t. π(t) is ground
for at least one pair s → t ∈ π(P). Then, Procπ(P ,R) = {(Pπ, π(R)}, where
Pπ is defined as Pπ = {π(l) → π(r) | l → r ∈ P , l � r}. P rocπ is a sound
narrowing DP processor.
5 Note that this requirement is easily fulfilled by running the dependency graph proces-

sor first.

330 M. Alpuente, S. Escobar, and J. Iborra

Finally, we include the subterm refinement in the AF processor as it can be the
case that the rhs of a DP becomes a subterm of the lhs after the filtering.

Example 12. The set of narrowing DP problems resulting of Example 10 can be
solved by using the AF processor to transform them into rewriting problems.

– ({(1)}, R) For this problem soundness requires that π(pckt) = [1, 3]. Using
the identity for all other symbols, we get the following (rewriting) DP prob-
lem that is finite, as one can easily check with a modern termination tool
implementing the DP method such as Aprove [10], or Mu-Term [1]:
({filter#(pckt(194.179.1.x:p, new))→ filter#(pckt(secure, new)},R)

– ({(3)}, R) In this case, we proceed in a similar way, and the same AF π
allows us to transform the current subproblem into a finite (rewriting) DP
problem.

– ({(1),(3)}, R) Finally, by using the same AF π, we get a finite DP problem.

This finally proves that the FullPolicy TRS is terminating for narrowing.

6 Conclusion

We have introduced a new technique for termination proofs of narrowing via ter-
mination of rewriting that is based on a suitable generalization of dependency
pairs. Although several refinements of the notion of dependency pairs such as
[11,13] had been proposed previously for termination analysis of TRSs, this is
the first time that the notion of dependency pair has been extended to deal
with narrowing on arbitrary TRSs and queries. This is possible because we first
identified the problem of echoing, which is ultimately responsible for narrowing
non–termination. Our contribution is threefold: 1) we ascertained the suitable
notions that allow us to detect when the terms in a narrowing derivation actu-
ally do echo; 2) our approach leads to much weaker conditions for verifying the
termination of narrowing that subsume all previously known termination of nar-
rowing criteria; 3) the resulting method can be effectively mechanized. We have
implemented our technique in a tool that is publicly available6. and satisfactorily
evaluated this tool on large example sets.

References

1. Alarcón, B., Gutiérrez, R., Iborra, J., Lucas, S.: Proving termination of context-
sensitive rewriting with Mu–Term. ENTCS 188, 105–115 (2007)

2. Alpuente, M., Escobar, S., Iborra, J.: Modular Termination of Basic Narrowing.
In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 1–16. Springer, Heidelberg
(2008)

3. Alpuente, M., Escobar, S., Iborra, J.: Dependency Pairs for the Termination of
Narrowing. Technical Report DSIC-II/08/08, DSIC-UPV (2008)

6 http://www.dsic.upv.es/users/elp/soft/narradar

http://www.dsic.upv.es/users/elp/soft/narradar

Termination of Narrowing Using Dependency Pairs 331

4. Alpuente, M., Escobar, S., Iborra, J.: Termination of Narrowing revisited. Theor.
Comput. Sci. (to appear, 2008)

5. Alpuente, M., Falaschi, M., Vidal, G.: Compositional Analysis for Equational Horn
Programs. In: Rodŕıguez-Artalejo, M., Levi, G. (eds.) ALP 1994. LNCS, vol. 850,
pp. 77–94. Springer, Heidelberg (1994)

6. Arts, T., Giesl, J.: Termination of Term Rewriting using Dependency Pairs. Theor.
Comput. Sci. 236(1-2), 133–178 (2000)

7. Christian, J.: Some termination criteria for narrowing and e-narrowing. In: Kapur,
D. (ed.) CADE 1992. LNCS, vol. 607, pp. 582–588. Springer, Heidelberg (1992)

8. Escobar, S., Meadows, C., Meseguer, J.: A Rewriting-Based Inference System for
the NRL Protocol Analyzer and its Meta-Logical Properties. Theor. Comput.
Sci. 367(1-2), 162–202 (2006)

9. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
Combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) LPAR 2005. LNCS, vol. 3452, pp. 301–331. Springer, Heidelberg (2005)

10. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination
proofs with AProVe. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp.
210–220. Springer, Heidelberg (2004)

11. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving
Dependency Pairs. J. Autom. Reasoning 37(3), 155–203 (2006)

12. Hanus, M.: The Integration of Functions into Logic Programming: From Theory
to Practice. J. Log. Program. 19-20, 583–628 (1994)

13. Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom, V.
(ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)

14. Hullot, J.-M.: Canonical Forms and Unification. In: Bibel, W. (ed.) CADE 1980.
LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)

15. Kirchner, C., Kirchner, H., Santana de Oliveira, A.: Analysis of Rewrite-Based Ac-
cess Control Policies. In: 3rd Int’l Workshop on Security and Rewriting Techniques,
SecreT 2008. ENTCS (to appear, 2008)

16. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its
application to verification of cryptographic protocols. Higher-Order and Symbolic
Computation 20(1-2), 123–160 (2007)

17. Nguyen, M.T., Schneider-Kamp, P., de Schreye, D., Giesl, J.: Termination Analysis
of Logic Programs based on Dependency Graphs. In: King, A. (ed.) LOPSTR 2007.
LNCS, vol. 4915, pp. 8–22. Springer, Heidelberg (2008)

18. Nishida, N., Miura, K.: Dependency graph method for proving termination of nar-
rowing. In: 8th Int’l Workshop on Termination, WST 2006 (2006)

19. Nishida, N., Sakai, M., Sakabe, T.: Narrowing-based simulation of term rewriting
systems with extra variables. ENTCS 86(3) (2003)

20. Nishida, N., Vidal, G.: Termination of Narrowing via Termination of Rewriting
(2008), http://www.dsic.upv.es/∼gvidal

21. TeReSe (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge
(2003)

http://www.dsic.upv.es/~gvidal

Dynamic Analysis of Bounds Versus Domain
Propagation

Christian Schulte1 and Peter J. Stuckey2

1 ICT, KTH - Royal Institute of Technology, Sweden
cschulte@kth.se

2 National ICT Australia, Victoria Laboratory,
Department of Computer Science and Software Engineering,

University of Melbourne, Australia
pjs@cs.mu.oz.au

Abstract. Constraint propagation solvers interleave propagation (re-
moving impossible values from variable domains) with search. Previously,
Schulte and Stuckey introduced the use of static analysis to determine
where in a constraint program domain propagators can be replaced by
more efficient bounds propagators and still ensure that the same search
space is traversed.

This paper introduces a dynamic yet considerably simpler approach to
uncover the same information. The information is obtained by a linear
time traversal of an analysis graph that straightforwardly reflects the
properties of propagators implementing constraints. Experiments con-
firm that the simple dynamic method is efficient and that it can be used
interleaved with search, taking advantage of the simplification of the
constraint graph that arises from search.

1 Introduction

In building a finite domain constraint programming solution to a combinatorial
problem a tradeoff arises in the choice of propagation that is used for each con-
straint: stronger propagation methods are more expensive to execute but may
detect failure earlier; weaker propagation methods are (generally) cheaper to ex-
ecute but may (exponentially) increase the search space explored to find an an-
swer. In this paper we investigate the possibility of dynamically analysing finite
domain constraint problems and determining whether the propagation meth-
ods used for some constraints could be replaced by simpler, and more efficient
alternatives without increasing the size of the search space.

Example 1. Consider the following constraints where x1, . . . , x4 range over inte-
ger values −3 to 3 (the constraint graph is shown in Fig. 1):

x1 = |x2|, x2 �= x3, 2x3 + 3x4 = 3, x4 ≥ x1

Each constraint could be implemented using domain propagation or bounds
propagation. If each constraint uses domain propagation we have stronger in-
formation, and the search space explored in order to find all solutions for the

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 332–346, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Dynamic Analysis of Bounds Versus Domain Propagation 333

������� x1
x1=|x2| ������� x2

x2 �=x3 ������� x3
2x3+3x4=3������� x4

x4≥x1

Fig. 1. Binary constraint graph for x1 = |x2|, x2 = x3, 2x3 + 3x4 = 3, x4 ≥ x1

problem will be no larger than if we used bounds propagation. The question we
ask is: can we get the same search space with bounds propagation?

Domain propagation on x4 ≥ x1 is equivalent to bounds propagation since
the constraint only places upper and lower bounds on its variables. This is not
the case for the remaining constraints: If x2 = 2 and x3 ∈ [−3 .. 3] then do-
main propagation on x2 �= x3 determines that x3 ∈ {−3,−2,−1, 0, 1, 3} whereas
bounds propagation infers nothing. Similarly if x1 ∈ {0, 2, 3} and x2 ∈ [−3 .. 3]
then domain propagation on x1 = |x2| determines that x2 ∈ {−3,−2, 0, 2, 3}
but bounds propagation infers nothing. From the initial set of values domain
propagation determines that x3 ∈ {−3, 0, 3} and x4 ∈ {−1, 1, 3} while bounds
propagation determines that x3 ∈ [−3 .. 3] and x4 ∈ [−1 .. 3].

Suppose that we use a labelling strategy that either assigns a variable to its
lower bound, or constrains it to be greater than its lower bound. Then none of
the constraints added during search creates holes in the domains and depends
only on the variable bounds. This is in contrast to a strategy that assigns a
variable to its middle domain value, or excludes its middle domain value.

Domain propagation and bounds propagation differs if changing the bounds
of some variable (by search) causes change in the bounds of some variable by
domain propagation which is not found by bounds propagation.

Suppose search sets x3 = 0, then bounds and domain propagation of 2x3 +
3x4 = 3 sets x4 = 1. Bounds (and domain, as it is identical) propagation of
x4 ≥ x1 forces x1 ∈ [−3 .. 0]. Bounds and domain propagation on x1 = |x2|
forces x2 ∈ [−1 .. 1]. Bounds propagation on x2 �= x3 makes no changes, resulting
in a fixpoint for bounds propagation. Domain propagation on x2 �= x3 makes
x2 ∈ {−1, 1}. Domain propagation on x1 = |x2| then forces x1 = 1. The resulting
bounds for x1 have changed, hence future search is affected.

But we do not need to use domain propagation for all constraints. Domain
propagation on x2 �= x3 and x1 = |x2| is vital, as the above discussion shows.
Domain propagation on 2x2 + 3x3 = 3 is not required. As discussed above, the
bounds of x2 and x3 after domain or bounds propagation are identical, and
indeed we can prove this is always the case. Neither of the other constraints on
x2 and x3 can propagate information from holes in their domains, hence the
resulting propagation will be the same. �

Previously [1] we introduced a static analysis of a finite domain CLP program
that was able to determine when to replace domain propagators by bounds
propagators without increasing search space. This paper provides a dynamic
linear time analysis of the propagation graph that determines whether domain

334 C. Schulte and P.J. Stuckey

propagators can be replaced by bounds propagators without increasing search
space. The approach simplifies and generalizes the previous approach.

Example 2. Consider the constraints

x1 = |x2|, x2 �= x3, 2x3 + 3x4 = x5, x4 ≥ x1, x5 �= x4 − 1, x5 ≥ x2

where x1, . . . , x5 range over integers from −3 to 3. Analysis using the method
of [1] or this paper determines that no domain propagator can be replaced by
a bounds propagator. But if search sets x5 = 3 the constraints of Example 1
are obtained, since x5 is replaced by 3 in 2x3 + 3x4 = x5, and the redundant
constraints x5 �= x4 − 1 and x5 ≥ x2 are removed. A dynamic analysis can now
detect that bounds propagation can be used for 2x3 + 3x4 = 3. �

The contributions of this paper are:

– A linear time analysis of the propagation graph that determines whether
bounds propagators can be replaced by domain propagators without increas-
ing search space.

– The analysis is dynamic, that is it can be run at any stage during the search.
Since propagators become simpler as search proceeds this provides more
scope for optimization than a static analysis before search begins.

– We show examples where our analysis detects search space equivalent re-
placements for both static and dynamic uses and show the possible perfor-
mance benefits that arise.

2 Propagation-Based Constraint Solving

This section defines our terminology for the basic components of a constraint
propagation engine. In this paper we restrict ourselves to finite domain integer
constraint solving. Almost all the discussion applies to other forms of finite
domain constraint solving such as for sets and multisets.

Domains. A domain D is a complete mapping from a fixed (finite) set of variables
V to finite sets of integers. A false domain D is a domain with D(x) = ∅ for
some x ∈ V . A variable x ∈ V is fixed by a domain D, if |D(x)| = 1. The
intersection of domains D1 and D2, denoted D1 �D2, is defined by the domain
D(x) = D1(x)∩D2(x) for all x ∈ V . By −{x} we denote the variable set V−{x}.

A domain D1 is stronger than a domain D2, written D1 / D2, if D1(x) ⊆
D2(x) for all x ∈ V . A domain D1 is stronger than (equal to) a domain D2 w.r.t.
variables V , denoted D1 /V D2 (resp. D1 =V D2), if D1(x) ⊆ D2(x) (resp.
D1(x) = D2(x)) for all x ∈ V .

A range is a contiguous set of integers, we use range notation [l .. u] to denote
the range {d ∈ Z | l ≤ d ≤ u} when l and u are integers. A domain is a range
domain if D(x) is a range for all x. Let D′ = range(D) be the smallest range
domain containing D, that is, the unique domain D′(x) = [inf D(x) .. supD(x)]
for all x ∈ V . A domain D is bounds equivalent to a domain D′, written D

B= D′

iff range(D) = range(D′).

Dynamic Analysis of Bounds Versus Domain Propagation 335

Valuations and Constraints. An integer valuation θ is a mapping of variables to
integer values, written {x1 �→ d1, . . . , xn �→ dn}. We extend the valuation θ to
map expressions and constraints involving the variables in the natural way.

Let vars be the function that returns the set of variables appearing in a valu-
ation. We define a valuation θ to be an element of a domain D, written θ ∈ D,
if θ(xi) ∈ D(xi) for all xi ∈ vars(θ).

The infimum and supremum of an expression e with respect to a domain D
are defined as infD e = inf {θ(e)|θ ∈ D} and supD e = sup {θ(e)|θ ∈ D}.

A constraint c over variables x1, . . . , xn is a set of valuations θ such that
vars(θ) = {x1, . . . , xn}. We also define vars(c) = {x1, . . . , xn}.

Propagators. We will implement a constraint c by a set of propagators prop(c)
that map domains to domains. A propagator f is a monotonically decreasing
function from domains to domains: f(D) / D, and f(D1) / f(D2) whenever
D1 / D2. For the purposes of this paper we also assume that propagators are
idempotent, that is f(f(D)) = f(D) for all domains D. This assumption is just
required for defining the edges in the analysis graph correctly, it is not important
for the actual execution.

A propagator f is correct for a constraint c iff {θ | θ ∈ D} ∩ c = {θ | θ ∈
f(D)} ∩ c for all domains D. This restriction is very weak, for example the
identity propagator is correct for all constraints.

The variables vars(f) of a propagator f are {x ∈ V | ∃D. f(D)(x) �= D(x)} ∪
{x ∈ V | ∃D1, D2. D1 =−{x} D2, f(D1) �=−{x} f(D2)}. The set includes the
variables that can change as a result of applying f , and the variables that can
modify the result of f .

Example 3. For the constraint c ≡ x1 ≤ x2 + 1 the function f1 defined by
f1(D)(x1) = {d ∈ D(x1) | d ≤ supD x2 + 1} and f(D)(v) = D(v), v �= x1 is a
correct propagator for c. Its variables are x1 whose domain can be modified by f1
(the first case of the definition above) and x2 which can cause the modification
of the domain of x1 (the second case of the definition above). So vars(f1) =
{x1, x2}. Let D1(x1) = {1, 5, 8} and D1(x2) = {1, 5}, then f(D1) = D2 where
D2(x1) = D2(x2) = {1, 5}. The propagator is idempotent. �

A propagation solver solv(F,D) for a set of propagators F and an initial domain
D finds the greatest mutual fixpoint of all the propagators f ∈ F . In other
words, solv(F,D) returns a new domain defined by

solv(F,D) = gfp(λd. iter(F, d))(D) iter(F,D) = �
f∈F

f(D)

where gfp denotes the greatest fixpoint w.r.t / lifted to functions.

Domain and Bounds Propagators. A consistency notion C gives a condition
on domains with respect to constraints. A set of propagators F maintains C-
consistency for a constraint c, if for a domainD where f(D) = D, f ∈ F is always
C consistent for c. Many propagators in practice are designed to maintain some
form of consistency: usually domain or bounds.

336 C. Schulte and P.J. Stuckey

The most prominent consistency technique is arc consistency [2], which en-
sures that for each binary constraint, every value in the domain of the first vari-
able has a supporting value in the domain of the second variable that satisfies
the constraint. Arc consistency can be naturally extended to domain consistency
for constraints with more than two variables. A domain D is domain consistent
for a constraint c if D is the least domain containing all solutions θ ∈ D of c.
That is, there does not exist D′ 	 D such that θ ∈ D ∧ θ ∈ c→ θ ∈ D′.

Define the domain propagator dom(c), for a constraint c as

dom(c)(D)(x) = {θ(x) | θ ∈ D ∧ θ ∈ c} where x ∈ vars(c)
dom(c)(D)(x) = D(x) otherwise

Bounds consistency relaxes the consistency requirement to apply only to the
lower and upper bounds of each variable x. There are a number of different
notions of bounds consistency [3], we give the two most common here.

A domain D is bounds(Z) consistent for a constraint c if for each xi ∈
{x1, . . . , xn} = vars(c), 1 ≤ i ≤ n and for each di ∈ {infD xi, supD xi} there
exist integers dj with infD xj ≤ dj ≤ supD xj , 1 ≤ j ≤ n, j �= i such that
θ = {x1 �→ d1, . . . , xn �→ dn} is an integer solution of c.

A domain D is bounds(R) consistent for a constraint c if for each xi ∈
{x1, . . . , xn} = vars(c), 1 ≤ i ≤ n and for each di ∈ {infD xi, supD xi} there
exist real numbers dj with infD xj ≤ dj ≤ supD xj , 1 ≤ j ≤ n, j �= i such that
θ = {x1 �→ d1, . . . , xn �→ dn} is a real solution of c.

A propagator f is a bounds propagator if it only relies on bounds and creates
new bounds

∀D. f(D) = range(f(range(D))) �D
Wecandefineboundspropagatorsforthetwoconsistencynotionsabove.Abounds(Z)
propagator, zbnd(c) for a constraint c ensures that zbnd(c)(D) is bounds(Z) consis-
tent with c, while a bounds(R) propagator, rbnd(c) ensures bounds(R)
consistency.

3 An Abstraction of Propagation

The aim of this paper is to find where we can replace a propagator f by a bounds
propagator fB without changing the search space, under the assumption that

∀D. f(range(D))) B= fB(D)

That is, applied to range domains the propagators give the same bounds. Note
that if f = dom(c) and fB = zbnd(c) then this property holds. We will not
attempt to replace domain propagators by bounds(R) propagators since the
property does not hold.

Example 4. Consider the constraint c ≡ x = 3y + 5z, and the range domain
D(x) = [2 .. 7], D(y) = [0 .. 2] and D(z) = [−1 .. 2], then dom(c)(D)(x) =
{3, 5, 6} while rbnd(c)(D)(x) = [2 .. 7]. The bounds are different. �

Dynamic Analysis of Bounds Versus Domain Propagation 337

In order to detect that we can replace domain propagators by bounds propa-
gators, we build an analysis graph that shows how each propagator reacts to
holes and creates holes in the domain of its variables. The analysis graph is in
some sense an abstraction of the constraint (hyper)graph where an edge is an
abstract propagator. Analysis of the graph corresponds to executing the abstract
propagators to fixpoint, hence is an abstract propagation process.

The nodes of an analysis graph G are labelled by variables v ∈ V , as well
as the special nodes source ⊕ and sink 0. The analysis graph G for a set of
propagators F contains directed edges for each propagator f as follows:

– An edge x
f→ y between two variables x and y labelled by a propagator f

indicates that f can propagate holes in the domain of x to the domain of y.

There is an edge x
f→ y in G, iff there exist domains D,D′ and variables

S ⊆ V with D′ =V −S D, D B= D′, D′(x) �= D(x), and x ∈ S such that
f(D′)(y) �= f(D)(y) ∩D′(y). That is, D′ differs from D only because of the
removal of internal values for variables S including x.

– An edge x
f→ 0 between variable x and the sink indicates that by propagat-

ing f , holes in the domain of x can cause bounds changes on other variables.

There is an edge x
f→ 0 in G, iff there exist domains D,D′ and variables

S ⊆ V with D′ =V −S D, D B= D′, D′(x) �= D(x), and x ∈ S such that
f(D′) �B= f(D).

– An edge ⊕ f→ x between the source and variable x indicates that the prop-
agator f can create holes in the domain of x from a range domain.

There is an edge ⊕ f→ x in G, iff there exists a range domain D (that is,
D = range(D)) such that f(D)(x) �= range(f(D))(x). That is, applying f to
a range domain D can create a hole in the domain of x.

As an example, let us consider the edges in the analysis graph for some com-
mon domain propagators (a full list is given in Table 1):

dom(x = y + k) (x, y ∈ V , k ∈ Z): {x f→ y, y
f→ x}. Holes are propagated, but

neither created nor converted to bounds.
dom(x �= y) (x, y ∈ V): {⊕ f→ x,⊕ f→ y}. Holes are not propagated, but

created.
dom(x = k × y) (x, y ∈ V , k ∈ Z): {x f→ y, y

f→ x,⊕ f→ x}. Holes are propagated
and holes for x are created (as only multiples of k are kept for x).

dom(x = |y|) (x, y ∈ V): {x f→ y, y
f→ x,⊕ f→ y, y

f→ 0}. Holes are transmitted,
holes for y are created (by bounds of x), and holes in y can change bounds
(for x).

dom(
∑n

i=1 xi ≤ k) (xi ∈ V , k ∈ Z): {}. No holes are created or
transmitted.

dom(
∑n

i=1 xi = k) (xi ∈ V , k ∈ Z): {xi
f→ xj | 1 ≤ i �= j ≤ n}. Holes are

transmitted between each pair of variables.

338 C. Schulte and P.J. Stuckey

⊕

f,g

��
g,h

��	
		

		
		

		
	

h

��������������������

������� x1

f

�� ������� x2

f
��

f

��

������� x3

h

�� ������� x4

h
��

�

Fig. 2. Analysis graph for x1 = |x2|, x2 = x3, 2x3 + 3x4 = 3, x4 ≥ x1

dom(b⇔ x = y) (b, x, y ∈ V , b Boolean): {x f→ y, y
f→ x,⊕ f→ x,⊕ f→ y, x

f→
0, y f→ 0}. Unsurprisingly the union of x = y and x �= y, except that holes
in x and y can create bounds changes in b. For example, D(x) = {1, 3, 5}
and D(y) = {2, 4, 6} yields b = 0.

dom(alldifferent(x1, . . . , xn)) (xi ∈ V): {xi
f→ xj | 1 ≤ i �= j ≤ n} ∪ {⊕ f→

xi, xi
f→ 0 | 1 ≤ i ≤ n}. The propagator can do everything. But we should be

careful, we do have a bounds(Z) propagator that will give the same bounds,
if no other propagator causes holes in the domains.

dom(x = min(y, z)) (x, y, z ∈ Z): {x f→ y, y
f→ x, x

f→ z, z
f→ x, y

f→ 0, z f→ 0}.
There is no direct transmission from y to z, and no changes of ranges from
holes. Notice that for D(x) = {1, 3, 4}, D(y) = {1, 3, 5}, D(z) = {2, 4, 6}
the constraint includes the solutions (1, 1, 2), (3, 3, 4), (4, 5, 4), (3, 3, 6). But
changing D(z) to {2, 6} changes the upper bound of x.

Example 5. The analysis graph for the problem of Example 1 is shown in Fig-
ure 2, where f = dom(x1 = |x2|), g = dom(x2 �= x3), h = dom(2x3 + 3x4 = 3)
and dom(x4 ≥ x1) does not generate any edges. The reasoning in Example 1 is

now explicitly viewable. The path from ⊕ g→ x2
f→ 0 shows that holes created

by g can cause bounds to change through f as illustrated in Example 1.
While h can create new holes (edges from ⊕ to x3 and x4), these holes can

never change the bounds of a variable (reach 0). Hence h can be replaced by a
bounds(Z) propagator, without changing propagation. �

In order to replace propagators we have to take into account the constraints that
will be added by search. Edges are added corresponding to the behaviour of the
search procedure. If search relies (f refers to the labelling):

– on bounds information to make decisions and only adds bounds constraints,
no edges are added (e.g. standard labelling(x1, . . . , xn));

– on all domain information to make decisions but only add bounds con-
straints, {xi

f→ 0 | 1 ≤ i ≤ n} are added (e.g. labellingff(x1, . . . , xn)
for first-fail labelling);

– on all domain information and may add constraints that add holes to do-
mains, {⊕ f→ xi, xi

f→ 0 | 1 ≤ i ≤ n} are added (e.g. middle out labelling
labellingmid(x1, . . . , xn)).

Dynamic Analysis of Bounds Versus Domain Propagation 339

Table 1. The table lists analysis graph edges for primitive constraints and some la-
bellings, where N

f→ M with N ⊆ {⊕} ∪ V and M ⊆ {�} ∪ V denotes the set

{n f→ m | n ∈ N, m ∈ M, n = m} − {⊕ f→ �}. The last column shows whether a
bounds(Z) propagator for the constraint is commonly available.

Constraint G zbnd
�n

i=1 aixi ≤ d ∅ ✔

x0 = d ∅ ✔

a1x1 + a2x2 = d, |ai| = 1 {x1
f→ x2, x2

f→ x1} ✔

a1x1 + a2x2 = d {x1
f→ x2, x2

f→ x1,⊕
f→ x1,⊕

f→ x2} ✔
�n

i=1 aixi = d, n > 2, {⊕, x1, . . . , xn}
f→ {x1, . . . , xn,�}

�n
i=1 aixi = d, n > 2, |ai| = 1 {x1, . . . , xn} f→ {x1, . . . , xn} ✔

�n
i=1 aixi = d {⊕} f→ {x1, . . . , xn} ✔

x0 ⇔
�n

i=1 aixi ≤ d ∅ ✔

x0 ⇔
�n

i=1 aixi = d {⊕, x1, . . . , xn} f→ {x1, . . . , xn,�}
x1 = ¬x2 ∅ ✔

x1 = (x2∧x3) ∅ ✔

x1 = x2 × x3 {⊕, x1, x2, x3}
f→ {x1, x2, x3,�}

x1 = x2 × x2 ∧ x2 ≥ 0 {x1
f→ x2, x2

f→ x1,⊕ f→ x1} ✔

x1 = x2 × x2 {x1
f→ x2, x2

f→ x1,⊕
f→ x1, x2

f→ �} ✔

x1 = |x2| {x1
f→ x2, x2

f→ x1,⊕
f→ x2, x2

f→ �} ✔

x0 = min(x1, . . . , xn) {x0}
f→ {x1, . . . , xn,�} ∪ {x1, . . . , xn}

f→ {x0} ✔

alldifferent(x1, . . . , xn) {⊕, x1, . . . , xn}
f→ {x1, . . . , xn,�} ✔

default(x1, . . . , xn) {⊕, x1, . . . , xn}
f→ {x1, . . . , xn,�}

labelling(x1, . . . , xn) ∅
labellingff(x1, . . . , xn) {x1, . . . , xn}

f→ {�}
labellingmid(x1, . . . , xn) {⊕} f→ {x1, . . . , xn} ∪ {x1, . . . , xn} f→ {�}

4 Main Result

A path from ⊕ to 0 is evidence of where bounds information can create holes in
domains, and where holes then can change bounds. We must keep track of the
holes in the domains in order to have accurate bounds information.

Theorem 1. Let G be the analysis graph for a set of propagators F . Let B ⊆ F
be the set of propagators such that G contains no paths from ⊕ to 0 labelled with
two or more propagators. Then F ′ = {fB | f ∈ B} ∪ {f | f ∈ F − B} is such
that solv(F,D0)

B= solv(F ′, D0) for all range domains D0.

340 C. Schulte and P.J. Stuckey

Proof. The proof is by induction. Let f1, f2, . . . , fn be the sequence of propa-
gators applied in calculating solv(F,D0). Let

D1 = f1(D0), D2 = f2(D1), . . . , Dn = fn(Dn−1) = solv(F,D0)

We let gi be the corresponding propagator to fi in F ′, that is gi = fi if fi ∈ F−B
and gi = fB

i if fi ∈ B. Define

D′
0 = D0, D

′
1 = g1(D′

0), D
′
2 = g2(D′

1), . . . , D
′
n = gn(D′

n−1)

be the analogous sequence of propagators in F ′. Note that since ∀D′′. fi(D′′) /
gi(D′′) we have that Di / D′

i. We show that Di
B= D′

i for 0 ≤ i ≤ n.
We show by induction: for each 0 ≤ i ≤ n that Di

B= D′
i, and for each v ∈ V

where Di(v) is not a range then there is a path from ⊕ to v in the analysis graph.
Clearly the induction hypothesis holds for D0 = D′

0. Assume the hypothesis
holds for 0 ≤ i < K.

Suppose to the contrary that DK �B= D′
K . If DK−1 =vars(fK) range(DK−1)

then DK = fK(DK−1) = fK(range(DK−1))
B= gK(DK−1)

B= gk(D′
K−1) = D′

K .
Contradiction. Hence there exists v ∈ vars(fK) such that DK−1(v) is not a range.
By the induction hypothesis, there is a path from ⊕ to v. And by definition
v

fK→ 0 is in the analysis graph G. The witnesses for D′, D, S and x in the
definition of v

fK→ 0 are D′ = DK−1, D = D′
K−1, S = vars(fK) and x = v. Hence

all propagators modifying the interior of the domain of v are either fK or are not
in B. In the first case, since fK is idempotent fk(DK−1) = fK(range(DK−1) as
no other propagators have changed the interior of the domains of vars(fK). Thus
DK = fK(DK−1) = fK(range(DK−1))

B= gK(D′
K−1) = D′

K . Contradiction. In
the second case since all propagators acting on the interior of domains of vars(fK)
are in F−B we have that DK−1 =vars(fK) D

′
K−1, and fK = gK hence DK

B= D′
K .

Contradiction. As a result we have that DK
B= D′

K .
Suppose that DK(v) is not a range, and DK(v) �= DK−1(v)

If DK−1 =vars(fK) range(DK−1) then we have an edge ⊕ fK→ v in the analy-

sis graph G. The witnesses D and x in the definition of ⊕ fK→ v are D =
range(DK−1) and x = v, since D = range(D) and fK(D)(v) = fK(DK−1)(v) �=
range(fK(D))(v).

Otherwise DK−1 �=vars(fK) range(DK−1), and so there exists u ∈ vars(fK)

where DK−1(u) is not a range. Then we have an edge u
fK→ v in the analysis

graph G. The witnesses are D′ = DK−1 and D = range(DK−1), S = vars(fK),
x = u and y = v. By the induction hypothesis there is a path from ⊕ to u in
the analysis graph, and hence also to v.

As a result of the proof by induction we have that Dn
B= D′

n. Then since
Dn is a fixpoint for all fi, and since gi where they differ from fi only depend
on bounds, we have that Dn is a fixpoint for all gi. Now solv(F ′, D0) is the
greatest fixpoint of F ′ less than D0 and since Dn is such a fixpoint we have that
Dn / solv(F ′, D0) / D′

n and hence solv(F,D0) = Dn
B= solv(F ′, D0). �

Dynamic Analysis of Bounds Versus Domain Propagation 341

Note that the proof can be applied for non-range domains D, by adding artificial
propagators f that remove the internal values of range(D) to give D. In effect

we add edges ⊕ f→ v for each v where D(v) �= range(D)(v).
Importantly the theorem is based on propagators rather than constraints,

hence we might have bounds propagators in the original set of propagators F
we are trying to improve.

Example 6. Consider propagators for the SEND+MORE=MONEY problem:
f = dom(alldifferent(S,E,N,D,M,O,R, Y)), a large linear bounds prop-
agator rbnd(SEND + MORE = MONEY), dom(S > 0), and dom(M > 0).

The only edges are {x f→ y | x, y ∈ {S,E,N,D,M,O,R, Y }, x �= y} ∪ {⊕ f→
x, x

f→ 0 | x ∈ {S,E,N,D,M,O,R, Y }}. All propagators can be replaced by
bounds propagators. If the long linear constraint used domain propagation the
propagator for the alldifferent constraint could not be improved. �

5 Finding Which Propagators to Replace

In order to use Theorem 1 we need to determine which propagators appear on
paths from ⊕ to 0, involving at least two propagators. Rather than track (a
possibly exponential number of) paths explicitly, we mark each variable x by
the propagators on paths from ⊕ to x, and by the propagators on paths from x
to 0. We can check each edge for a propagator f to see whether it causes f to
be on a path from ⊕ to 0, involving at least two propagators.

The algorithm is shown in Figure 3. Assuming that munion(m1,m2) is simply
defined as m1∪m2, the propagators on a path from ⊕ to n are stored in source[n],
while sink[n] holds the propagators on a path from n to 0. The forward marking
starts from all variables adjacent to ⊕ and marks them, and then follows any
edges. It checks if the variable has been marked previously with the current set
and if so immediately returns. The backward marking works analogously. Finally
the new propagator set F ′ is constructed by checking each edge for propagator
f , and if f takes part in a path from ⊕ to 0 involving at least two propagators,
adding the original version f to F ′, otherwise adding the bounds version fB.

Theorem 2. Let G be the analysis graph for F . Let B be the set of propagators
f ∈ F such that G contains no paths from ⊕ to 0 labelled with two or more
propagators. Then analyse(F) = {fB | f ∈ B} ∪ {f | f ∈ F − B} and the
complexity of analyse(F) is O(G).

Proof. (Sketch) Under the assumption that munion(m1,m2) is simply defined as
m1 ∪ m2 it is easy to see that variables source[n] and sink[n] contain the set
of propagators appearing in paths from ⊕ to n and n to 0 respectively. The
domain-test |source[n1] ∪ {f} ∪ sink[n2]| > 1 correctly determines if f appears
on a path from ⊕ to 0 involving at least two propagators.

Now consider the actual definition of munion(m1,m2). This is in effect an ab-
straction of the original algorithm where all sets of cardinality greater than 1 are

342 C. Schulte and P.J. Stuckey

munion(m1,m2)
if (|m1 ∪m2| > 1) return F else return m1 ∪m2

forward(x,m)
if (m ⊆ source[x]) return
source[x] ← munion(source[x],m)
for (x

g→ y ∈ G)
forward(y,munion(source[x],{g}))

backward(x,m)
if (m ⊆ sink[x]) return
sink[x] ← munion(sink[x],m)
for (y

g→ x ∈ G)
backward(y,munion(sink[x],{g}))

domain(f ,G)

return ∃n1
f→ n2 ∈ G. |munion(source[n1], munion({f}, sink[n2]))| > 1

analyse(F)
let G be the analysis graph for F
for (n ∈ V ∪ {⊕,�})

source[n] ← sink[n] ← ∅
for (⊕ f→ x ∈ G)

forward(x,{f})
for (x

f→ � ∈ G)
backward(x,{f})

return {f | f ∈ F ∧ domain(f, G)} ∪ {fB | f ∈ F ∧ ¬domain(f, G)}

Fig. 3. Propagation analysis of the set of propagators F

replaced by F . This does not change the result of the domain-test. For the test to
fail, source[n1] and sink[n2] are either {f} or ∅, and these results are maintained
by the actual definition of munion(m1,m2). For the test to pass |source[n1]∪{f}∪
sink[n2]| > 1 and hence also |munion(source[n1],munion({f}, sink[n2]))| > 1.
Hence the algorithm is correct.

The complexity result follows since forward can only update source[n] at most
twice, after which source[n] = F and all further calls immediately return. Hence
the complexity of all calls to forward is O(G). The same reasoning applies to
backward and hence to analyse. �

The astute reader will have noticed that, while analyse is linear in the size of the
analysis graph, the analysis graph may be quadratically larger in size than the
constraint graph, since some propagators add edges {xi

f→ xj | 1 ≤ i �= j ≤ n}.
This is fixed by replacing {xi

f→ xj | 1 ≤ i �= j ≤ n} by {xi
f→ z, z

f→ xi | 1 ≤
i ≤ n} where z is a new variable. The resulting analysis graph is linear in the
size of the constraint graph and gives the same results as the original graph.

Dynamic Analysis of Bounds Versus Domain Propagation 343

Implementation. The algorithm in Figure 3 has been implemented in Gecode,
but the decisions made in the implementation should readily carry over to other
constraint programming systems.

While treatment of variables is generic in the analysis algorithm, the way
how propagators are analysed depends on the particular propagator. Propaga-
tors are implemented as objects in Gecode. Propagators provide methods for
propagation, creation, deletion, and so on. For analysis, we add an analyse
method that can be implemented for each individual propagator: execution of
the method adds the edges for the propagator to the analysis graph.

The values of source[x] and sink[x] are directly stored in the variable x. Rather
than storing a set of propagators F for source[x] and sink[x], it is sufficient to
use a pointer to a propagator f (if F = {f}) and two special marks 〈0〉 (|F | = 0)
and 〈2〉 (|F | ≥ 2). Then munion(m1,m2) returns m as follows: if m1 = m2 then
m = m1; if m1 = 〈2〉 or m2 = 〈2〉 then m = 〈2〉; if m1 = 〈0〉 then m = m2; if
m2 = 〈0〉 then m = m1.

6 Experimental Evaluation

All experiments use Gecode, a C++-based constraint programming library [4].
Gecode is one of the fastest constraint programming systems currently avail-
able, benchmarks comparing Gecode to other systems can be found on Gecode’s
webpage. The version used here corresponds to Gecode 2.1.1. Gecode has been
compiled with the Microsoft Visual Studio Express Edition 2008 (32 bit).

All examples have been run on a Mac Pro with two 2.8 GHz Quad Core
Xeon 5400 CPUs and 8192 MB main memory running 64 bit Windows Vista.
Runtimes are the average of 25 runs with a coefficient of deviation less than 3%.

Static Analysis. Table 2 shows the runtime (time, in milliseconds), which per-
centage of the runtime is spent on the analysis in the optimized case, and the
number of nodes during search (as to be expected, the same for both). Examples
with a – as entry have been stopped after a runtime of one hour. The examples

Table 2. Static analysis

original optimized both
Example time time analysis nodes
is-20 127.800 0.054 (−100.0%) 15.1% 13
is-40 – 0.162 (−100.0%) 17.5% 28
vc-20 87.680 0.029 (−100.0%) 27.8% 4
vc-40 – 0.076 (−100.0%) 36.9% 6
photo-eq 890.400 429.240 (−51.8%) 0.0% 5 472
photo-lq 714.480 78.800 (−89.0%) 0.0% 10 350
money 0.020 0.017 (−18.0%) 5.6% 4
donald 21.722 21.220 (−2.3%) 0.0% 5 788
magic-5 1 324.880 1 103.920 (−16.7%) 0.0% 89 016

344 C. Schulte and P.J. Stuckey

are chosen to provide for a direct comparison with the results reported in [1],
there also more information on the benchmarks can be found.

The examples is-n (independent sets) and vc-n (vertex cover) for random
graphs with n nodes are modeled in the natural way using Boolean variables.
The constraints are all inequalities except the objective function which is de-
fined using a large linear equation with unit coefficients (optimized by analysis).
photo-* are simple placement problems and use reified constraints for expressing
satisfaction of preferences with a Boolean variable. The total satisfaction then is
computed by a large linear equation ranging over these Boolean variables. While
photo-eq uses reified linear equations, photo-lq uses reified linear inequalities to
express preferences. Analysis shows for photo-eq that bounds propagation can
be used on the large linear equation. For photo-lq, bounds propagation can also
be used for the single occurring alldifferent constraint. The well-known ex-
amples money (see Example 6), donald (DONALD+GERALD = ROBERT),
and magic square magic-5 use bounds propagation for linear equations with
more than three variables. Analysis shows that bounds propagation can be used
for the single alldifferent constraint in each example.

The analysis is run before evaluating solv for the first time (such that infeasible
domain propagators could be optimized away). The benefit of the analysis clearly
outweighs its cost (for already medium sized examples the cost is zero). This is
true for the expensive (exponential) and often infeasible domain propagators for
long linear equations (for example, is-n and vc-n) but also for feasible domain
propagators such as alldifferent.

Dynamic Analysis and Analysis Cost. In the following we evaluate a variation of
the analysis in order to assess its cost and benefit. We assume that the feasibility
of domain propagation is classified as follows. For a constraint c (or for a propa-
gator f implementing c) a predicate feasible(c) holds, iff domain propagation is
sufficiently efficient for c. For example, one could define feasible(

∑n
i=1 aixi = d)

to hold iff n ≤ 3, and feasible(alldifferent(x1, . . . , xn)) to always hold.
Initially, all constraints are propagated by bounds propagators. Propagators

might become feasible during search(e.g., some xi in
∑n

i=1 aixi = d become
fixed). A bounds propagator will be replaced by a domain propagator, if it is
feasible and the analysis shows that domain propagation might be beneficial.
Hence, we construct the analysis graphG as follows: if the propagator is a domain
propagator, the edges are entered as before. If the propagator is a feasible bounds
propagator for the constraint c, the edges for dom(c) are entered. After running
the analysis phase, domain propagators are replaced by bounds propagators if
possible as before. If domain(f,G) holds for a feasible bounds propagator f , it
is replaced by a corresponding domain propagator.

By this, only bounds propagators that are feasible and can potentially im-
prove propagation are replaced by domain propagators. Just using feasibility
alone would, in all benchmark examples discussed above, immediately replace
the bounds propagator for alldifferent by a useless domain propagator. Note
that as search proceeds, a bounds propagator for a constraint can be replaced by

Dynamic Analysis of Bounds Versus Domain Propagation 345

Table 3. Dynamic analysis and analysis cost

n = 1 n = 5 n = 10 n = 25
Example nodes time nodes time nodes time nodes time

(a) analysis with optimization
alpha −80.7% −40.7% −72.8% −43.0% −68.4% −9.9% −32.6% −4.5%
money-c ±0.0% +45.6% ±0.0% +11.0% ±0.0% +5.9% ±0.0% +3.5%
donald-c −7.5% +117.7% −6.5% +37.9% −2.8% +25.0% −0.9% +12.6%
magic-4 −15.2% +485.3% −6.5% +314.0% −3.4% +209.1% −1.7% +120.5%

(b) only analysis
alpha ±0.0% +91.8% ±0.0% +20.8% ±0.0% +10.7% ±0.0% +5.1%
money-c ±0.0% +43.0% ±0.0% +10.6% ±0.0% +6.0% ±0.0% +2.5%
donald-c ±0.0% +99.8% ±0.0% +22.7% ±0.0% +12.7% ±0.0% +4.7%
magic-4 ±0.0% +94.7% ±0.0% +20.8% ±0.0% +10.9% ±0.0% +5.3%

a domain propagator when becoming feasible, and later be replaced by a bounds
propagator when the analysis finds that bounds propagation is sufficient.

Table 3 shows the runtime and the number of nodes during search relative
to execution of the examples without running any analysis and using bounds
propagators. The analysis is run every n-th time before solv is computed by
the solver, where for (a) bounds and domain propagators are replaced, while for
(b) the analysis results are ignored (measuring analysis cost). It is important
that the analysis is run before solv is evaluated as the replacement of bounds
by domain propagators might require re-evaluation of solv. The examples all use
an alldifferent constraint and some linear equations (money-c and donald-c
use several linear equations for a model using carries in the letter equation).

Clearly, running the analysis before every evaluation of solv is infeasible, how-
ever running it every 10 times reduces the overhead to around 10%: that means
the analysis is efficient enough to be actually run dynamically. It may be that
an incremental version of the analysis could reduce this overhead substantially.
In cases where replacing bounds by domain propagators is useful as the search
space shrinks, the additional cost of domain propagation might still be too high.
There is at least some evidence (alpha) that dynamic analysis can be beneficial,
and we have just scratched the surface of possibilities for automatic selection of
propagation style.

7 Conclusion and Related Work

The original work on analysing when domain propagation could be replaced by
bounds propagation [1] works in a completely different way. Propagators are
classified as bounds-preserving: meaning that on range domains they always give
range domains; and endpoint-relevant : meaning that the bounds resulting from
applying the propagator only depend on the bounds it is applied to. Bounds
preserving propagators are propagators with no edges ⊕ f→ x, while endpoint-
relevant propagators are propagators with no edges x

f→ 0. Two analyses are

346 C. Schulte and P.J. Stuckey

undertaken to find (Boolean) bounds preservation and endpoint relevant de-
scriptions for the context of each constraint. Each constraint is then given the
appropriate propagator by examining its context. The algorithms used in the
approach are O(nm) where n is the size of the constraint graph and m is the
number of constraints. The analysis is substantially more complicated to imple-
ment than the approach in this paper, and indeed has never been implemented.

The approach of this paper is

– considerably simpler, easier to prove, and implemented;
– O(n) where n is the size of the constraint graph; and
– more expressive, although this does not lead to more replacement of do-

main propagators by bounds propagators. An example is the description for
dom(x1 = |x2|) which in the new approach tracks the behaviour of x1 and
x2 more accurately than is possible in the old approach.

As future work we will consider proving and implementing a stronger version
of Theorem 1 where we let B be the set of all propagators where there is no path
from ⊕ to 0 where adjacent edges have to be from different propagators.

Example 7. Consider the propagators f = dom(x1 = x2), g = dom(x2 = |x3|),
and h = dom(x3 = x4), which generate the analysis graph x1

f→ x2, x2
f→ x1,

⊕ g→ x2, x2
g→ x3, x3

g→ x2, x3
g→ 0, x3

h→ x4, x4
h→ x3. The analysis detects

that nothing can be a bounds propagator. But indeed all could be replaced
because any holes generated by g are only fed back to itself, and hence cannot
change bounds. There are no alternating paths from ⊕ to 0. �

Acknowledgements. Part of the work has been carried out while the first author
has been a visiting researcher at the NICTA Victoria research laboratory, Mel-
bourne, Australia. The authors thank Mikael Z. Lagerkvist, Guido Tack, and
the anonymous reviewers for helpful comments.

References

1. Schulte, C., Stuckey, P.J.: When do bounds and domain propagation lead to the
same search space? ACM Trans. Program. Lang. Syst. 27(3), 388–425 (2005)

2. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8(1),
99–118 (1977)

3. Choi, C.W., Harvey, W., Lee, J.H.M., Stuckey, P.J.: Finite domain bounds consis-
tency revisited. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS, vol. 4304, pp.
49–58. Springer, Heidelberg (2006)

4. Gecode Team: Gecode: Generic constraint development environment (2006),
http://www.gecode.org

http://www.gecode.org

Lparse Programs Revisited: Semantics and
Representation of Aggregates

Guohua Liu and Jia-Huai You

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada
{guohua,you}@cs.ualberta.ca

Abstract. Lparse programs are logic programs with weight constraints as im-
plemented in the SMODELS system, which constitute an important class of logic
programs with constraint atoms. To effectively apply lparse programs to problem
solving, a clear understanding of its semantics and representation power is in-
dispensable. In this paper, we study the semantics of lparse programs, called the
lparse semantics. We show that for a large class of programs, called strongly sat-
isfiable programs, the lparse semantics agrees with the semantics based on con-
ditional satisfaction. However, when the two semantics disagree, a stable model
admitted by the lparse semantics may be circularly justified. We then present a
transformation, by which an lparse program can be transformed to a strongly
satisfiable one, so that no circular models may be generated under the current
implementation of SMODELS. This leads to an investigation of a methodological
issue, namely the possibility of compact representation of aggregate programs by
lparse programs. We present some experimental results to compare this approach
with the ones where aggregates are more explicitly handled.

1 Introduction

Lparse programs are logic programs with weight constraints implemented in the SMOD-
ELS system [15], which have been considered one of the most important recent exten-
sions to answer set programming (ASP). Since weight constraints can be nonmonotone,
lparse programs constitute a class of logic programs with constraints beyond monotone
constraints.

In a related development, ASP has been extended to support abstract constraint
atoms, called c-atoms for short, for representation and reasoning with constraints on
sets of atoms [11,12]. Many constraints studied in the past, such as weight constraints,
aggregates, and what are called global constraints in the Constraint Satisfaction Problem
(CSP) [1,19] can be represented by c-atoms. In this sense, logic programs with c-atoms
subsume lparse programs and logic programs with aggregates and global constraints.
One focus in the study of logic programs with c-atoms is on the semantics, with a num-
ber of proposals for programs with various kinds of c-atoms, such as [10] for monotone
c-atoms, [5,7,14,17] for aggregates, and [9,12,16] for arbitrary constraint atoms. All
of these semantics agree on programs with monotone c-atoms. When nonmonotone c-
atoms are present, they may admit different sets of stable models. The relationships
between these semantics have been investigated in [16].

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 347–361, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

348 G. Liu and J.-H. You

Despite of being one of the most popular systems, the semantics of lparse programs
has not been fully studied. In [11], it is shown that lparse programs can be transformed
to logic programs with monotone weight constraints while preserving the lparse seman-
tics. Based on this result, in [10] weight constraints are translated to pseudo-boolean
constraints. We do not know of any study that addresses the lparse semantics itself.
For instance, since lparse programs are logic programs with constraint atoms, question
arises as how the lparse semantics is related to the semantics for logic programs with
constraint atoms. If differences exist, what are the nature of the differences and their po-
tential implications in applications. These questions are important since SMODELS has
been used for benchmarks and serious applications involving cardinality and weight
constraints (e.g. [8,20]), and will likely be adopted in further endeavors in applying the
ASP technology to real world applications.

In this paper, we study the semantics of lparse programs by investigating the relation-
ship between it and the semantics proposed for logic programs with c-atoms. It turns out
that the lparse semantics differs from all the other semantics. However, we show that
for a large class of lparse programs, called strongly satisfiable programs, the lparse se-
mantics agrees with the semantics based on conditional satisfaction [16]. For example,
lparse programs where weight constraints are upper bound free are all strongly satisfi-
able. This result is useful in that we are now sure that the known properties of the latter
semantics also hold for these programs. One important property is that any answer set
is a well-supported model [16], ensuring that any conclusion must be supported by a
non-circular justification in the sense of Fages [6].

Our study further reveals that for lparse programs where the two semantics disagree,
lparse-stable models may be circularly justified, based on a formal notion of circular
justification. We then show that there exists a transformation from lparse programs to
strongly satisfiable programs, which provides a way to run lparse programs under the
current implementation of SMODELS without generating circular models.

The SMODELS system has been used to run logic programs with aggregates (or
called aggregate programs). A methodological question of interest is whether the stan-
dard aggregates can be effectively encoded by weight constraints1, and if so, what are
the advantages. It turns out that most aggregates proposed for ASP can be encoded
by weight constraints in linear size. Most of these encodings are straightforward and
already widely used in SMODELS’ applications (e.g., [8]), with the exception of the
MAX/MIN constraints, which are more involved. In this sense, SMODELS can be seen
as a system for aggregate programs already.

To evaluate this approach to representing and computing with aggregates, we have
conducted a preliminary round of experiments. We compare SMODELS with SMOD-
ELSA and DLVA on logic programs with standard aggregates. Our experiments show
that lparse programs often run faster, sometimes substantially faster, than the two ag-
gregate systems for the benchmarks tested. This suggests that representing aggregates
by weight constraints is a promising alternative to the explicit handling of aggregates
in logic programs. Besides efficiency, another advantage is at the system level: an ag-
gregate language can be built on top of SMODELS by a simple front end to essentially

1 In this paper, by effective or compact encoding of a constraint by weight constraints, we mean
the collective size of the encoded weight constraints is linear in the size of constraint’s domain.

Lparse Programs Revisited: Semantics and Representation of Aggregates 349

transform standard aggregates to weight constraints in linear time. This is in contrast
with the state of the art in handling aggregates in ASP, which typically requires a more
explicit implementation.

The next section gives some preliminary definitions. Section 3 shows that the lparse
semantics is closely related to the semantics based on conditional satisfaction. The
differences between these two semantics are studied in Section 4, whereas Section 5
presents a transformation which closes the gap between the two semantics. In section 6,
encodings of standard aggregates by weight constraints are presented, which provide
necessary information for the experiments that are reported in Section 7. Section 8 con-
cludes the paper and proposes issues that require further investigation.

2 Preliminaries

Throughout the paper, we assume a fixed propositional language with a countable set
of propositional atoms.

2.1 Lparse Semantics

A weight constraint is of the form

l [a1=wa1 , ..., an=wan ,not b1=wb1 , ...,not bm=wbm]u (1)

where each ai, bj is an atom, and each atom and not-atom (negated atom) is associated
with a weight. Atoms and not-atoms are also called literals (the latter may be empha-
sized as negative literals). The literal set of a weight constraint W , denoted lit(W), is
the set of literals occurring in W . The numbers l and u are the lower and upper bounds,
respectively. The weights and bounds are real numbers (only integers are supported by
smodels). Either of the bounds may be omitted in which case the missing lower bound
is taken to be −∞ and the missing upper bound by ∞.

A set of atoms M satisfies a weight constraint W of the form (1), denoted M |= W ,
if (and only if) l ≤ w(W,M) ≤ u, where

w(W,M) =
∑

ai∈M

wai +
∑

bi �∈M

wbi (2)

M satisfies a set of weight constraints Π if M |= W for every W ∈ Π .
A weight constraint W is monotone if for any two sets R and S, if R |= W and

R ⊆ S, then S |= W ; otherwise, W is nonmonotone. There are some special classes of
nonmonotone weight constraints. W is antimonotone if for any R and S, S |= W and
R ⊆ S imply R |= W ; W is convex if for any R and S such that R ⊆ S, if S |= W
and R |= W , then for any I such that R ⊆ I ⊆ S, we have I |= W .

An lparse program is a finite set of rules of the form

W0 ←W1, ...,Wn (3)

where each Wi is a weight constraint.
We will use At(P) to denote the set of the atoms appearing in a program P .
If every weight constraint is of the form 1 [l = 1] 1 where l is a literal, then an lparse

program is essentially a normal program. The weight constraint 1 [l = 1] 1 will be
simply written as l.

350 G. Liu and J.-H. You

As pointed out in [15], negative weights and negative literals are closely related in
that they can replace each other and that one is inessential when the other is available.

Negative weights can be eliminated by applying the following transformation: For a
weight constraint W of the form (1), if wai < 0, then replace ai = wai with not ai =
|wai | and increase the lower bound to l + |wai | and the upper bound to u + |wai |; if
wbi < 0, then replace not bi = wbi with bi = |wbi | and increase the lower bound to
l + |wbi | and the upper bound to u+ |wbi |.

For instance, the weight constraint

−1 [a1 = −1, a2 = 2,not b1 = 1,not b2 = −2] 1

can be transformed to

2 [not a1 = 1, a2 = 2,not b1 = 1, b2 = 2] 4

From now on, we assume that weights are non-negative if not said otherwise.
The stable models of lparse programs are defined using the reduct of weight con-

straints, which is defined as follows: The reduct of a weight constraint W of the form
(1) w.r.t. a set of atoms M , denoted by WM , is the constraint

l′ [a1 = wa1 , ..., an = wan] (4)

where l′ = l −
∑

bi �∈M wbi .
Let P be an lparse program and M a set of atoms. The reduct PM of P , w.r.t. M , is

defined by

PM = {p←WM
1 , . . . ,WM

n |W0 ← W1, . . .Wn ∈ P,

p ∈ lit(W0) ∩M and w(Wi,M) ≤ u for all i ≥ 1} (5)

Definition 1. [15] Let P be an lparse program and M ⊆ At(P). M is an lparse-stable
model of P iff the following two conditions hold:

1. M |= P ,
2. M is the least model of PM .

Note that PM is an lparse program where all constraints are monotone and the head of
each rule is an atom. Thus its least model can be computed by a fixpoint construction.

2.2 Semantics of Logic Programs with Constraint Atoms

An abstract constraint atom (or c-atom) is of the form (D,C), whereD is a set of atoms
called the domain of the c-atom, and C a collection of the subsets from 2D, consisting
of the admissible solutions to the constraint. Given a c-atom A = (D,C), We use Ad

and Ac to refer to D and C, respectively.
A logic program with c-atoms is a collection of rules of the form: C0 ← C1, ..., Ck,

where each Ci is a c-atom.
For a rule r of the above form, the head of r, denoted by hd(r) is C0, and the body,

denoted by bd(r) is the set {C1, ..., Ck}.
A set of atoms M satisfies a c-atom A, written M |= A, if M ∩ Ad ∈ Ac. M is a

model of a program P if for every rule r ∈ P , either M |= hd(r) or M �|= bd(r). If

Lparse Programs Revisited: Semantics and Representation of Aggregates 351

a c-atom is not satisfied by any set of atoms (such as c-atoms of the form (D, ∅)) and
appears in the head of a rule, we may write a special symbol ⊥ instead. A c-atom A is
said to be elementary if it is of the form ({a}, {{a}}), which is just written as a. A rule
is said to be basic if its head is either elementary or ⊥. A program is basic if every rule
in it is basic.

Abstract constraint atoms are introduced to represent constraints on sets. In practi-
cal constraint systems however, constraints are concrete and language supported, such
as weight constraints, aggregates, and global constraints. The satisfaction of such a
concrete constraint is pre-defined in the given language. We can associate a concrete
constraint C in a given language with a c-atom C′ such that C′

d is the same as the do-
main of C, and for any set of atoms M , M |= C if and only if M |= C′. In this case,
we call C′ a c-atom representation of C.

For instance, for a weight constraint W of the form (1), a c-atom representation of
W is a c-atom A whose domain Ad is the set of atoms appearing in W and Ac consists
of those S ⊆ Ad such that S |= W . Under this setting, lparse programs constitute a
class of logic program with c-atoms, where c-atoms are just weight constraints.

The definition of answer sets in [16] is based on the abstract form of constraint atoms.
It is notationally important to lift this definition to cover all constraint atoms, be they in
the abstract form or in a language supported form.

In the sequel, a c-atom refers to a constraint atom, either in the abstract form or in a
language supported form. We use dom(C) to denote the domain of a c-atom, particu-
larly, if A is a weight constraint, dom(C) = {a | a ∈ lit(A) or not a ∈ lit(A)}.

Answer sets for logic programs with c-atoms are defined in two steps. In the first,
answer sets for basic programs are defined, based on conditional satisfaction.

Definition 2. LetM and S be sets of atoms andW be a c-atom. The set S conditionally
satisfies W w.r.t. M , denoted by S |=M W , if S |= W and for every I such that
S ∩ dom(W) ⊆ I ⊆M , we have I |= W .

Given sets R and S, and a basic program P , the operator TP (R,S) is defined as:

TP (R,S) = {a : ∃r ∈ P, hd(r) = a �= ⊥, R |=S bd(r)}.

TP is monotone w.r.t. its first argument, given that the second argument is fixed.

Definition 3. Let M be a model of a basic program P . M is an answer set for P iff
M = T∞

P (∅,M), where T 0
P (∅,M) = ∅ and T i+1

P (∅,M) = TP (T i
P (∅,M),M), for all

i ≥ 0.

In the second step, a logic program with c-atoms is represented by its instances in the
form of basic programs, and the answer sets of the former are defined in terms of the
ones of the latter.

Let P be a program with c-atoms and r ∈ P . By an abuse of notation, assume
hd(r) is a c-atom representation of the constraint in the head of rule r. Then, for each
π ∈ hd(r)c, the instance of r w.r.t. π is the set of rules consisting of

1. b← bd(r), for each b ∈ π, and
2. ⊥ ← d, bd(r), for each d ∈ hd(r)d\π.

352 G. Liu and J.-H. You

An instance of P is a basic program obtained by replacing each rule of P with one of
its instances.

Definition 4. [16] Let P be a logic program with c-atoms and M ⊆ At(P). M is an
answer set for P iff M is an answer set for one of its instances.

From now on, answer sets of logic programs with c-atoms or c-atom representation of
weight constraints refer to Definition 4 if not said otherwise.

3 Coincidence between Semantics

We show that, for a large class of lparse programs, the lparse semantics coincides with
that of [16].

Notation: Given a weight constraint W of the form (1) and a set of atoms M , we
define Ma(W) = {ai ∈ M | ai ∈ lit(W)} and Mb(W) = {bi ∈ M | not bi ∈
lit(W)}. Since W is always clear by context, we will simply write Ma and Mb.

Let M be a set of atoms and W a weight constraint of the form (1). W is said to be
strongly satisfiable by M if M |= W implies that for any V ⊆Mb, w(W,M \V) ≤ u.
W is strongly satisfiable if for any set of atoms M , W is strongly satisfiable by M . An
lparse program is strongly satisfiable if every weight constraint that appears in the body
of a rule in it is strongly satisfiable.

Strongly satisfiable lparse programs constitute an interesting class of programs. In
particular, weight constraints W that possess one of the following syntactically check-
able conditions are strongly satisfiable.

– lit(W) contains only atoms;
–
∑n

1 wai +
∑m

1 wbi ≤ u.

For example, the following constraints are all strongly satisfiable: 1 [a = 1, b = 2] 2,
1 [a = 1,not b = 2] 3, and 1 [a = 1,not b = 2]. But 1 [a = 1,not b = 2] 2 is not,
since it is satisfied by {a, b} but not by {a}.

Strongly satisfiable constraints are not necessarily convex or monotone.

Example 1. Let A = 2[a = 1, b = 1,not c = 1] be a weight constraint. Since A is
upper bound free, it is strongly satisfiable. But A is neither monotone nor convex, since
{a} |= A, {a, c} �|= A, and {a, b, c} |= A. �

Theorem 1. Let P be an lparse program and M ⊆ At(P). Suppose for any weight
constraint W appearing in the body of a rule in P , W is strongly satisfiable by M .
Then, M is an lparse-stable model of P iff M is an answer set for P .

The theorem can be proved as follows. Let M and S be two sets of atoms such that
S ⊆M , andP be a program in which the weight constraints that appear in the bodies of
rules in P are strongly satisfiable byM . We will prove a key lemma below which relates
S |=M W with S |= WM . The goal is to ensure a one-to-one correspondence between
the derivations based on conditional satisfaction (Definition 3) and the derivations in
the construction of the least model (Definition 1). Then it can be shown, by induction
on the length of derivations, that an lparse-stable model of P is an answer set for an
instance of P , and vice versa.

Lparse Programs Revisited: Semantics and Representation of Aggregates 353

Lemma 1. Let W be a weight constraint of the form (1), and S and M be sets of atoms
such that S ⊆M . Then,

(i) If S |=M W then S |= WM and w(W,M) ≤ u.
(ii) If S |= WM and W is strongly satisfiable by M , then S |=M W .

The proof of (i) is routine, but the proof of (ii) involves some subtleties.

Proof. (ii) Assume S �|=M W and W is strongly satisfiable by M . We show S �|= WM .
We have either S |= W or S �|= W . If S �|= W then clearly S �|= WM . Assume

S |= W . Then from S �|=M W , we have ∃I , S ∩ dom(W) ⊂ I ⊆ M , such that
I �|= W . Since W is strongly satisfiable by M , if M |= W then for any R = M \ V ,
where V ⊆ Mb, w(W,R) ≤ u. Assume M |= W . Let R be such that Rb = Ib and
Ia ⊆ Ra. It’s clear that w(W,R) ≤ u leads to w(W, I) ≤ u. Thus, since M |= W , that
I �|= W is due to the violation of the lower bound, i.e., w(W, I) < l.

Now consider I ′ = Sa∪Mb; i.e., we restrict Ia to Sa and expand Ib to Mb. Note that
by construction, it still holds that S ∩ dom(W) ⊂ I ′ ⊆ M . Clearly, I �|= W leads to
I ′ �|= W , which is also due to the violation of the lower bound, as w(W, I ′) ≤ w(W, I),
i.e., we have w(W, I ′) < l. By definition, we have w(W I′

, I ′) < l′, where l′ = l −∑
bi �∈I′ wbi . Note that since I ′b = Mb, we have l′ = l −

∑
bi �∈M wbi . Since I ′a = Sa,

it follows that w(W I′
, S) < l′. Now since W I′

is precisely the same constraint as
WM , we have w(W I′

, S) = w(WM , S), and therefore w(WM , S) < l′. This shows
S �|= WM . �

By Theorem 1 and the definition of strongly satisfiable programs, we can show the
following.

Theorem 2. Let P be a strongly satisfiable lparse program, and M ⊆ At(P) be a set
of atoms. M is an lparse-stable model of P iff M is an answer set for P .

4 When the Semantics Disagree

The following theorem can be proved using Lemma 1 and Example 2 below.

Theorem 3. Every answer set of an lparse program P is an lparse-stable model of P ,
but the converse does not hold.

Question: What happens to the lparse programs that are not strongly satisfiable.

Example 2. Let P be a program consisting of a single rule: a ← [not a = 1] 0 and
M1 = ∅ and M2 = {a} be two sets. The weight constraint [not a = 1] 0 in P is not
strongly satisfiable, since although M2 satisfies the upper bound, its subset M1 does
not. By Definition 1, P has two lparse stable models: M1 and M2. But, by Definition 4,
M1 is an answer set for P and M2 is not. Note that M2 is not a minimal model.

The reason that M2 is not an answer set for P is due to the fact that a is derived by
its being in M2. This kind of circular justification can be seen more clearly below.

– The weight constraint is substituted with an equivalent aggregate:
a← COUNT ({X | X ∈ D}) = 1, where D = {a}.

354 G. Liu and J.-H. You

– The weight constraint is substituted with its c-atom representation:
a← ({a}, {{a}}).

– The weight constraint is transformed to an equivalent one without negative literal,
but with a negative weight, according to [15]:2

a← [a = −1]−1.

For the claim of equivalence, note that for any set of atoms M , we have: M |=
[not a = 1]0 iff [a = −1]−1 iff M |= COUNT ({X | X ∈ D}) = 1 (where
D = {a}) iff M |= ({a}, {{a}}). �

The type of circular justification observed here is similar to “answer sets by reduct” in
dealing with nonmonotone c-atoms [16]. But the constraint [not a = 1] 0 is actually
monotone! One may think that the culprit for M2 above is because it is not a minimal
model. However, the following example shows that lparse-stable models that are also
minimal models may still be circularly justified.

Example 3. Consider the following lparse program P (which is obtained from the one
in Example 2 by adding the second rule):

a← [not a = 1] 0 f ← not f,not a

Now, M = {a} is a minimal model of P , and also an lparse-stable model of P , but
clearly a is justified by its being in M . �

We now give a more formal account of circular justification for lparse-stable models,
borrowing the idea of unfounded sets previously used for normal programs [18] and
logic programs with monotone and antimonotone aggregates [3].

Definition 5. Let P be an lparse program and M an lparse-stable model of P . M is
said to be circularly justified, or simply circular, if there exists a non-empty set U ⊆M
such that ∀φ ∈ U , M \ U does not satisfy the body of any rule in P where φ is in the
literal set of the head of the rule.

Theorem 4. Let P be an lparse program and M an lparse-stable model of P . If M is
an answer set for P , then M is not circular.

Example 2 shows that extra lparse-stable models (lparse-stable models that are not an-
swer sets) of a program may be circular. However, not all extra lparse-stable models are
necessarily circular.

Example 4. Consider an lparse program P that consists of three rules.

a← b← 2[a = 1,not b = 1] b← [a = 1,not b = 1]1

M = {a, b} is an lparse-stable model but not an answer set for P . However, it can be
verified that M is not circular under our definition (Definition 5).3 �

2 Caution: Due to an internal bug, SMODELS produces ∅ as the only stable model, which is
inconsistent with the lparse semantics defined in [15].

3 It appears that the notion of circular justification is still an open issue; there could be different
intuitions and definitions.

Lparse Programs Revisited: Semantics and Representation of Aggregates 355

5 Transformation to Strongly Satisfiable Programs

In this section we show that all lparse programs can be transformed to strongly satis-
fiable programs. This is achieved by replacing each weight constraint of form (1) in a
given program by two upper bound-free weight constraints.

Let W be a weight constraint of form (1). The strongly satisfiable encoding of W ,
denoted by (W1,W2) consists of the following constraints:

W1 : l[a1 = wa1 , ..., an = wan ,not b1 = wb1 ,not b1 = wbm]

W2 : −u+
n∑

i=1

wai +
m∑

i=1

wbi [nota1 =wa1 , ...,notan =wan , b1 =wb1 , ..., bm =wbm]

Intuitively, W1 and W2 are to code the lower and upper bound constraints of W , re-
spectively. It is easy to verify that the encoding is satisfaction-preserving, as shown in
the following lemma.

Lemma 2. Let W be a weight constraint, (W1,W2) be its strongly satisfiable encod-
ing, and M be a set of atoms. M |= W iff M |= W1 and M |= W2.

By Lemmas 1 and 2, the following result can be established.

Theorem 5. Let W be a weight constraint, (W1,W2) be the strongly satisfiable encod-
ing ofW , and S andM be two sets of atoms, such that S ⊆M . S |=M W iff S |= WM

1
and S |= WM

2 .

Theorem 5 guarantees the one-to-one correspondence between the derivations based on
conditional satisfaction (Definition 3) and the derivations in the construction of the least
model (Definition 1).

Theorem 6. Let P be an lparse program, Tr(P) be the program obtained by replacing
each W in the body of rules in P by the strongly satisfiable encoding of W , and M be
a set of atoms. M is an answer set for P iff M is an lparse stable model of Tr(P).

Example 5. Consider a program P with a single rule: a ← 0[not a = 3]2. Then,
Tr(P) consists of

a← 0[not a = 3], 1[a = 3].

The weight constraints in Tr(P) are all upper bound-free, hence Tr(P) is strongly
satisfiable. Both ∅ and {a} are lparse-stable models of P , but ∅ is the only lparse-stable
model of Tr(P), which is also the only answer set for P . �

6 Logic Programs with Aggregates

Aggregates as weight constraints:
Aggregates are constraints on sets taking the form

aggr({X | p(X)}) op Result (6)

356 G. Liu and J.-H. You

where aggr is an aggregate function, p is a predicate symbol, and X is a variable which
takes value from a set D(X) = {a1, ..., an}, called the variable domain. The standard
aggregate functions are those in {SUM, COUNT, AVG, MAX, MIN}. The relational
operator op is from {=, �=, <,>,≤,≥} and Result is a numeric constant.

The domain of an aggregate A, denoted Dom(A), is the set of atoms {p(a) | a ∈
D(X)}. The size of an aggregate is |Dom(A)|. Let M ⊆ Dom(A). M is a model of
an aggregate A, denoted M |= A, if aggr({a | p(a) ∈M}) op Result holds.

Let A be an aggregate in the form (6). A set of weight constraints {W1, ...,Wn} is
an encoding of A, denoted e(A), if for any model M of A, there is a model M ′ of e(A)
such that M ′

|Dom(A) = Mand for any model M ′ of e(A), M ′
|Dom(A) is a model of A,

where M ′
|S denotes M ′ ∩ S.

We show the encodings of aggregates of the form (6), where the operator op is ≥.
The encodings can be easily extended to other relational operator except for �= (more
on �= later in this section). For example, aggregate SUM({X | p(X)}) > k can be
encoded as SUM({Y | p(Y)}) ≥ k + 1.

The encodings work for the aggregates whose variable domain contains only inte-
gers. For the aggregates whose variable domain contains real numbers, each real num-
ber can be converted to an integer by multiplying a factor. In this case, the Result also
needs to be processed correspondingly.

For convenience, below we may write negative weights in weight constraints. Recall
that negative weights can be eliminated by a simple transformation.

SUM, COUNT, AV G. These aggregates can be encoded by weight constraints
rather directly. For instance, SUM({X | p(X)}) ≥ k can be represented by

k [p(a1) = a1, ..., p(an) = an]. (7)

We note that aggregates COUNT ({X | p(X)}) ≥ k and AV G({X | p(X)}) ≥ k
can be encoded simply by substituting the weights in (7) with 1 and ai − k (for AVG
the lower bound k is also replaced by zero), respectively.

MAX . Let A = MAX({X | p(X)}) ≥ k be an aggregate. The idea in the encoding
of A is that for a set of numbers S = {a1, ..., an}, the maximum number in S is greater
than or equal to k if and only if

n∑
i=1

(ai − k + 1) > −
n∑

i=1

|ai − k + 1|. (8)

For each atom p(ai), two new literals p+(ai) and p−(ai) are introduced. The encod-
ing e(A) consists of the following constraints.

0 [p(ai) = −1, p+(ai) = 1, p−(ai) = 1] 0, 1 ≤ i ≤ n (9)

0 [p(ai) = −di, p
+(ai) = di], 1 ≤ i ≤ n (10)

0 [p(ai) = di, p
−(ai) = −di], 1 ≤ i ≤ n (11)

1 [p(a1) = d1, p
+(a1) = d1, p

−(a1) = −d1,

..., p(an) = dn, p
+(an) = dn, p

−(an) = −dn] (12)

1 [p(a1) = 1, ..., p(an) = 1] (13)

where di = ai − k + 1.

Lparse Programs Revisited: Semantics and Representation of Aggregates 357

In the following presentation, for any modelM of the encoding, a = 1 means a ∈M
and a = 0 means a �∈M .

The constraints (9), (10) and (11) are used to encode |ai−k+1|. Clearly, if ai > k−1,
we have p+(ai) = p(ai) and p−(ai) = 0; if ai < k − 1, we have p−(ai) = p(ai) and
p+(ai) = 0; and if ai = k − 1, we have p+(ai) = p(ai) or p−(ai) = p(ai).

The constraint (12) encodes the relation (8) and the constraint (13) guarantees that a
model of e(A) is not an empty set.

MIN . Let A = MIN({X | p(X)}) ≥ k be an aggregate. The idea in the encoding
of A is that for a set of numbers S = {a1, ..., an}, the minimal number in S is greater
than or equal to k if and only if

n∑
i=1

(ai − k) =
n∑

i=1

|ai − k|. (14)

Similar to MAX , the constraint in (14) can be encoded by weight constraints.
We note that all the encodings above result in weight constraints whose collective

size is linear in the size of the domain of the aggregate being encoded.
In the encoding of MAX (similarly for MIN), the first three constraints are the

ones between the newly introduced literals p+(ai), p−(ai) and the literal p(ai). We call
them auxiliary constraints. The last two constraints code the relation between p(ai) and
p(aj), where i �= j. We call them relation constraints. LetA be an aggregate, we denote
the set of auxiliary constraints in e(A) by a(A) and the relation constraints by r(A). If
A is aggregate SUM , COUNT , or AV G, we have that r(A) = e(A), because no new
literals are introduced in the encodings.

For a given aggregate A, the constraints in e(A) can be transformed to strongly
satisfiable weight constraints. In the sequel, we assume e(A) contains only strongly
satisfiable weight constraints.

Programs with Aggregates to lparse Programs
A logic program with aggregates is a set of rules of the form h← A1, ..., An, where h
is an atom and Ai are aggregates from {SUM, COUNT, AVG, MIN, MAX}.

We will represent a logic program with aggregates P by an lparse program, denoted
τ(P), as follows:

1. For each rule of the above form in P , we have an lparse rule of the form

h← r(A1), ..., r(An) (15)

in τ(P). In the formula (15), we use r(Ai) to denote the conjunction of all the
weight constraints in r(Ai), and

2. If there are newly introduced literals in the encoding of aggregates, the auxiliary
rule of the form

W ← p(ai) (16)

is included in τ(P), for each auxiliary constraint W of each atom p(ai) in the
aggregates.

358 G. Liu and J.-H. You

Theorem 7. Let P be a logic program with aggregates where the relational operator
is not �=. For any lparse-stable model M of Tr(τ(P)), M|At(P) is an answer set for
P (as defined in Definition 4). For any answer set M for P , there is an lparse-stable
model M ′ of Tr(τ(P)) such that M ′

|At(P) = M .

When an aggregate is encoded by a conjunction of weight constraints, logic equivalence
leads to equivalence under conditional satisfaction. This is why in the encodings so far
we only need to ensure that an encoding is satisfaction-preserving. But this is not the
case when disjunction is involved, which causes problem in dealing with the relational
operator �=.

Example 6. Let A = SUM({X |p(X)}) �= −1, A1 = SUM({X |p(X)}) > −1
and A2 = SUM({X |p(X)}) < −1. Note that A is logically equivalent to A1 ∨ A2.
Consider S = {p(1)} and M = {p(1), p(2), p(−3)}. While S conditionally satisfies A
w.r.t. M (i.e., S |=M A), it is not the case that S conditionally satisfies A1 w.r.t. M or
S conditionally satisfies A2 w.r.t. M . �

Since the answer set existence problem under the lparse semantics is NP-complete, and
the transformation to strongly satisfiable programs is a polynomial time reduction, our
transformation enables a computational mechanism for a large class of logic programs
with aggregates whose complexity falls into NP-completeness.4

7 Experiments

We code logic programs with aggregates as lparse programs and use SMODELS 2.32
for the stable model computation. If a benchmark program is not already strongly sat-
isfiable, it will be transformed into one, thus we can use the current implementation of
SMODELS for our experiments.

We compare our approach with two systems, SMODELSA and DLVA. The lparse pro-
grams are run on Linux AS release 4 with 1GHz CPU and 512MB RAM. The reported
execution time of SMODELS consists of the transformation time (from aggregates to
weight constraints), the grounding time (calling to lparse), and the search (by SMOD-
ELS) time. The execution time of smodelsA consists of grounding time, search time and
unfolding time (computing the solutions to aggregates). The execution time of DLVA,
includes the grounding time and search time (the grounding phase is not separated from
the search in DLVA).

We list the results reported in [4] and [2] for comparison. Thus, the comparison of
the execution time is only indicative, since the platforms are similar but not the same.

Comparison with SmodelsA

We compare our approach to the unfolding approach implemented in the system SMOD-
ELSA [4].5

4 This is closely related to a result of [17], which shows that although the existence problem is
in general in NP co−NP , the same problem is in NP if neither SUM(.) = k nor AV G(.) = k
is present in the program.

5 The benchmarks and programs can be found at www.cs.nmsu.edu/∼ielkaban/asp-aggr.html.

Lparse Programs Revisited: Semantics and Representation of Aggregates 359

Table 1. Benchmarks used by SMODELSA

Program Sample Size smodels smodelsA

Company Contr. 20 0.03 0.09
Company Contr. 40 0.18 0.36
Company Contr. 80 0.87 2.88
Company Contr. 120 2.40 12.14
Employee Raise 15/5 0.01 0.69
Employee Raise 21/15 0.05 4.65
Employee Raise 24/20 0.05 5.55
Party Invit. 80 0.02 0.05
Party Invit. 160 0.07 0.1
NM1 125 0.61 0.21
NM1 150 0.75 0.29
NM2 125 0.65 2.24
NM2 150 1.08 3.36

The aggregates used in the first and second set of problems (the company control
and employee raise problems) are SUM ; the third set of problems (the party invitation
problems) are COUNT , and the fourth and fifth set of problems (the NM1 and NM2,
respectively) are MAX and MIN , respectively.

The experimental results are reported in Table 1, where the sample size is measured
by the argument used to generate the test cases. The execution times are the average of
one hundred randomly generated instances for each sample size. The results show that
SMODELS is often faster than SMODELSA, even though both use the same search engine.

Scale-up could be a problem for SMODELSA, due to exponential blowup. For in-
stance, for an aggregate like COUNT ({a|a ∈ S}) ≥ k, SMODELSA would list all
aggregate solutions in the unfolded program, whose number is Ck

|S|. For a large do-
main S and k being around |S|/2, this is a huge number. If one or a few solutions are
needed, SMODELS takes little time to compute the corresponding weight constraints.

Comparison with DLVA

In [2] the seating problem was chosen to evaluate the performance of DLVA6. The prob-
lem is to generate a sitting arrangement for a number of guests, withm tables andn chairs
per table. Guests who like each other should sit at the same table; guests who dislike each
other should not sit at the same table. The aggregate used in the problem is COUNT .

We use the same setting to the problem instances as in [2]. The results are shown in
Table 2. The instance size is the number of atom occurrences in the ground programs.
We report the result of the average over one hundred randomly generated instances for
each problem size.

The experiments show that, by encoding logic programs with aggregates as lparse
programs, SMODELS solves the problem efficiently. For large instances, the execution
time of SMODELS is about one order of magnitude lower than that of DLVA and the
sizes of the instances are also smaller than those in the language of DLVA.

6 The program contains disjunctive head, but it can be easily transformed to a non-disjunctive
program.

360 G. Liu and J.-H. You

Table 2. Seating

C T
Execution Time Instance Size
smodels DLVA smodels DLVA

4 3 0.1 0.01 293 248
4 4 0.2 0.01 544 490
5 5 0.58 0.02 1213 1346
5 10 0.35 0.31 6500 7559
5 15 1.24 1.88 18549 22049
5 20 3.35 7.08 40080 47946
5 25 8.19 64.29 73765 88781
5 30 16.42 152.45 12230 147567

Table 3. Pigeon-hole

p h
Execution Time Instance Size
Lparse Normal Lparse Normal

5 4 0.00 0.01 98 345
6 5 0.01 0.01 142 636
7 6 0.01 0.06 194 1057
8 7 0.09 0.49 254 1632
9 8 0.74 4.38 322 2385
10 9 6.89 43.66 398 3340
11 10 71.92 480.19 482 4521
12 11 827.85 5439.09 574 5952

Lparse Programs vs. Normal Programs for Global Constraints
Some global constraints can be encoded by weight constraints compactly. We have
experimented with the pigeon-hole problem modeled by the AllDifferent constraint. The
lparse program that encodes AllDifferent is about one order of magnitude smaller than
the normal program encoding [13] in the size and the execution of the lparse program
is 6-7 times faster than its normal program counterpart for hard unsatisfiable instances
(where the number of holes is one less than the number of pigeons), which are run on
the same machine under the default setting. See Table 3 for the results.

8 Conclusions and Future Work

We have shown that for a large class of lparse programs the lparse semantics coincides
with the semantics based on conditional satisfaction. In general, answer sets admitted
by the latter are all lparse-stable models. When an lparse-stable model is not an answer
set, it may be circularly justified. We have proposed a transformation, by which an
lparse program can be translated to another one, such that all lparse-stable models are
answer sets and thus well-supported models.

As an issue of methodology, we have shown that most standard aggregates can be
encoded by weight constraints and SMODELS can be applied to efficiently compute the
answer sets of aggregate programs with almost all standard aggregates.

Our work has left some aspects unexplored. As we have shown, lparse-stable mod-
els that are not sanctioned by the semantics based on conditional satisfaction may or
may not be circular under our definition of circular justification. This left the question
of what would be the desired semantics for lparse programs unanswered. It seems that
the notion of unfounded sets can serve as a basis for a new semantics for lparse pro-
grams, since it appears to separate the desired lparse-stable models from the undesired
ones. Then, a question is whether a transformation exists that eliminates only circular
models.

Among the types of aggregates proposed in the literature, the only ones that can-
not be encoded compactly by weight constraints are the product constraints, such as
TIMES({X | p(X)}) ≥ k, due to the non-linear nature of the expressions involved.

Lparse Programs Revisited: Semantics and Representation of Aggregates 361

Plus the difficulty in encoding aggregates involving the relational operator �=, this shows
the limit of using SMODELS to run aggregate programs.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and
placement problems. J. Mathematical and Computer Modelling 17(7), 57–73 (1993)

2. Armi, D., Faber, W., Ielpa, G.: Aggregate functions in disjunctive logic programming: Se-
mantics, complexity, and implementation in DLV*. In: IJCAI 2003, pp. 847–852 (2003)

3. Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative and computational properties of
logic programs with aggregates. In: IJCAI 2005, pp. 406–411 (2005)

4. Elkabani, I., Pontelli, E., Son, T.C.: SmodelsA – a system for computing answer sets of logic
programs with aggregates. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR
2005. LNCS, vol. 3662, pp. 427–431. Springer, Heidelberg (2005)

5. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs. In:
Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 200–212. Springer, Heidel-
berg (2004)

6. Fages, F.: Consistency of Clark’s completion and existence of stable models. J. Methods of
Logic in Computer Science 1, 51–60 (1994)

7. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Ter-
racina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp. 119–131. Springer, Heidelberg (2005)

8. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first
answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS, vol. 4483, pp. 1–17. Springer, Heidelberg (2007)

9. Liu, L., Pontelli, E., Son, T.C., Truszczyński, M.: Logic programs with abstract constraint
atoms: The role of computations. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS,
vol. 4670, pp. 286–301. Springer, Heidelberg (2007)

10. Liu, L., Truszczyński, M.: Properties and applications of programs with monotone and con-
vex constraints. J. Artificial Intelligence Research 7, 299–334 (2006)

11. Marek, V., Niemelä, I., Truszczyński, M.: Logic programs with monotone abstract constraint
atoms. J. Theory and Practice of Logic Programming 8(2), 167–199 (2008)

12. Marek, V.W., Remmel, J.B.: Set constraints in logic programming. In: Lifschitz, V., Niemelä,
I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 167–179. Springer, Heidelberg (2003)

13. Niemelä, I.: Logic programs with stable model semantics as a constraint programming para-
digm. Annals of Math. and Artificial Intelligence 25(3-4), 241–273 (1999)

14. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic pro-
grams with aggregates. J. Theory and Practice of Logic Programming 7, 301–353 (2007)

15. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

16. Son, T.C., Pontelli, E., Tu, P.H.: Answer sets for logic programs with arbitrary abstract con-
straint atoms. J. Artificial Intelligence Research 29, 353–389 (2007)

17. Son, T.C., Pontelli, E.: A constructive semantic characterization of aggregates in answer set
programming. J. Theory and Practice of Logic Programming 7, 355–375 (2006)

18. van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.
J. ACM 38(3), 620–650 (1991)

19. van Hoeve, W.-J., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming, Ch. 7. Elsevier, Amsterdam (2006)

20. Wu, G., You, J., Lin, G.: Quartet based phylogeny reconstruction with answer set program-
ming. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(1), 139–152
(2007)

Compiling Fuzzy Answer Set Programs to Fuzzy
Propositional Theories

Jeroen Janssen1,�, Stijn Heymans2,∗, Dirk Vermeir1, and Martine De Cock2

1 Dept. of Computer Science, Vrije Universiteit Brussel
{jeroen.janssen, dvermeir}@vub.ac.be

2 Dept. of Applied Mathematics and Computer Science, Universiteit Gent
{stijn.heymans, martine.decock}@ugent.be

Abstract. We show how a fuzzy answer set program can be compiled
to an equivalent fuzzy propositional theory whose models correspond to
the answer sets of the program. This creates a basis for constructing
fuzzy answer set solvers, such as solvers based on fuzzy SAT-solvers or
on linear programming.

Keywords: answer set programming, fuzzy logic, Clark’s completion,
fuzzy ASSAT.

1 Introduction

Fuzzy answer set programming (FASP, see e.g. [1,2,3]) is a form of many-valued
logic programming (see e.g. [4,5,6]) that extends answer set programming (ASP)
to handle vague predicates, partial satisfaction of rules, and, in the case of [3],
the notion of quality of an answer set, i.e. a solution may be an answer set to a
certain degree. This makes it possible to provide approximate answers, e.g. for
problems that do not have a perfect solution. For many application areas, this
is a desirable feature.

As an example, consider the problem of arranging a group of people such
that friends are seated close to each other. Clearly, the input predicate friend
is vague, with friend(a, b) indicating the degree of friendship between a and b,
e.g. on a scale from 0 to 1. Likewise, the second input predicate, near , is also
vague, with near(s, z) representing the proximity between the seats s and z.

The following (ungrounded)1 FASP program Pintro defines (and solves) the
problem where “←” and “,” are interpreted as the indicated fuzzy implicator and
t-norm respectively, and 0 and 1 stand for the minimal (“false”) and maximal
(“true”) truth value, see Section 2.

(choice) sit(P ,S) ←�m,�m 1
(c1) 0 ←�m,�m sit(P ,S), sit(P ′,S),P = P ′
(c2) 0 ←�m,�m sit(P ,S), sit(P ,S ′),S = S ′

� Funded by Research Foundation–Flanders
1 Grounding is performed as usual, except that for input predicates, the actual value

of the literal is substituted, e.g. near(s, z) might be replaced by .7.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 362–376, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Compiling Fuzzy Answer Set Programs to Fuzzy Propositional Theories 363

(crisp) 0 ←�m,�m sit(P ,S),not∼s sit(P ,S)
(u) unhappy(P) ←�m,�m sit(P ,S), sit(P ′,S ′), friend(P ,P ′),not∼snear(S , S ′)
(q) 0 ←�l,�l unhappy(P)

(sit) seated(P) ←�m,�m sit(P ,S)
(all) 0 ←�m,�m not seated(P)

The following aggregator specifies the quality of the solution2 as a monotonic
function on the degrees of satisfaction of the rules:

APintro = ((c1
m c2
m crisp
m sit
m all
m u) ≥ 1)
m q

The (choice) rules generate a seating arrangement which is completely arbi-
trary, since the degree of satisfaction of the (choice) rules does not influence
APintro . Thus, an instantiation

(choice〈p, s〉) sit(p, s) ←�m,�m 1

of (choice) with p a person and s a seat, can be used to motivate any literal
sit(p, s)l with l an arbitrary truth value3, hence the name for these rules. Indeed,
having sit(p, s)l with l ∈ [0..1[implies that (choice〈p, s〉) is only satisfied to
degree l, but this has no impact on the value of APintro , which is independent of
the degrees of satisfaction of the (choice) rule instantiations.

However, the constraints (c1), (c2), (crisp) and (all), which APintro forces to be
fully satisfied, ensure that only arrangements where each person fully occupies
exactly one seat can appear in an answer set. Why particular operators are
being used for specific rules is explained in Section 3. The overall quality of the
solution is represented by the degree of satisfaction of the (q) constraint which
itself depends on the vague output predicate unhappy defined by the (u) rules.
Thus, friends that sit far apart will weaken the satisfaction of a (q) rule and
hence give rise to an answer set with a lower aggregated value.

As an example, consider a case where there are three available seats s1, s2,
and z, only two of which are relatively near to each other, namely near(s1, s2)

.8,
and three people connected by friendship with friend(a, b).8 and friend(a, c).5.
Obviously, there exists no perfect arrangement that puts a close to both of her
friends. However, an arrangement such as

I1 = { sit(a, s1)
1
, sit(b, s2)

1
, sit(c, z)1, unhappy(a).5

, . . . } (1)

is still better than e.g. the arrangement

I2 = { sit(a, s1)
1, sit(b, z)1, sit(c, s2)

1, unhappy(a).8, . . . } (2)

In accordance with this intuition, I1 yields a .5-answer set of the FASP program
Pintro , while I2 corresponds to a .2-answer set only, as we explain in Section 3.
2 In the grounded version, each ungrounded rule (r) in APintro is replaced by

�
{ri|ri ∈

r} where r represents the set of grounded instances of the rule.
3 We use lu to denote that a literal l holds to degree u. The default value for any atom

is 0.

364 J. Janssen et al.

In this paper, we make an important contribution towards the implementation
of a fuzzy answer set solver. In particular, we show how FASP programs (in
the sense of [3], but this can be readily adapted to other approaches such as
e.g. [1,2] as these can be translated to the FASP framework used in this paper)
can be implemented by translating them to an equivalent formula in a fuzzy
propositional logic, such that the answer sets of the program correspond to
models of the formula. The latter can be computed using a fuzzy satisfiability
(FSAT) solver or, subject to restrictions on the choice of connectives used in
the program, by translating the formula, e.g. using tableau methods such as
proposed in [7,8,9], to a linear programming problem that can itself be solved
using standard tools.

The remainder of the paper is organized as follows. Section 2 contains pre-
liminaries, while Section 3 introduces the fuzzy answer set programming [3]
formalism being used. A fuzzy propositional logic framework is presented in Sec-
tion 4. In Section 5, we extend to FASP programs the well-known translation
of regular logic programs to a propositional theory called “Clark’s completion”
[10]. This translation forms the basis of many algorithms for finding answer sets
such as those based on linear programming [11] or those using SAT-solvers [12].
We show that, under certain conditions, the models of our fuzzy completion and
the fuzzy answer sets of a program coincide.

However, as in the boolean case, not every model of the fuzzy completion is
an answer set. In Section 6, we remedy the situation by adding “loop formu-
las” to the completion, thus extending a similar approach for traditional answer
set programs from [12]. We also show that the procedure proposed by [12] to
iteratively compute such loop formulas “on demand” can be extended to fuzzy
answer set programs. Finally, section 7 presents conclusions and directions for
further research.

Due to space restrictions, all proofs have been omitted. They can be obtained
from the full paper at http://tinf2.vub.ac.be/∼jeroen/papers/ICLP08/
ICLP08-full.pdf

2 Preliminaries

The traditional logical operations of negation, conjunction, disjunction, and
implication are generalised to logical operators acting on [0, 1] in the usual
way (see e.g. [13]). A negator is any anti-monotone [0, 1] → [0, 1] mapping
∼ satisfying ∼ 0 = 1 and ∼ 1 = 0. A negator ∼ is called involutive iff
∀x ∈ [0, 1] · ∼∼ x = x. A triangular norm, t-norm for short, is any commutative
and associative [0, 1]2 → [0, 1] (infix) operator
 satisfying ∀x ∈ [0, 1] ·1
 x = x.
Moreover we require
 to be increasing in both of its arguments, i.e.4 for
x1, x2 ∈ [0, 1], x1 ≤ x2 implies x1
 y ≤ x2
 y. Intuitively, a t-norm corresponds
to conjunction. In this paper, we restrict ourselves to continuous t-norms. As the
most often used t-norms are continuous, this is not a burdensome restriction.
4 Note that the monotonicity of the second component immediately follows from that

of the first component due to the commutativity.

http://tinf2.vub.ac.be/~jeroen/papers/ICLP08/
ICLP08-full.pdf

Compiling Fuzzy Answer Set Programs to Fuzzy Propositional Theories 365

An implicator � is any [0, 1]2 → [0, 1] (infix) operator � satisfying 0 � 0 = 1,
and ∀x ∈ [0, 1] · 1 � x = x. Moreover � must be decreasing in its first, and
increasing in its second argument. Every t-norm
 induces a residual implicator
defined by x � y = sup{λ ∈ [0, 1] | x
λ ≤ y }. When the partial mappings of a
t-norm
 are supmorphisms5, then
 and its residual implicator � satisfy the
residual property, i.e. ∀x, y, z ∈ [0, 1] · x
 y ≤ z ≡ x ≤ y � z. Throughout this
paper we only consider such residual pairs.

Well-known fuzzy logical operators on [0, 1] include the minimum t-norm x
m

y = min(x, y), its residual implicator (also known as the “Gödel implicator”)
x �m y = 1 if x ≤ y, and x �m y = y otherwise, the �Lukasiewicz t-norm
x
l y = max(x+y−1, 0), and its residual implicator x �l y = min(1−x+y, 1).
For negation, often the standard negator ∼s x = 1− x is used.

Fuzzy equivalence is denoted as ≈ and defined as a ≈ b = (a � b)
 (b � a),
where
 is a t-norm and � its residual implicator. If we want to denote the use of
a specific t-norm together with its residual implicator, we do so by superscripting
the ≈-symbol as in ≈m= (a �m b)
m (b �m a).

An fuzzy set A over some (ordinary) set X is an X → [0, 1] mapping. For
x in X , A(x) is called the membership degree of x in A. We also use F(X) to
denote the set of all fuzzy sets over X . The support of a fuzzy set A is defined
by supp(A) = { x | A(x) > 0 }. Fuzzy set inclusion is also defined as usual by
A ⊆ B, iff ∀x ∈ X · A(x) ≤ B(x). Fuzzy set intersection (union) is defined by
(A ∩ B)(x) = A(x) � B(x) ((A ∪ B)(x) = A(x) B(x)). This is extended to
sets of fuzzy sets in the usual way, i.e.

⋂
{A1, . . . , An } = A1 ∩ . . . ∩ An and⋃

{A1, . . . , An } = A1 ∪ . . .∪An. Lastly the fuzzy set difference we will be using
in this paper is (A \B)(x) = |A(x) −B(x)|.

3 Fuzzy Answer Set Programming

Fuzzy answer set programming [3] is an extension of regular answer set program-
ming (see e.g. [14]), a declarative formalism based on the stable model semantics
for logic programming [15].

Definition 1 (FASP program). A literal6 is an atom a or a constant from
[0, 1]. An extended literal is either an atom or of the form not∼a, with a an
atom and ∼ a negator, representing negation as failure (naf). A rule r is of the
form

a←�,� b1, . . . , bn,not∼1c1, . . . ,not∼mcm

where n ≥ 0, m ≥ 0 and a, { bi | 1 ≤ i ≤ n }, and { cj | 1 ≤ j ≤ m } are (sets of)
literals; ∼1, . . . ,∼m are negators and � and
 are resp. a residual implicator
and a t-norm. The literal a is called the head, denoted rh of the rule r, while
{ b1 . . . , bn,not c1, . . . ,not cm } is called the body rb of r. We use Lit(rb) to

5 The partial mappings of a t-norm
 are called supmorphisms when for an arbitrary
index set J it holds that sup{xi
 y|i ∈ J } = sup{xi|i ∈ J }
 y.

6 As usual, we will assume that programs have already been grounded.

366 J. Janssen et al.

denote the set of regular literals { b1, . . . , bn } from rb. A constraint is a rule r
where rh ∈ [0, 1].

For a rule r, we use
rb
and �r to denote the rule’s t-norm
, and implicator

�, respectively. We also use
r to denote the t-norm of which �r is the residual
implicator.

A (FASP) program P is a finite set of rules. The set of all literals that occur
in P is called the Herbrand Base BP of P . The set of all rules in P that have
the literal l in the head is denoted as Pl.

A rule-interpretation is a function ρ : P → [0, 1] that associates a degree of
satisfaction ρ(r) to each rule r ∈ P . With every FASP program, the programmer
must define a monotonic aggregator function AP : (P → [0, 1]) → [0, 1], which
aggregates the values of all rules into a single degree of rule satisfaction for the
program.

Definition 2 (Interpretation of a FASP program). Let P be a FASP
program. An interpretation of P is any fuzzy set I ∈ F(BP). Interpretations
are extended to constants, extended literals and rules in a straightforward way:
for a constant c ∈ [0, 1], define I(c) = c. For extended literals, we define
I(not∼a) =∼ I(a). For a rule r = a←�,� b1, . . . , bn,not∼1c1, . . . ,not∼mcm, the
extension to the rule body rb is defined as: I(rb) = I(b1)
. . .
I(bn)
I(not∼1c1)

. . .
I(not∼mcm), yielding the degree of satisfaction of r as I(r) = I(rb) � I(rh).

For every interpretation I there is a corresponding rule interpretation Iρ,
defined by Iρ(r) = I(r) for all r from P .

Example 1. Consider a grounded version of the program Pintro from Section 1,
with the seat constants, person constants, the near and friend predicates as
given in the introduction, and the interpretations I1 and I2 as given in (1)-
(2). Interpretation I1 satisfies the constraint 0 ←�l,�l unhappy(a) to degree
I1(unhappy(a)) �l 0 = min(1 − .5 + 0, 1) = .5, while interpretation I2 satis-
fies this constraint only to degree .2. Note that the choice of the �Lukasiewicz
implicator �l in this constraint is crucial to preserve the gradual character of
the vague unhappy predicate in the rule satisfaction. Using the Gödel implicator
�m e.g. would force this rule to be evaluated in a crisp way (either the rule is
fully satisfied or it is not satisfied at all), hence loosing the nuance.

In the (crisp) rules on the contrary, the choice for the residual pair
m and
�m allows to enforce that a given person either sits on a given seat or not.
Indeed, a constraint like 0 ←�m,�m sit(a, s1), not∼ssit(a, s1) is only satisfied to
degree 1 when the rule body is satisfied to degree 0. Since the minimum t-norm
does not have zero divisors, this situation only occurs when either I(sit(a, s1)) =
0, i.e. a does not sit on seat s1, or when I(not∼ssit(a, s1)) = 0, i.e. I(sit(a, s1)) =
1, in other words a sits on seat s1.

Residual implicators adhere to the property that x � y = 1 iff x ≤ y. In other
words, according to Definition 2, an interpretation fully satisfies a rule whenever
it satisfies the head at least as much as the body. The interpretation

I3 = { sit(a, s1)
1, sit(b, s2)

1, sit(c, z)1, unhappy(a).9, . . . } (3)

fully satisfies the rule

Compiling Fuzzy Answer Set Programs to Fuzzy Propositional Theories 367

unhappy(a) ←�m,�m sit(a, s1), sit(c, z), friend(a, c), not∼snear(s1, z)

since .9 ≥ min(1, 1, .5, 1). However, assigning .5 to unhappy(a) would already be
sufficient to fully satisfy the rule; in other words the desire to fully satisfy this
rule does not provide sufficient justification to assign to unhappy(a) a degree
higher than .5. To ensure that we only derive a minimal knowledge set from our
programs, we use the so called “support” of an interpretation with respect to a
given rule and relative to a given rule interpretation. Intuitively, this is the lowest
possible value that can be assigned to the head of the rule such that the rule is
satisfied to at least the degree that is required by the given rule interpretation.

Definition 3 (Support). Let P be a FASP program. We define the support of
an interpretation I of P with respect to the rule r ∈ P and relative to the rule
interpretation ρ of P as:

Is(r, ρ) = inf{ k ∈ [0, 1] | I(rb) �r k ≥ ρ(r) }

We abbreviate Is(r, Iρ) as Is(r).

Theorem 1. Let P be a FASP program. For any interpretation I of P , rule
r ∈ P , and rule interpretation ρ of P the following holds:

Is(r, ρ) = I(rb)
r ρ(r)

For ρ = Iρ we have the following result:

Is(r) = I(rb) � I(rh)

The definition of fuzzy answer sets relies on the notion of unfounded sets, which,
intuitively, are sets of “assumption” literals that have no proper motivation from
the program.

Definition 4 (Unfounded-free interpretation). Let I be an interpretation
of a program P . A set Y ⊆ BP is called unfounded w.r.t. I iff for each literal
l ∈ Y and rule r ∈ Pl it holds that either:

– Y ∩ Lit(rb) �= ∅ or
– I(l) > Is(r) or
– I(rb) = 0

An interpretation I of P is unfounded-free iff supp(I)∩Y = ∅ for any unfounded
set Y w.r.t. I.

The first condition in Definition 4 prevents circular motivation between assump-
tions. The second condition prohibits assumptions motivated by rules that are
not applied conservatively, i.e. a rule r is used to motivate a truth value of the
head in excess of the support that is actually available (from Is(r)). The third
condition finally helps to ensure that Definition 4 is a proper generalization of
the classical definition of unfounded sets [16].

368 J. Janssen et al.

Example 2. Consider an interpretation I = { a0.5, b0.5 } for program P2, defined
below.

r1 : a ←�m,�m b
r2 : b ←�m,�m a

As there is no rule supporting the fact that I(a) = 0.5 or I(b) = 0.5, this
interpretation contains more knowledge than what is inferable from the program
and is therefore unwanted. In fact e.g. Y = { a, b } is an unfounded set because
both Y ∩ Lit(r1) �= ∅ and Y ∩ Lit(r2) �= ∅. Since supp(I) ∩ Y �= ∅, I is not
unfounded-free.

Answer sets of FASP programs are unfounded-free interpretations reflecting the
intuition that each literal in an answer set should have a proper motivation in
the program. Moreover, the rules of the program should be satisfied to a desired
degree.

Definition 5 (y-answer set). Let P be a FASP program and y∈ [0, 1]. An inter-
pretation I of P is called a y-answer set iff I is unfounded-free and AP (Iρ)≥y.

Example 3. Consider program Pintro from Section 1 and its interpretations I1,
I2, and I3 as given in (1)–(3). The set { unhappy(a) } is unfounded w.r.t. I3 as for
each grounded instance r of the (u) rules with unhappy(a) in the head, it holds
that I3(unhappy(a)) > (I3)s(r). Hence I3 is not unfounded-free. Interpretations
I1 and I2 on the other hand are unfounded-free. Furthermore one can verify that
APintro ((I1)ρ) ≥ .5 and APintro ((I2)ρ) ≥ .2, in other words I1 and I2 are resp. a
.5-answer set and a .2-answer set of Pintro .

4 Fuzzy Propositional Logic

We build a fuzzy propositional logic starting from a set of t-norms {
1, . . . ,
n },
their residual implicators {�1, . . . ,�n } and a set of negators {∼1, . . . ,∼k },
all of which are defined over [0, 1]. Furthermore there is a set of variable symbols
{ v1, . . . , vl }. Further connectives are ≈, and �, where and � are the infix
supremum and infimum resp. and where ≈ is defined as p ≈ q = (p � q)
 (q �
p), for
 a t-norm and � its residual implicator.

The syntax of this fuzzy propositional logic is defined as follows. A proposition
is either a constant from [0, 1], a variable, or an expression of one of the following
forms, where p and q are propositions: p
i q, where i ∈ 1 . . . n, p �i q, where
i ∈ 1 . . . n, ∼i p, where i ∈ 1 . . . k, p ≈i q, where i ∈ 1 . . . n, p q, or p � q. A
theory is a set of propositions.

The semantics of this logic is defined in a straightforward way. Let I be a
fuzzy set over the variables of a proposition. Then I is inductively extended to
propositions as follows: let p and q be fuzzy propositions and I an interpretation
over the variables of p and q, then I(l) = l, where l ∈ [0, 1], I(p
q) = I(p)
I(q),
I(p � q) = I(p) � I(q), I(∼ p) =∼ I(p), I(p q) = I(p) I(q) and I(p � q) =
I(p) � I(q). A fuzzy set over the variables of a proposition is then called an
interpretation of this proposition.

Compiling Fuzzy Answer Set Programs to Fuzzy Propositional Theories 369

We say that an interpretation I is a model of a theory P , whenever ∀p ∈ P ·
I(p) = 1 and denote this as I |= P .

5 Fuzzy Completion

In this section we show how certain fuzzy answer set programs can be translated
to fuzzy theories such that the models of these theories will be y-answer sets and
vice versa.

Definition 6 (Fuzzy y-completion). Let P be a FASP program with aggre-
gator AP and let y ∈ [0, 1]. The fuzzy completion of the body of a rule r ∈ P ,
with r = a←�,� b1, . . . , bn,not∼1c1, . . . ,not∼mcm, is the propositional formula

Comp(rb) = b1
rb
. . .
rb

bn
rb
∼1 c1
rb

. . .
rb
∼m cm

The completion of the rule r is defined as:

Comp(r) = Comp(rb) � rh

Assume that the aggregator is representable as a fuzzy propositional formula,
i.e. that a proposition Compy(AP) exists such that for any interpretation I of
P , AP (Iρ) ≥ y iff I |= Compy(AP). The fuzzy y-completion of the program P
is then defined as:

Compy(P) = { l ≈
⊔
{Comp(r) | r ∈ Pl } | l ∈ BP } ∪ Compy(AP)

for ≈ an arbitrary equivalence relation.

Note that the y in the completion is the same y we use for y-answer sets, thus
the intention is that the models of the y-completion of a program will be the
y-answer sets of the program.

Example 4. Consider the following program P :

r1 : a←�m,�m not∼sb
r2 : b ←�m,�m not∼sa

with aggregator AP (ρ) = inf{ ρ(r) | r ∈ P }. The aggregator of this program
is representable in fuzzy propositional logic as the formula y � (∼s b �m

a) � (∼s a �m b). The completion of this program will then be the following
fuzzy propositional theory:

a ≈m ((∼s b) � a)
b ≈m ((∼s a) � b)

y �m (∼s b �m a) � (∼s a �m b)

It is easy to see that the interpretation I = { a0.8, b0.2 } is a 1-answer set of this
program and will also be a model of the completion Comp1(P).

370 J. Janssen et al.

Readers familiar with the completion in traditional logic programming may won-
der why our completion uses Comp(rb)� rh instead of the more usual Comp(rb)
in the right-hand side of the equations. This is necessary in order to support
the partial satisfaction of rules. Indeed, using Comp(rb) would force rules to
be fully satisfied, while using Comp(rb) � rh allows interpretations for which
I(rh) < I(rb), leading to (I(rb) �r I(rh)) < 1, hence interpretations that only
partially satisfy rules.

In the fuzzy y-completion of a program P , we do not introduce a separate
proposition for literals l that do not appear in the head of any rule from P ,
since these will be subsumed by the introduction of l ≈

⊔
∅ (with our choice

of equivalence relations), which is equivalent to l ≈ 0 by definition of
⊔

. No
separate propositions are added for constraints, i.e. rules with a value from [0, 1]
in the head, either, since constraints are only used to determine the aggregated
satisfaction value of the program and hence are only needed in the aggregator
proposition.

Finally, the condition on aggregators to be representable in fuzzy propositional
logic is necessary to solve programs using SAT-solvers. That this condition still
allows for sufficient expressiveness is illustrated by the fact that the aggregator
of the program in the introduction can be represented as

Compy(APintro) = [1 �m (c1
m c2
m crisp
m sit
m all
m u)] � [y �l q]

One can now show that any y-answer set of a program P is a model of its
completion Compy(P).

Theorem 2. Let P be a FASP program. Then if the aggregator is representable
in fuzzy propositional logic, any y-answer set of P is a model of Compy(P).

The reverse of Theorem 2 is not true in general, since it is already invalid for clas-
sical answer set programming. The problem is with the completion of programs
that have “loops”, as shown in the following example.

Example 5. Consider P2 from Example 2. The y-completion of this program is:

a ≈ b � a
b ≈ a � b

y �m (a �m b) � (b �m a)

The interpretation I = { a1, b1 }, is a model of Compy(P2), but it is not a y-
answer set of P2, as the only y-answer set (with y > 0) of this program is
{ a0, b0 }.

As in the crisp case, when a program has no loops in its positive dependency
graph however, the models of the y-completion and the y-answer sets do coincide.
First we define what a loop of a logic program actually means and then we
formally state that the aforementioned holds.

Definition 7 (Loop). Let P be a FASP program. The positive dependency
graph of P is then a directed graph GP = (BP , R) where aR b ≡ ∃r ∈ Pa ·

Compiling Fuzzy Answer Set Programs to Fuzzy Propositional Theories 371

b ∈ Lit(rb). We denote this relation also with GP (a, b) for any literals a and b
in the Herbrand base of P . We call a non-empty set L ⊆ BP a loop iff for all
literals a and b in L there is a path (with length > 0) from a to b in GP such
that all vertices on this path are elements of L.

Using this definition, one can easily see that the program from Example 2 con-
tains the loop L = { a, b }.

Theorem 3. Let P be a FASP program. If P has no loops in its positive de-
pendency graph and its aggregator is representable in fuzzy propositional logic, it
holds that I is a y-answer set of P iff I |= Compy(P).

6 Solving the Loop Problem

As mentioned in the previous section, sometimes the models of the y-completion
are not y-answer sets, which hinders the possibility of using the y-completion of
a program to e.g. compute y-answer sets using a fuzzy satisfiability solver. In this
section, we investigate how the solution for boolean answer set programming,
which consists of adding loop formulas to the completion [12], can be extended
to fuzzy answer set programs.

For this extension, we will start from a partition of the rules whose heads
are in a loop, for a given loop L. Based upon this partition, we will then define
a condition that must be fulfilled and can be expressed in fuzzy propositional
logic, such that any model of the y-completion satisfying it, will no longer have
the problem of attaching a value that is too high to atoms that occur in a loop.

For any program P and loop L we consider the following partition of rules
with heads in the loop of P (due to [12]):

R+
P (L) = { a← B | (a← B) ∈ P ∧ a ∈ L ∧B ∩ L �= ∅ }

R−
P (L) = { a← B | (a← B) ∈ P ∧ a ∈ L ∧B ∩ L = ∅ }

Intuitively, this means that R+
P (L) contains the rules that are “in” the loop L,

i.e. that are responsible for the creation of the loop in the positive dependency
graph, whereas the rules in R−

P (L) are the rules that are outside of this loop. We
will refer to them as “loop rules”, resp. “non-loop rules”. Recalling the program
from Example 2, the partitions of rules with respect to the loop L = { a, b }
would be R+

P (L) = { a←�m,�m b, b←�m,�m a } and R−
P (L) = ∅.

All literals in the support of a y-answer set are derived using rules that are
not contained in any loop. Therefore, like in [12], this motivates the use of “loop
formulas” to eliminate any model of the completion in which the value of a
literal is derived using only loop rules (or is higher than what the non-loop rules
could conclude). Considering Example 2 once again, one can see that for the
interpretation I0 = { a1, b1 }, the loop rules were used to attach the high values
to a and b. The only interpretation that does not use the loop rules would be
I1 = { a0, b0 }.

There is thus a problem when the values of literals in a loop are only
supported by other literals in the loop. This is the case when their value is

372 J. Janssen et al.

only supported by loop rules, as the support of these rules is by definition al-
ways based on literals in the loop. Hence to solve this problem, we should require
that at least one non-loop rule supports the value of loop literals. Only one rule’s
support is needed as this support propagates through the loop.

Example 6. As an illustration of the above remark, consider program P6.

r1 : a←�m,�m 0.8
r2 : a←�m,�m b
r3 : b←�m,�m a

with aggregator AP (ρ) = inf{ ρ(r) | r ∈ P6 }.
There is a loop L = { a, b } in P6, with loop sets R+

P6
(L) = { r2, r3 } and

R−
P6

(L) = { r1 }. The interpretation I = { a1, b1 } is a model of Comp1(P6)

since I |= a ≈ (0.8� a) (a� b) as (0.8� I(a)) (I(b)� I(a)) = 1, I |= b ≈ b� a
likewise and I |= 1 �m (0.8 �m a) � (b �m a) � (a �m b) as 0.8 �m I(a) = 1
since 0.8 ≤ I(a) and likewise (I(b) �m I(a)) = 1 and (I(a) �m I(b)) = 1. I is
not a 1-answer set of P6 however, as L ∩ supp(I) �= ∅ and L is unfounded due
to I(a) > 0.8, Lit(r2b) ∩ L �= ∅ and Lit(r3b) ∩ L �= ∅. In other words, I has only
used loop rules to determine the values of a and b.

The set I ′ = { a0.8, b0.8 } is however a 1-answer set as the non-loop rule r1
was used to derive the value of literal a. Since the value of b is derived from this
non-loop-derived value of a, the use of the loop rule r3 to determine the value
of b then poses no problem.

Summing all of this up, the definition then becomes:

Definition 8 (Loop formula). Let P be a FASP program and L={ l1, . . . , lm }
a loop in the positive dependency graph of P . Suppose that R−

P (L)={ r1, . . . , rn }.
Then the loop formula associated with the loop L, denoted by LF(L,P), is the
following fuzzy proposition:

l1 . . . lm � Comp(r1) . . . Comp(rn)

If R−
P (L) = ∅, the loop formula becomes:

l1 . . . lm � 0

The loop formula proposed for boolean answer set programs in [12] is of the form

¬(
∧

B11 ∨ . . . ∨
∧

B1k1 ∨ . . . ∨
∧

Bn1 ∨ . . . ∨
∧

Bnkn) ⇒ (¬l1 ∧ . . . ∧ ¬lm)

It can easily be seen that our loop formulas are a straightforward generalisation
of this loop formula as the latter is equivalent to

(l1 ∨ . . . ∨ lm) ⇒ (
∧

B11 ∨ . . . ∨
∧

B1k1 ∨ . . . ∨
∧

Bn1 ∨ . . . ∨
∧

Bnkn)

Furthermore, since I |= l1 . . . lm � 0 only when I(l1) . . . I(lm) ≤ 0,
it is easy to see that in the case where no rules exist outside of the loop, the
maximum amount of knowledge we can derive from our program is that the
literals in the loop are all “false” (0).

Compiling Fuzzy Answer Set Programs to Fuzzy Propositional Theories 373

Example 7. Consider program P2 from Example 2 again. There is a loop L =
{ a, b } in GP with as loop formula a b �m 0, since the set R−

P (L) = ∅.
I0 = { a1, b1 } is not a model of this formula, as I0(a) I0(b) � 0 = 1 ≡
I0(a) I0(b) ≤ 0. Hence, only the interpretation I1 = { a0, b0 } is a model of this
loop formula, which is the intended behaviour.

Considering program P6 from Example 6, we can see that the loop L = { a, b }
has the loop formula a b � a � 0.8. Since I |= a b �m a � 0.8 only if a ≤ 0.8
and b ≤ a� 0.8, interpretation I from Example 6 is eliminated as a model while
I ′ is preserved.

We now show that by adding loop formulas to the completion of a program, we
get a propositional theory that is both sound and complete with respect to the
answer set semantics. First we show that this procedure is complete.

Theorem 4. Let P be a FASP program and let LF(P) be the set of all loop
formulas of P , i.e. the set of loop formulas for any loop L in P . Then for
any interpretation I of P it holds that if I is a y-answer set of P , then I |=
LF(P) ∪ Compy(P).

Secondly we show that it is sound.

Theorem 5. Let P be a FASP program and LF(P) be the set of all loop formulas
of P . Then for any interpretation I of P it holds that if I |= LF(P)∪Compy(P),
then I is a y-answer set of P .

A straightforward procedure for finding answer sets would now be to extend the
completion of a program with all possible loop formulas and let a fuzzy SAT
solver generate models of the resulting propositional theory. The models of the
propositional theory that we get this way will be y-answer sets of the program,
as ensured by Theorems 4 and 5. This however has a potential drawback, as the
amount of loops can grow exponentially. In [12] a procedure to overcome this
problem was proposed, where loop formulas are added iteratively, when a model
of the completion generated by a SAT-solver violates a loop formula. We will
show that the same procedure can be used for finding fuzzy answer sets. For this,
we need a characterization of answer sets in terms of the consequence operator.

Definition 9 (Consequence operator). Let P be a FASP program and let ρ
be a rule interpretation of P . The consequence operator of P and ρ is defined
as follows:

ΠP,ρ : (BP → [0, 1]) → BP → [0, 1]

ΠP,ρ(I)(l) = sup
r∈Pl

Is(r, ρ)

This operator is monotonic and thus has a least fixpoint [17], denoted as
lfp(ΠP,ρ). Furthermore, a reduct is defined as follows:

Definition 10 (Reduct). Let P be a FASP program. Then the reduct of a
rule r ∈ P , where r = a←�,� b1, . . . , bn,not∼1c1, . . . ,not∼mcm, with respect to

374 J. Janssen et al.

an interpretation I is denoted as rI and defined as rI = a ←�,� b1, . . . , bn,∼1
I(c1), . . . ,∼m I(cm). The reduct of a program P w.r.t. an interpretation I is
denoted as P I and defined as P I = { rI | r ∈ P }.

It can then be shown that a fixpoint characterisation exists for fuzzy answer
sets, as follows:

Theorem 6. Let P be a FASP program. Then I is a y-answer set of P iff
I = lfp(ΠP I ,Iρ

) and AP (Iρ) ≥ y.

Using this characterisation of fuzzy answer sets, we have a quick way of checking
whether a model of the y-completion is a y-answer set. In case it is not a y-
answer set, the following theorem shows us that this means there is at least one
loop whose loop formula is violated. Furthermore, it identifies a set of literals
that contains the loop, enabling us to reduce the search space for finding the
loops.

Theorem 7. Let P be a FASP program. If an interpretation I of P is a model
of Compy(P) and I �= lfp(ΠP I ,Iρ

), then some L ⊆ supp(I \ lfp(ΠP I ,Iρ
)) must

exist such that L is a loop and I �|= LF(L,P).

Now, we can extend the ASSAT-procedure proposed in [12] to fuzzy answer set
programs. The main idea of this method is to use a fuzzy SAT-solver to find
models of the fuzzy propositional theory constructed from the completion and
the loop formulas of some maximal loops. If the model generated is not an answer
set, then the loop that is violated is sought and added to the theory and the
process is started again. The algorithm thus becomes:

1. Initialize Loops = ∅.
2. Generate a model I of Compy(P)∪LF(Loops , P), where LF(Loops , P) is the

set of loop formulas of all loops in Loops .
3. If I = lfp(ΠP I ,Iρ

), return I as it is a y-answer set. Else, find the loops
occurring in supp(I \ lfp(ΠP I ,Iρ

)), add them to Loops and go to step 2.

As we only need to search for the loops of a subset of all literals due to
Theorem 7, which only needs to be done when a model is generated that is not
an answer set, this procedure does not need to add an exponential number of loop
formulas at the start. Based on the experimental results in [12], we would expect
a similar improvement when finding fuzzy answer sets using fuzzy SAT-solvers.

7 Conclusions and Future Work

We defined a fuzzy version of Clark’s completion, creating a basis for different
kinds of (fuzzy) answer set solvers. Furthermore, we defined loop formulas that
ensure that the completion semantics coincide with the program semantics in the
presence of loops in the positive dependency graph. We have also shown how,
similar to the ASSAT procedure for answer set programs, loop formulas of fuzzy

Compiling Fuzzy Answer Set Programs to Fuzzy Propositional Theories 375

answer set programs can be computed “on the fly”, thus avoiding a possibly
exponential blow-up of the number of loop formulas to consider.

As algorithms for solving the fuzzy SAT problem, with restrictions on the
operators used, have been developed [7,8,9], the results of this paper thus effec-
tively create a basis for practical implementations of the FASP paradigm. This is
enhanced by the possibility of iteratively adding loop formulas, as in the ASSAT
procedure for crisp answer set programming.

In the future, we intend to investigate solving the completion proposition
using a combination of a translation to linear programming and tableaux, as in
[7,9], but with less restrictions on the operators. Related with this, we intend to
investigate the possibilities in directly solving the program using mixed integer
programming as in [11].

A first prototype FASPMIP
7 has already been developed It supports a simple

concrete syntax to express a limited set of connectives and a restricted set of
aggregator functions.

As an example, the source (not including the “data”) for the program Pintro

from Section 1 is shown below.

sit(P,S) :/ Person(P),Seat(S). % choice
:- sit(P,S),sit(PP,S), P /= PP.
:- sit(P,S),sit(P,SS), S /= SS.
:- sit(P,S),not sit(P,S). % crispify sit/2
unhappy(P) :- sit(P,S), sit(PP,SS), friend(P,PP), not near(S,SS).
:~ unhappy(P). % score
seated(P) :- sit(P,S). :- not seated(P),Person(P). % all seated

To compute the semantics of an input program, FASPMIP parses and grounds
the rules in the usual way. Then the program is translated to a set of linear
programming constraints corresponding to the y-completion of the program, see
also [11]. The resulting linear programming model is then written to a file using
the MathProg modeling language. The file serves as input for the LP/MIP glpsol
solver8, which computes a minimal y-answer set.

The output (for selected predicates) of FASPMIP for a 0.5-answer set of the
program Pintro from Section 1 is shown below.

[(near(s1,s2),0.8), (friend(a,c),0.5),(friend(a,b),0.8),
(unhappy(a),0.5),(sit(c,s3),1.0),(sit(b,s2),1.0),(sit(a,s1),1.0)]

References

1. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics
for the semantic web. In: Proceedings of the Second International Conference on
Rules and Rule Markup Languages for the Semantic Web (RuleML 2006), pp.
89–96. IEEE Computer Society, Los Alamitos (2006)

7 Available from http://tinf2.vub.ac.be/faspsolver/faspmip-0.1.tar.gz.
8 glpsol is part of GLPK, the GNU Linear Programming Kit, see
http://www.gnu.org/software/glpk/glpk.html.

http://tinf2.vub.ac.be/faspsolver/faspmip-0.1.tar.gz
http://www.gnu.org/software/glpk/glpk.html

376 J. Janssen et al.

2. Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs
under the answer set semantics for the semantic web. In: Marchiori, M., Pan,
J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 289–298. Springer,
Heidelberg (2007)

3. Van Nieuwenborgh, D., De Cock, M., Vermeir, D.: An introduction to fuzzy answer
set programming. Annals of Mathematics and Artificial Intelligence 50(3-4), 363–
388 (2007)

4. Damásio, C., Medina, J., Ojeda-Aciego, M.: Sorted multi-adjoint logic programs:
termination results and applications. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS, vol. 3229, pp. 260–273. Springer, Heidelberg (2004)

5. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming
and its applications. Journal of Logic Programming 12(3-4), 335–367 (1992)

6. Straccia, U.: Annotated answer set programming. In: Proceedings of the 11th In-
ternational Conference on Information Processing and Management of Uncertainty
in Knowledge-Based Systems, IPMU 2006 (2006)

7. Hähnle, R.: Many-valued logic and mixed integer programming. Annals of Mathe-
matics and Artificial Intelligence 12(3-4), 231–263 (1994)

8. Lepock, C., Pelletier, F.J.: Fregean algebraic tableaux: Automating inferences in
fuzzy propositional logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS,
vol. 3835, pp. 43–48. Springer, Heidelberg (2005)

9. Straccia, U.: Reasoning and experimenting within Zadeh’s fuzzy propositional logic.
Technical report, Paris, France (2000)

10. Clark, K.L.: Negation as failure. In: Logic and Databases, pp. 293–322. Plenum
Press, New York (1978)

11. Bell, C., Nerode, A., Ng, R.T., Subrahmanian, V.S.: Mixed integer program-
ming methods for computing nonmonotonic deductive databases. Journal of the
ACM 41(6), 1178–1215 (1994)

12. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by sat solvers.
Artificial Intelligence 157(1-2), 115–137 (2004)

13. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic.
Kluwer Academic Publishers, Dordrecht (1999)

14. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the Fifth International Conference and Symposium on Logic Pro-
gramming (ICLP/SLP 1988), ALP, IEEE, pp. 1081–1086. The MIT Press, Cam-
bridge (1988)

16. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the Association for Computing Machinery 38(3), 620–
650 (1991)

17. Tarski, A.: A lattice theoretical fixpoint theorem and its application. Pacific Journal
of Mathematics 5, 285–309 (1955)

Abstract Answer Set Solvers

Yuliya Lierler

University of Texas at Austin
yuliya@cs.utexas.edu

Abstract. Nieuwenhuis, Oliveras, and Tinelli showed how to describe enhance-
ments of the Davis-Putnam-Logemann-Loveland algorithm using transition sys-
tems, instead of pseudocode. We design a similar framework for three algorithms
that generate answer sets for logic programs: SMODELS, ASP-SAT with Back-
tracking, and a newly designed and implemented algorithm SUP. This approach
to describing answer set solvers makes it easier to prove their correctness, to
compare them, and to design new systems.

1 Introduction

Most state-of-the-art Satisfiability (SAT) solvers are based on variations of the Davis-
Putnam-Logemann-Loveland (DPLL) procedure [1]. Usually enhancements of DPLL are
described fairly informally with the use of pseudocode. It is often difficult to understand
the precise meaning of these modifications and to prove their properties on the basis of
such informal descriptions. In [2], the authors proposed an alternative approach to de-
scribing DPLL and its enhancements (for instance, backjumping and learning). They
describe each variant of DPLL by means of a transition system that can be viewed
as an abstract framework underlying DPLL computation. The authors further extend
the framework to the algorithms commonly used in Satisfiability Modulo Background
Theories.

The abstract framework introduced in [2] describes what ”states of computation” are,
and which transitions between states are allowed. In this way, it defines a directed graph
such that every execution of the DPLL procedure corresponds to a path in this graph.
Some edges may correspond to unit propagation steps, some to branching, some to
backtracking. This allows the authors to model a DPLL algorithm by a mathematically
simple and elegant object, graph, rather than a collection of pseudocode statements.
Such an abstract way of presenting DPLL simplifies the analysis of its correctness and
facilitates formal reasoning about its properties. Instead of reasoning about pseudocode
constructs, we can reason about properties of a graph. For instance, by proving that the
graph corresponding to a version of DPLL is acyclic we demonstrate that the algorithm
always terminates. On the other hand, by checking that every terminal state corresponds
to a solution we establish the correctness of the algorithm.

The graph introduced in [2] is actually an imperfect representation of DPLL in the
sense that some paths in the graph do not correspond to any execution of DPLL (for
example, paths in which branching is used even though unit propagation is applicable).
But this level of detail is irrelevant when we talk about correctness. Furthermore, it

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 377–391, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

378 Y. Lierler

makes our correctness theorems more general. These theorems cover not only execu-
tions of the pseudo-code, but also some computations that are prohibited by its details.

In this paper we take the abstract framework for describing DPLL-like procedures for
SAT solvers as a starting point and design a similar framework for three algorithms that
generate answer sets for logic programs. The first one is the SMODELS algorithm [3],
implemented in one of the major answer set solvers1. The other algorithm is called
SUP and can be seen as a simplification of SMODELS algorithm.2 We implemented this
algorithm in the new, previously unpublished system SUP3. The last algorithm that we
describe is ASP-SAT with Backtracking4 [4]. It computes models of the completion of
the given program using DPLL and tests them until an answer set is found.

We start by reviewing the abstract framework for DPLL developed in [2] in a form
convenient for our purposes. We demonstrate how this framework can be modified to
describe an algorithm for computing supported models of a logic program, and then
extend it to the SMODELS algorithm for computing answer sets. We show that for a
large class of programs, called tight, the graph representing SMODELS is closely related
to the graph representing the application of DPLL to the completion of the program.
As a step towards extending these ideas to ASP-SAT with Backtracking, we analyze
a modification of the original DPLL graph that includes testing the models found by
DPLL. We then show how a special case of this construction corresponds to ASP-SAT

with Backtracking.
We hope that the analysis of algorithms for computing answer sets in terms of tran-

sition systems described in this paper will contribute to clarifying computational prin-
ciples of answer set programming and to the development of new systems.

2 Review: Abstract DPLL

For a set σ of atoms, a state relative to σ is either a distinguished state FailState or a
list M of literals over σ such that M contains no repetitions, and each literal in M has an
annotation, a bit that marks it as a decision literal or not. For instance, the states relative
to a singleton set {a} of atoms are

FailState, /0, a, ¬a, ad, ¬ad ,a ¬a, ad ¬a,
a ¬ad, ad ¬ad,¬a a, ¬ad a, ¬a ad, ¬ad ad ,

where by /0 we denote the empty list. The concatenation of two such lists is denoted by
juxtaposition. Frequently, we consider M as a set of literals, ignoring both the annota-
tions and the order between its elements. We write ld to emphasize that l is a decision
literal. A literal l is unassigned by M if neither l nor l belongs to M.

1 SMODELS: http://www.tcs.hut.fi/Software/smodels
2 The idea of simplifying the SMODELS algorithm in this manner was suggested to us by

Mirosław Truszczyński (August 2, 2007).
3 SUP: http://www.cs.utexas.edu/users/tag/sup. In fact, SUP implements a

more sophisticated form of the algorithm that is enhanced with learning.
4 A more sophisticated form of this algorithm, ASP-SAT with Learning, is implemented in sys-

tem CMODELS: http://www.cs.utexas.edu/users/tag/cmodels

Abstract Answer Set Solvers 379

If C is a disjunction (conjunction) of literals then by C we understand the conjunction
(disjunction) of the complements of the literals occurring in C. We will sometimes
identify C with the set of its elements.

For any CNF formula F (a set of clauses), we will define its DPLL graph DPF . The
set of nodes of DPF consists of the states relative to the set of atoms occurring in F . We
use the terms “state” and “node” interchangeably. If a state is consistent and complete
then it represents a truth assignment for F .

The set of edges of DPF is described by a set of “transition rules”. Each transition
rule has the form M =⇒ M′ followed by a condition, so that

• M and M′ are symbolic expressions for nodes of DPF , and
• if the condition is satisfied there is an edge between node M and M′ in the graph.

There are four transition rules that characterize the edges of DPF :

Unit Propagate: M =⇒ M l if C∨ l ∈ F and C ⊆M

Decide: M =⇒ M ld if l is unassigned by M

Fail: M =⇒ FailState if

{
M is inconsistent, and
M contains no decision literals

Backtrack: P ld Q =⇒ P l if

{
P ld Q is inconsistent, and
Q contains no decision literals.

Note that an edge in the graph may be justified by several transition rules.
This graph can be used for deciding the satisfiability of a formula F simply by con-

structing an arbitrary path leading from node /0 until a terminal node M is reached. The
following proposition shows that this process always terminates, that F is unsatisfiable
if M is FailState, and that M is a model of F otherwise.

Proposition 1. For any CNF formula F,

(a) graph DPF is finite and acyclic,
(b) any terminal state of DPF other than FailState is a model of F,
(c) FailState is reachable from /0 in DPF if and only if F is unsatisfiable.

For instance, let F be the set consisting of the clauses

a∨b
¬a∨ c.

Here is a path in DPF with every edge annotated by the name of a transition rule that
justifies the presence of this edge in the graph:

/0 =⇒ (Decide)
ad =⇒ (Unit Propagate)
ad c =⇒ (Decide)
ad c bd

(1)

380 Y. Lierler

Since the state ad c bd is terminal, Proposition 1(b) asserts that {a,c,b} is a model of F .
Here is another path in DPF from /0 to the same terminal node:

/0 =⇒ (Decide)
ad =⇒ (Decide)
ad ¬cd =⇒ (Unit Propagate)
ad ¬cd c =⇒ (Backtrack)
ad c =⇒ (Decide)
ad c bd

(2)

Path (1) corresponds to an execution of DPLL; path (2) does not, because it uses Decide
instead of Unit Propagate.

Note that the graph DPF is a modification of the classical DPLL graph defined in [2,
Section 2.3]. It is different in three ways. First, the description of the classical DPLL
graph involves a “PureLiteral” transition rule, which we have dropped. Second, its states
are pairs M ‖ F for all CNF formulas F . For our purposes, it is not necessary to include
F . Third, in the definition of that graph, each M is required to be consistent. In case
of the DPLL, due to the simple structure of a clause, it is possible to characterize the
applicability of Backtrack in a simple manner: when some of the clauses become in-
consistent with the current partial assignment, Backtrack is applicable. In ASP, it is not
easy to describe the applicability of Backtrack if only consistent states are taken into
account. We introduced inconsistent states in the graph DPF to facilitate our work on
extending this graph to model the SMODELS algorithm.

3 Background: Logic Programs

A (propositional) logic program is a finite set of rules of the form

a0 ← a1, . . . ,am,not am+1, . . . ,not an, (3)

where each ai is an atom. By Bodies(Π ,a) we denote the (multi-)set of the bodies of all
rules of Π with head a. We will identify the body of (3) with the conjunction of literals

a1∧ . . .∧am∧¬am+1∧ . . .¬an.

and (3) with the implication

a1∧ . . .∧am∧¬am+1∧ . . .¬an → a0.

For any set M of literals, by M+ we denote the set of positive literals from M. We
assume that the reader is familiar with the definition of an answer set (stable model) of
a logic program [5]. For any consistent and complete set M of literals (assignment), if
M+ is an answer set for a program Π , then M is a model of Π . Moreover, in this case
M is a supported model of Π , in the sense that for every atom a ∈M, M |= B for some
B ∈ Bodies(Π ,a).

Abstract Answer Set Solvers 381

4 Generating Supported Models

In the next section we will define, for an arbitrary program Π , a graph SMΠ representing
the application of the SMODELS algorithm to Π ; the terminal nodes of SMΠ are answer
sets of Π . As a step in this direction, we describe here a simpler graph ATLEASTΠ . The
terminal nodes of ATLEASTΠ are supported models of Π .

The set of nodes of ATLEASTΠ consists of the states relative to the set of atoms
occurring in Π . The edges of the graph ATLEASTΠ are described by the transition rules
Decide, Fail, Backtrack introduced above in the definition of DPF and the additional
transition rules5:

Unit Propagate LP: M =⇒ M a if a← B ∈Π and B⊆M

All Rules Cancelled: M =⇒ M ¬a if B∩M �= /0 for all B ∈ Bodies(Π ,a),

Backchain True: M =⇒ M l if

⎧⎪⎪⎨⎪⎪⎩
a← B ∈Π ,
a ∈M,

B′ ∩M �= /0 for all B′ ∈ Bodies(Π ,a)\B ,
l ∈ B

Backchain False: M =⇒ M l if

⎧⎨⎩
a← l,B ∈ Π ,
¬a ∈M, and
B⊆M.

Note that each of the rules Unit Propagate LP and Backchain False is similar to Unit
Propagate: the former corresponds to Unit Propagate on C∨ l where l is the head of
the rule, and the latter corresponds to Unit Propagate on C∨ l where l is an element of
the body of the rule.

This graph can be used for deciding whether program Π has a supported model by
constructing a path from /0 to a terminal node:

Proposition 2. For any program Π ,

(a) graph ATLEASTΠ is finite and acyclic,
(b) any terminal state of ATLEASTΠ other than FailState is a supported model of Π ,
(c) FailState is reachable from /0 in ATLEASTΠ if and only if Π has no supported

models.

For instance, let Π be the program

a← not b
b← not a
c← a
d ← d.

(4)

5 The names of some of these rules follow [6].

382 Y. Lierler

Here is a path in ATLEASTΠ :

/0 =⇒ (Decide)
ad =⇒ (Unit Propagate LP)
ad c =⇒ (All Rules Cancelled)
ad c ¬b =⇒ (Decide)
ad c ¬b dd

(5)

Since the state ad c ¬b dd is terminal, Proposition 2(b) asserts that {a,c,¬b,d} is a
supported model of program Π .

The assertion of Proposition 2 will remain true if we drop the transition rules
Backchain True and Backchain False from the definition of ATLEASTΠ .

The transition rules defining ATLEASTΠ are closely related to procedure Atleast [3,
Sections 4.1], which is one of the core procedures of the SMODELS algorithm.

5 Smodels

Recall that a set U of atoms occurring in a program Π is said to be unfounded [7] on
a consistent set M of literals w.r.t. Π if for every a ∈U and every B ∈ Bodies(Π ,a),
M |= ¬B or U ∩B+ �= /0.

We now describe the graph SMΠ that represents the application of the SMODELS

algorithm to program Π . SMΠ is a graph whose nodes are the same as the nodes of the
graph ATLEASTΠ . The edges of SMΠ are described by the transition rules of ATLEASTΠ
and the additional transition rule:

Unfounded: M =⇒ M ¬a if

{
M is consistent, and
a ∈U for a set U unfounded on M w.r.t. Π

This transition rule of SMΠ is closely related to procedure Atmost [3, Sections 4.2],
which together with the procedure Atleast forms the core of the SMODELS algorithm.

The graph SMΠ can be used for deciding whether program Π has an answer set by
constructing a path from /0 to a terminal node:

Proposition 3. For any program Π ,

(a) graph SMΠ is finite and acyclic,
(b) for any terminal state M of SMΠ other than FailState, M+ is an answer set of Π ,
(c) FailState is reachable from /0 in SMΠ if and only if Π has no answer sets.

To illustrate the difference between SMΠ and ATLEASTΠ , assume again that Π is pro-
gram (4). Path (5) in the graph ATLEASTΠ is also a path in SMΠ . But state ad c ¬b dd ,
which is terminal in ATLEASTΠ , is not terminal in SMΠ . This is not surprising, since
the set {a,c,d} of atoms that belongs to this state is not an answer set of Π . To get to a
state that is terminal in SMΠ , we need two more steps:

...
ad c ¬b dd =⇒ (Unfounded, U = {d})
ad c ¬b dd ¬d =⇒ (Backtrack)
ad c ¬b ¬d.

(6)

Proposition 3(b) asserts that {a,c} is an answer set of Π .

Abstract Answer Set Solvers 383

The assertion of Proposition 3 will remain true if we drop the transition rules All
Rules Cancelled, Backchain True, and Backchain False from the definition of SMΠ .

6 Sup

In this section we show how to extend the graph ATLEASTΠ by the modification of
transition rule Unfounded so that terminal nodes of the resulting graph correspond to
answer sets of Π .

The graph SUPΠ is the subgraph of SMΠ such that its nodes are the same as the nodes
of the graph SMΠ and its edges are described by the transition rules of ATLEASTΠ and
the following modification of the rule Unfounded of SMΠ :

Unfounded SUP: M =⇒ M ¬a if

⎧⎨⎩
no literal is unassigned by M,
M is consistent, and
a ∈U for a set U unfounded on M w.r.t. Π .

This graph can be used for deciding whether a program Π has an answer set by con-
structing a path from /0: Proposition 3 remains correct after replacing graph SMΠ with
SUPΠ .

The only difference between SUPΠ and SMΠ is due to the additional restriction in
Unfounded SUP: it is applicable only to the states that assign all atoms in Π . To illus-
trate the difference between SUPΠ and SMΠ , assume that Π is program (4). Path (6)
in SMΠ is also a path in SUPΠ . On the other hand the path

/0 =⇒ (Unfounded, U = {d})
¬d

of SMΠ does not belong to SUPΠ
We can view the graph SUPΠ as a description of a particular strategy for traversing

SMΠ , i.e., an edge corresponding to an application of Unfounded to a state in SMΠ
is considered only if a transition rule Decide is not applicable in this state. Note that
system SMODELS implements the opposite strategy, i.e., an edge corresponding to an
application of Decide is considered only if Unfounded is not applicable. Nevertheless,
the strategy described by SUPΠ may be reasonable for many problems. For instance,
it is easy to see that transition rule Unfounded is redundant for tight programs. Fur-
thermore, the analogous strategy has been successfully used in SAT-based answer set
solvers ASSAT6 [8] and CMODELS (see Footnote 4) [4]. These systems first compute the
completion of a program and then test each model of the completion whether it is an
answer set (this can be done by testing whether it contains unfounded sets). In fact, the
work on ASSAT and CMODELS inspired the development of system SUP. Unlike ASSAT

and CMODELS, SUP does not compute the completion of a program but performs its
inference directly on the the program by means of transition rules of the graph SUPΠ .

We have implemented system SUP (see Footnote 3), whose underlying algorithm is
modelled by the graph SUPΠ . In the implementation, we used

6 ASSAT: http://assat.cs.ust.hk/

384 Y. Lierler

– the interface of SAT-solver MINISAT7 (v1.12b) that supports non-clausal constraints
[9] in order to implement inferences described by Unit Propagate LP, All Rules
Cancelled, Backchain True, Backchain False, Decide, and Fail,

– parts of the CMODELS code that support transition rule Unfounded SUP.

Note that system SUP also implements conflict-driven backjumping and learning.
Preliminary results available at SUP web site (see Footnote 3) comparing SUP with
other answer set solvers are promising.

The implementation of SUP proofs that the abstract framework for answer set solvers
introduced in this work may suggest new designs for solvers.

7 Tight Programs

We now recall the definitions of the positive dependency graph and a tight program.
The positive dependency graph of a program Π is the directed graph G such that

– the nodes of G are the atoms occurring in Π , and
– G contains the edges from a0 to ai (1≤ i≤ m) for each rule (3) in Π .

A program is tight if its positive dependency graph is acyclic. For instance, program (4)
is not tight since its positive dependency graph has a cycle due to the rule d ← d. On
the other hand, the program constructed from (4) by removing this rule is tight.

Recall that for any program Π and any assignment M, if M+ is an answer set of Π
then M is a supported model of Π . For the case of tight programs, the converse holds
also: M+ is an answer set for Π if and only if M is a supported model of Π [10].

It is also well known that the supported models of a program can be characterized
as models of its completion in the sense of [11]. It turns out that for tight programs the
graph SMΠ is “almost identical” to the graph DPF , where F is the (clausified) comple-
tion of Π . To make this claim precise, we need the following terminology.

We say that an edge M =⇒ M′ in the graph SMΠ is singular if

– the only transition rule justifying this edge is Unfounded, and
– some edge M =⇒ M′′ can be justified by a transition rule other than Unfounded.

For instance, let Π be the program

a← b
b← c.

The edge
ad bd ¬cd =⇒ (Unfounded, U = {a,b})
ad bd ¬cd ¬a

in the graph SMΠ is singular, because the edge

ad bd ¬cd =⇒ (All Rules Cancelled)
ad bd ¬cd ¬b

belongs to SMΠ also.

7 MINISAT: http://minisat.se/

Abstract Answer Set Solvers 385

From the point of view of actual execution of the SMODELS algorithm, singular edges
of the graph SMΠ are inessential: SMODELS never follows a singular edge. By SM−

Π we
denote the graph obtained from SMΠ by removing all singular edges.

Recall that for any program Π , its completion consists of Π and the formulas that
can be written as

¬a∨
∨

B∈Bodies(Π ,a)

B (7)

for every atom a in Π . CNF-Comp(Π) is the completion converted to CNF using
straightforward equivalent transformations. In other words, CNF-Comp(Π) consists of
clauses of two kinds:

1. the rules a← B of the program written as clauses

a∨B, (8)

2. formulas (7) converted to CNF using the distributivity of disjunction over con-
junction8.

Proposition 4. For any tight program Π , the graph SM−
Π is equal to each of the graphs

ATLEASTΠ and DPCNF-Comp(Π).

For instance, let Π be the program

a← b, not c
b.

This program is tight. Its completion is

(a ↔ b∧¬c)∧b∧¬c,

and CNF-Comp(Π) is

(a∨¬b∨ c)∧ (¬a∨b)∧ (¬a∨¬c)∧b∧¬c.

Proposition 4 asserts that, for this formula F , SM−
Π coincides with DPF and with

ATLEASTΠ .
From Proposition 4, it follows that applying the SMODELS algorithm to a tight pro-

gram essentially amounts to applying DPLL to its completion. A similar relationship, in
terms of pseudocode representations of SMODELS and DPLL, is established in [12].

8 Generate and Test

In this section, we present a modification of the graph DPF that includes testing the
models of F found by DPLL. Let F be a CNF formula, and let X be a set of models

8 It is essential that repetitions are not removed in the process of clausification. For instance,
CNF-Comp(a← not a) is the formula (a∨a)∧ (¬a∨¬a).

386 Y. Lierler

of F . The terminal nodes of the graph GTF,X defined below are models of F that belong
to X .

The nodes of the graph GTF,X are the same as the nodes of the graph DPF . The edges
of GTF,X are described by the transition rules of DPF and the additional transition rules:

Fail GT: M =⇒ FailState if

⎧⎨⎩
no literal is unassigned by M,
M �∈ X ,
M contains no decision literals

Backtrack GT: P ld Q =⇒ P l if

⎧⎨⎩
no literal is unassigned by P ld Q,
P ld Q �∈ X ,
Q contains no decision literals.

It is easy to see that the graph DPF is a subgraph of GTF,X . Furthermore, when the set X
coincides with the set of all models of F the graphs are identical. This graph can be
used for deciding whether a formula F has a model that belongs to X by constructing a
path from /0 to a terminal node:

Proposition 5. For any CNF formula F and any set X of models of F,

(a) graph GTF,X is finite and acyclic,
(b) any terminal state of GTF,X other than FailState belongs to X,
(c) FailState is reachable from /0 in GTF,X if and only if X is empty.

Note that to verify the applicability of the new transition rules Fail GT and Back-
track GT we need a procedure for testing whether a set of literals belongs to X , but
there is no need to have the elements of X explicitly listed.

ASP-SAT with Backtracking [4] is a procedure that computes models of the comple-
tion of the given program using DPLL, and tests them until an answer set is found. The
application of the ASP-SAT with Backtracking algorithm to a program Π can be viewed
as constructing a path from /0 to a terminal node in the graph GTF,X , where

• F is the completion of Π converted to conjunctive normal form, and
• X is the set of all assignments corresponding to answer sets of Π .

9 Related Work

Simons [3] described the SMODELS algorithm by means of a pseudocode and demon-
strated its correctness. Gebser and Schaub [13] provided a deductive system for describ-
ing inferences involved in computing answer sets by tableaux methods. The abstract
framework presented in this paper can be viewed as a deductive system also, but it is a
very different system. For instance, we describe backtracking by an inference rule, and
the Gebser-Schaub system doesn’t. Accordingly, the derivations considered in this pa-
per describe search process, and derivations in the Gebser-Schaub system don’t. Also,
the abstract framework discussed here doesn’t have any inference rule similar to Cut;
this is why its derivations are paths, rather than trees.

Abstract Answer Set Solvers 387

10 Proofs

Due to the lack of space, some proofs are omitted.9

Lemma 1. For any CNF formula F and a path from /0 to a state l1 . . . ln in DPF , every
model X of F satisfies li if it satisfies all decision literals ld

j with j ≤ i.

Proof. By induction on the length of a path. Since the property trivially holds in the
initial state /0, we only need to prove that all transition rules of DPF preserve it.

Consider an edge M =⇒ M′ where M is a sequence l1 . . . lk such that every model
X of F satisfies li if it satisfies all decision literals ld

j with j ≤ i.
Unit Propagate: M′ is M lk+1. Take any model X of F such that X satisfies all deci-

sion literals ld
j with j ≤ k +1. By the inductive hypothesis, X |= M. From the definition

of Unit Propagate, for some clause C∨ lk+1 ∈ F , C ⊆ M. Consequently, M |= ¬C. It
follows that X |= lk+1.

Decide: M′ is M ld
k+1. Obvious.

Fail: Obvious.
Backtrack: M has the form P ld

i Q where Q contains no decision literals. M′ is P li.
Take any model X of F such that X satisfies all decision literals ld

j with j ≤ i. We need

to show that X |= li. By contradiction. Assume that X |= li. Since Q does not contain
decision literals, X satisfies all decision literals in P ld

i Q. By the inductive hypothesis, it
follows that X satisfies P ld

i Q, that is, M. This is impossible because M is inconsistent.

Proof of Proposition 1. (a) The finiteness of DPF is obvious. For any list N of literals
by |N| we denote the length of N. Any state M, other than FailState, has the form
M0 l1 M1 . . . lp Mp, where l1 . . . lp are all desicion literals of M; we define α(M) as the
sequence of nonnegative integers |M0|, |M1|, . . . , |Mp|, and α(FailState) = ∞. For any
states M and M′ of DPF , we understand α(M)< α(M′) as the lexicographical order. By
the definition of the transition rules defining the edges of DPF , if there is an edge from
a state M to M′ in DPF , then α(M) < α(M′). It follows that if a state M′ is reachable
from M then α(M) < α(M′). Consequently, the graph is acyclic.
(b) Consider any terminal state M other than FailState. From the fact that Decide is
not applicable, we derive that M assigns all literals. Similarly, since neither Backtrack
nor Fail is applicable, M is consistent. Consequently, M is an assignment. Consider any
clause C∨ l in F . It follows that if C �⊆ M then C∩M �= /0. Since Unit Propagate is not
applicable, it follows that if C ⊆ M then l ∈M. We derive that M |= C∨ l. Hence, M is
a model of F .
(c) Left-to-right: Since FailState is reachable from /0, there is an inconsistent state M
without decision literals such that there exists a path from /0 to M. By Lemma 1, any
model of F satisfies M. Since M is inconsistent we conclude that F has no models.

Right-to-left: From (a) it follows that there is a path from /0 to some terminal state.
By (b), this state cannot be different from FailState, because F is unsatisfiable.

Lemma 2. For any program Π and a path from /0 to a state l1 . . . ln in ATLEASTΠ ,
every supported model X for Π satisfies li if it satisfies all decision literals ld

j with j≤ i.

9 http://www.cd.utexas.edu/users/yuliya/papers/aasp-full.ps
contains a full version of the paper.

388 Y. Lierler

Proof. By induction on the length of the path. Similar to the proof of Lemma 1. We
will show that the property in question is preserved by the four new rules.

Unit Propagate LP: M′ is M a. Take any model X of Π such that X satisfies all
decision literals ld

j with j ≤ k. From the inductive hypothesis it follows that X |= M. By
the definition of Unit Propagate LP, B⊆M for some rule a← B. Consequently, M |= B.
Since X is a model of Π we derive that X |= a.

All Rules Cancelled: M′ is M ¬a, such that B∩M �= /0 for every B ∈ Bodies(Π ,a).
Consequently, M |=¬B for every B∈Bodies(Π ,a). Take any model X of Π such that X
satisfies all decision literals ld

j with j ≤ k. We need to show that X |= ¬a. By contradic-
tion. Assume that X |= a. By the inductive hypothesis, X |= M. Therefore, X |= ¬B for
every B ∈ Bodies(Π ,a). We derive that X is not a supported model of Π .

Backchain True: M′ is M l. Take any supported model X of Π such that X satisfies all
decision literals ld

j with j ≤ k. We need to show that X |= l. By contradiction. Assume

X |= l. Consider the rule a ← B corresponding to this application of Backchain True.
Since l ∈ B, X |= ¬B. By the definition of Backchain True, B′ ∩M �= /0 for every B′

in Bodies(Π ,a)\ B. Consequently, M |= ¬B′ for every B′ in Bodies(Π ,a)\ B. By the
inductive hypothesis, X |= M. It follows that X |= ¬B′ for every B′ in Bodies(Π ,a)\ B.
Hence X is not supported by Π .

Backchain False: M′ is M l. Take any model X of Π such that X satisfies all decision
literals ld

j with j≤ k. We need to show that X |= l. By contradiction. Assume that X |= l.
By the definition of Backchain False there exists a rule a← l,B in Π such that ¬a ∈M
and B ⊆ M. Consequently, M |= ¬a and M |= B. By the inductive hypothesis, X |= M.
It follows that X |= ¬a and X |= B. Since X |= l, X does not satisfy the rule a← l,B, so
that it is not a model of Π .

Proof of Proposition 2. Parts (a) and (c) are proved as in the proof of Proposition 1,
using Lemma 2.
(b) Let M be a terminal state. It follows that none of the rules are applicable. From the
fact that Decide is not applicable, we derive that M assigns all literals. Since neither
Backtrack nor Fail is applicable, M is consistent. Since Unit Propagate LP is not ap-
plicable, it follows that for every rule a ← B ∈Π , if B ⊆M then a ∈M. Consequently,
if M |= B then M |= a. We derive that M is a model of Π . We now show that M is
a supported model of Π . By contradiction. Suppose that M is not a supported model.
Then, there is an atom a ∈M such that M �|= B for every B ∈ Bodies(Π ,a). Since M is
consistent, B∩M �= /0 for every B ∈ Bodies(Π ,a). Consequently, All Rules Cancelled
is applicable. This contradicts the assumption that M is terminal.

We say that a model X of a program Π is unfounded-free if no non-empty subset of
X is an unfounded set on X w.r.t. Π .

Lemma 3 (Theorem 4.6 [14]). For any model X of a program Π , X+ is an answer set
for Π if and only if X is unfounded-free.

Lemma 4. For any unfounded set U on a consistent set Y of literals w.r.t. a program Π ,
and any assignment X, if X |= Y and X ∩U �= /0, then X+ is not an answer set for Π .

Proof. Assume that X+ is an answer set for Π . Then X is a model of Π . By Lemma 3,
it follows that X+ is unfounded-free. Since X ∩U �= /0 it follows that X ∩U is not

Abstract Answer Set Solvers 389

unfounded on X . This means that for some rule a ← B in Π such that a ∈ X ∩U ,
X �|= ¬B and X ∩U ∩B+ = /0. Since X |= Y , it follows that Y �|= ¬B. Since X satisfies B,
B+ ⊆ X and consequently U ∩B+ = X ∩U ∩B+ = /0. It follows that set U is not an
unfounded set on Y .

Lemma 5. For any program Π and a path from /0 to a state l1 . . . ln in SMΠ , and any
assignment X, if X+ is an answer set for Π then X satisfies li if it satisfies all decision
literals ld

j with j ≤ i.

Proof. By induction on the length of a path. Recall that for any assignment X , if X+ is an
answer set for Π , then X is a supported model of Π , and that the transition system SMΠ
extends ATLEASTΠ by the transition rule Unfounded. Given our proof of Lemma 2, we
only need to demonstrate that application of Unfounded preserves the property.

Consider a transition M =⇒Unfounded M′, where M is a sequence l1 . . . lk. M′ is
M ¬a, such that a ∈U , where U is an unfounded set on M w.r.t Π . Take any assign-
ment X such that X+ is an answer set for Π and X satisfies all decision literals ld

j with
j ≤ k. By the inductive hypothesis, X |= M. Then X |= ¬a. Indeed, otherwise a would
be a common element of X and U , and X ∩U would be non-empty, which contradicts
Lemma 4 with M as Y .

Since the graph SUPΠ is a subgraph of SMΠ , Lemma 5 immediately holds for SUPΠ .

Proposition 3. For any program Π ,

(a) graph SMΠ [SUPΠ] is finite and acyclic.
(b) for any terminal state M of SMΠ [SUPΠ] other than FailState, M+ is an answer set

of Π .
(c) FailState is reachable from /0 in SMΠ [SUPΠ] if and only if Π has no answer sets.

Proof. Parts (a) and (c) are proved as in the proof of Proposition 1, using Lemma 5.
(b) As in the proof of Proposition 2(b) we derive that M is a model of Π . Assume
that M+ is not an answer set. Then, by Lemma 3, there is a non-empty unfounded
set U on M w.r.t. Π such that U ⊆ M. It follows that Unfounded [Unfounded SUP] is
applicable (with an arbitrary a∈U). This contradicts the assumption that M is terminal.

Lemma 6. For any CNF formula F and a set X of models of F, and a path from /0 to a
state l1 . . . ln in GTF,X , any model Y ∈ X satisfies li if it satisfies all decision literals ld

j
with j ≤ i.

Proof. Similar to the proof of Lemma 1. There are two more rules to consider:
Fail GT: Obvious.
Backtrack GT: M has the form P ld

i Q where Q contains no decision literals, M �∈ X .
Then, M′ is P li. Take any model E of F in X such that E satisfies all decision literals
ld

j with j ≤ i. We need to show that E |= li. By contradiction. Assume E |= li. By the

inductive hypothesis, and the fact that M′ is P ld
i Q where Q contains no decision literals,

it follows that E |= M. Since M has no unassigned literals, E = M. This contradicts the
assumption that M �∈ X .

Proof of Proposition 5. Part (a) and part (c) right-to-left are proved as in the proof of
Proposition 1.

390 Y. Lierler

(b) Let M be any terminal state other than FailState. As in the proof of Proposition 1(b)
it follows that M is a model of F . Neither Fail GT nor Backtrack GT is applicable.
Then, M belongs to X .
(c) Left-to-right: Since FailState is reachable from /0, there is a state M without decision
literals such that it is reachable from /0 and either transition rule Fail or Fail GT is
applicable.

Case 1. Fail is applicable. Then, M is inconsistent. By Lemma 6, any model of F in
X satisfies M. Since M is inconsistent we conclude that X is empty.

Case 2. Fail GT is applicable. Then, M assigns all literals and M �∈X . From Lemma 6,
it follows that for any Y ∈ X , Y = M. Since M �∈ X , we conclude that X is empty.

11 Conclusions

In this paper we showed how to model algorithms for computing answer sets of a pro-
gram by means of simple mathematical objects, graphs. This approach simplifies the
analysis of the correctness of algorithms and allows us to study the relationship be-
tween various algorithms using the structure of the corresponding graphs. For exam-
ple, we used this method to establish that applying the SMODELS algorithm to a tight
program essentially amounts to applying DPLL to its completion. It also suggests new
designs for answer set solvers, as can be seen from our work on SUP. In the future we
will investigate the generalization of this framework to backjumping and learning per-
formed by the SMODELScc algorithm [6], to SUP with Learning, and to ASP-SAT with
Learning [4]. We also would like to generalize this approach to the algorithms used in
disjunctive answer set solvers.

Acknowledgements. We are grateful to Marco Maratea for bringing to our attention
the work by Nieuwenhuis et al. (2006), to Vladimir Lifschitz for the numerous discus-
sions, to Martin Gebser and Michael Gelfond for valuable comments. The author was
supported by the National Science Foundation under Grant IIS-0712113.

References

[1] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Com-
munications of ACM 5(7), 394–397 (1962)

[2] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From
an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the
ACM 53(6), 937–977 (2006)

[3] Simons, P.: Extending and Implementing the Stable Model Semantics. PhD thesis, Helsinki
University of Technology (2000)

[4] Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36, 345–377 (2006)

[5] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowal-
ski, R., Bowen, K. (eds.) Proceedings of International Logic Programming Conference and
Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)

[6] Ward, J.: Answer Set Programming with Clause Learning. PhD thesis, The University of
Cincinnati (2004)

Abstract Answer Set Solvers 391

[7] Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic pro-
grams. Journal of ACM 38(3), 620–650 (1991)

[8] Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers.
Artificial Intelligence 157, 115–137 (2004)10

[9] Een, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919. Springer, Heidelberg (2004)

[10] Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of
Methods of Logic in Computer Science 1, 51–60 (1994)

[11] Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp.
293–322. Plenum Press, New York (1978)

[12] Giunchiglia, E., Maratea, M.: On the relation between answer set and SAT procedures (or,
between smodels and cmodels). In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS,
vol. 3668, pp. 37–51. Springer, Heidelberg (2005)

[13] Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Etalle, S.,
Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11–25. Springer, Heidelberg
(2006)

[14] Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: Unfounded sets, fixpoint
semantics, and computation. Information and Computation 135(2), 69–112 (1997)

10 Revised version:
http://www.cs.ust.hk/faculty/flin/papers/assat-aij-revised.pdf

http://www.cs.ust.hk/faculty/flin/papers/assat-aij-revised.pdf
http://www.cs.ust.hk/faculty/flin/papers/assat-aij-revised.pdf

Partial Functions and Equality in Answer Set
Programming

Pedro Cabalar�

Department of Computer Science,
Corunna University (Corunna, Spain)

cabalar@udc.es

Abstract. In this paper we propose an extension of Answer Set Pro-
gramming (ASP) [1], and in particular, of its most general logical coun-
terpart, Quantified Equilibrium Logic (QEL) [2], to deal with partial
functions. Although the treatment of equality in QEL can be established
in different ways, we first analyse the choice of decidable equality with
complete functions and Herbrand models, recently proposed in the liter-
ature [3]. We argue that this choice yields some counterintuitive effects
from a logic programming and knowledge representation point of view.
We then propose a variant called QEL=

F where the set of functions is par-
titioned into partial and Herbrand functions (we also call constructors).
In the rest of the paper, we show a direct connection to Scott’s Logic of
Existence [4] and present a practical application, proposing an extension
of normal logic programs to deal with partial functions and equality, so
that they can be translated into function-free normal programs, being
possible in this way to compute their answer sets with any standard ASP
solver.

1 Introduction

Since its introduction two decades ago, the paradigm of Answer Set Program-
ming (ASP) [5] has gradually become one of the most successful and practical
formalisms for Knowledge Representation due to its flexibility, expressiveness
and current availability of efficient solvers. This success can be easily checked
by the continuous and plentiful presence of papers on ASP in the main con-
ferences and journals on Logic Programming, Knowledge Representation and
Artificial Intelligence during the last years. The declarative semantics of ASP
has allowed many syntactic extensions that have simplified the formalisation of
complex domains in different application areas like constraint satisfaction prob-
lems, planning or diagnosis.

In this paper we consider one more syntactic extension that is an underlying
feature in most application domains: the use of (partial) functions. Most ASP
programs include some predicates that are nothing else than relational repre-
sentations of functions from the original domain being modelled. For instance,
� This research was partially supported by Spanish MEC project TIN-2006-15455-

C03-02 and Xunta de Galicia project INCITE08-PXIB105159PR.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 392–406, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Partial Functions and Equality in Answer Set Programming 393

when modelling the typical educational example of family relationships, we may
use a predicate mother(X,Y) to express that X ’s mother is Y , but of course,
we must add an additional constraint to ensure that Y is unique wrt X , i.e.,
that the predicate actually acts as the function mother(X) = Y . In fact, it is
quite common that first time Prolog students use this last notation as their first
attempt. Functions are not only a natural element for knowledge representation,
but can also simplify in a considerable way ASP programs. Apart from avoiding
constraints for uniqueness of value, the possibility of nesting functional terms like
in W = mother(father(mother(X))) allows a more compact and readable repre-
sentation than the relational versionmother(X,Y), father(Y, Z),mother(Z,W)
involving extra variables, which may easily mean a source of formalisation er-
rors. Similarly, as we will see later, the use of partial functions can also save the
programmer from including explicit conditions in the rule bodies to check that
the rule head is actually defined.

The addition of functions to ASP is not new at all, although there exist two
different ways in which functions are actually understood. Most of the existing
work in the topic (like the general approaches [6,7,8] or the older use of function
Result for Situation Calculus inside ASP [9]) treat functions in the same way as
Prolog, that is, they are just a way for constructing the Herbrand universe, and so
they satisfy the unique names assumption – e.g. mother(john) = mary is always
false. A different alternative is dealing with functions in a more similar way to
Predicate Calculus, as done for instance in Functional Logic Programming [10].
The first and most general approach in this direction is due to the logical char-
acterisation of ASP in terms of Equilibrium Logic [11] and, in particular, to its
extension to first order theories, Quantified Equilibrium Logic (QEL) [2]. As a
result of this characterisation, the concept of stable model is now defined for
any theory from predicate calculus with equality. In fact, stable models can be
alternatively described by a second-order logic operator [12] quite close to Cir-
cumscription [13], something that has been already used, for instance, to study
strong equivalence for programs with variables [3].

As we will explain in the next section, we claim that the exclusive use of
Herbrand functions and the currently proposed interpretation of equality in QEL
with the requirement for functions to be complete yield some counterintuitive
results when introducing functions for knowledge representation. To solve these
problems, we propose a variation of QEL that uses a similar structure to the
logical characterisation [14] for functional logic programs, where we separate
Herbrand functions (or constructors) from partial functions. We further show
how our semantics for partial functions has a direct relation to the Logic of
Existence (or E-logic) proposed by Scott [4].

The rest of the paper is organized as follows. In the next section, we in-
formally consider some examples of knowledge representation with functions in
ASP, commenting the apparently expected behaviour and the problems that arise
when using the current proposal for QEL. In Section 3, we introduce our variant
called QEL=

F . Section 4 defines some useful derived operators, many of them di-
rectly extracted from E-logic and showing the same behaviour. In Section 5 we

394 P. Cabalar

consider a syntactic subclass of logic programs with partial functions and Her-
brand constants, and show how they can be translated into (non-functional)
normal logic programs afterwards. Finally, Section 6 contains a brief discussion
about related work and Section 7 concludes the paper.

2 A Motivating Example

Consider the following simple scenario with a pair of rules.

Example 1. When deciding the second course of a given meal once the first
course is fixed, we want to apply the following criterion: on Fridays, we repeat
the first course as second one; the rest of week days, we choose fish if the first
was pasta. �

A straightforward encoding of these rules1 into ASP would correspond to the
program Π1:

second(fish) ← first(pasta) ∧ ¬friday (1)
second(X) ← first(X) ∧ friday (2)

⊥ ← first(X) ∧ first(Y) ∧X �= Y (3)
⊥ ← second(X) ∧ second(Y) ∧X �= Y (4)

where the last two rules just represent that each course is unique, i.e., first(salad)
and first(pasta) cannot be simultaneously true, for instance. In fact, these con-
straints immediately point out that first and second are 0-ary functions. A very
naive attempt to use these functions for representing our example problem could
be the pair of formulas Π2:

second = fish← first = pasta ∧ ¬friday (5)
second = first← friday (6)

Of course,Π2 is not a logic program, but it can still be given a logic programming
meaning by interpreting it under Herbrand models of QEL, or the equivalent re-
cent characterisation of stable models for first order theories [12]. Unfortunately,
the behaviour of Π2 in QEL with Herbrand models will be quite different to
that of Π1 by several reasons that can be easily foreseen. First of all, there exists
now a qualitative difference between functions first and second with respect to
fish and pasta. For instance, while it is clear that fish = pasta must be false,
we should allow second = first to cope with our Fridays criterion. If we deal
with Herbrand models or unique names assumption, the four constants would
be pairwise different and (5) would be equivalent to ⊥ ← ⊥, that is, a tautology,
whereas (6) would become the constraint ⊥ ← friday.

1 As a difference wrt to the typical ASP notation, we use ¬ to represent default
negation and, instead of a comma, we use ∧ to separate literals in the body.

Partial Functions and Equality in Answer Set Programming 395

Even after limiting the unique names assumption only to constants fish and
pasta, new problems arise. For instance, the approaches in [2,12,3,15] deal with
complete functions and the axiom of decidable equality:

x = y ∨ ¬(x = y) (DE)

This axiom is equivalent to x = y ← ¬¬(x = y) which informally implies that
we always have a justification to assign any value to any function. Thus, for
instance, if it is not Friday and we do not provide any information about the
first course, i.e., no atom first(X) holds, then Π1 will not derive any information
about the second course, that is, no atom second(X) is derived. In Π2, however,
functions first and second must always have a value, which is further justified
in any stable model by (DE). As a result, we get that a possible stable model
is, for instance, first = fish and second = pasta. A related problem of axiom
(DE) is that it allows rewriting a rule like (5) as the constraint:

⊥ ← first = pasta ∧ ¬friday ∧ ¬(second = fish)

whose relational counterpart would be

⊥ ← first(pasta) ∧ ¬friday ∧ ¬second(fish) (7)

and whose behaviour in logic programming is very different from the original
rule (1). As an example, while Π1 ∪ {first(pasta)} entails second(fish), the
same program after replacing (1) by (7) has no stable models.

Finally, even after removing decidable equality, we face a new problem that
has to do with directionality in the equality symbol when used in the rule heads.
The symmetry of ‘=’ allows rewriting (6) as:

first = second← friday (8)

that in a relational notation would be the rule:

first(X) ← second(X) ∧ friday (9)

which, again, has a very different meaning from the original (2). For instance
Π1 ∪ {friday, second(fish)} does not entail anything about the first course,
whereas if we replace in this program (2) by (9), we obtain first(fish). This
is counterintuitive, since our program was intended to derive facts about the
second course, and not about the first one. To sum up, we will need some kind
of new directional operator to specify the function value in a rule head.

3 Quantified Equilibrium Logic with Partial Functions

The definition of propositional Equilibrium Logic [11] relied on establishing a
selection criterion on models of the intermediate logic, called the logic of Here-
and-There (HT) [16]. The first order case [2] followed similar steps, introducing

396 P. Cabalar

a quantified version of HT, called SQHT= that stands for Quantified HT with
static domains2 and equality. In this section we describe the syntax and semantics
of a variant, called SQHT=

F , for dealing with partial functions.
We begin by defining a first-order language by its signature, a tuple Σ =

〈C,F ,P〉 of disjoint sets where C and F are sets of function names and P a set
of predicate names. We assume that each function (resp. predicate) name has
the form f/n where f is the function (resp. predicate) symbol, and n ≥ 0 is
an integer denoting the number of arguments (or arity). Elements in C will be
called Herbrand functions (or constructors), whereas elements in F will receive
the name of partial functions. The sets C0 (Herbrand constants) and F0 (partial
constants) respectively represent the elements of C and F with arity 0. We
assume C0 contains at least one element.

First-order formulas are built up in the usual way, with the same syntax of
classical predicate calculus with equality =. We assume that ¬ϕ is defined as
ϕ → ⊥ whereas x �= y just stands for ¬(x = y). Given any set of functions A
we write Terms(A) to stand for the set of ground terms built from functions
(and constants) in A. In particular, the set of all possible ground terms for
signature Σ = 〈C,F ,P〉 would be Terms(C ∪ F) whereas the subset Terms(C)
will be called the Herbrand Universe of L. The Herbrand Base HB(C,P) is a
set containing all atoms that can be formed with predicates in P and terms in
the Herbrand Universe, Terms(C).

From now on, we assume that all free variables are implicitly universally
quantified. We use letters x, y, z and their capital versions to denote variables,
t to denote terms, and letters c, d to denote ground terms. Boldface letters like
x, t, c, . . . represent tuples (in this case of variables, terms and ground terms,
respectively). The corresponding semantics for SQHT=

F is described as follows.

Definition 1 (state). A state for a signature Σ = 〈C,F ,P〉 is a pair (σ,A)
where A ⊆ HB(C,P) is a set of atoms from the Herbrand Base and σ : Terms
(C ∪ F) → Terms(C) ∪ {u} is a function assigning to any ground term in the
language some ground term in the Herbrand Universe or the special value u �∈
Terms(C ∪ F) (standing for undefined). Function σ must satisfy:

(i) σ(c) = c for all c ∈ Terms(C).

(ii) σ(f(t1, . . . , tn)) =
{
u if σ(ti) = u for some i = 1 . . . n
σ(f(σ(t1), . . . , σ(tn))) otherwise

�

As we can see, our domain is exclusively formed by the terms from the Herbrand
Universe, Terms(C). These elements are used as arguments of ground atoms
in the set A, that collects the true atoms in the state. Similarly, the value of
any functional term is an element from Terms(C), excepting the cases in which
partial functions are left undefined – if so, they are assigned the special element u
(different from any syntactic symbol) instead. Condition (i) asserts, as expected,

2 The term static domain refers to the fact that the universe is shared among all
worlds in the Kripke frame.

Partial Functions and Equality in Answer Set Programming 397

that any term c from the Herbrand Universe has the fixed valuation σ(c) = c.
Condition (ii) guarantees, on the one hand, that a functional term with an
undefined argument becomes undefined in its turn, and on the other hand, that
functions preserve their interpretation through subterms – for instance, if we
have σ(f(a)) = c we expect that σ(g(f(a)) and σ(g(c)) coincide. It is easy to
see that (ii) implies that σ is completely determined by the values it assigns to
all terms like f(c) where f is any partial function and c a tuple of elements in
Terms(C).

Definition 2 (Ordering) among states). We say that state S = (σ,A) is
smaller than state S′ = (σ′, A′), written S) S′, when both:

i) A ⊆ A′.
ii) σ(d) = σ′(d) or σ(d) = u, for all d ∈ Terms(C ∪ F). �

We write S ≺ S′ when the relation is strict, that is, S) S′ and S �= S′. The
intuitive meaning of S) S′ is that the former contains less information than
the latter, so that any true atom or defined function value in S must hold in S′.

Definition 3 (HT -interpretation). An HT interpretation I for a signature
Σ = 〈C,F ,P〉 is a pair of states I = 〈Sh, St〉 with Sh) St. �

The superindices h, t represent two worlds (respectively standing for here and
there) with a reflexive ordering relation further satisfying h ≤ t. An interpreta-
tion like 〈St, St〉 is said to be total, referring to the fact that both states contain
the same information3.

Given an interpretation I = 〈Sh, St〉, with Sh = (σh, Ih) and St = (σt, It), we
define when I satisfies a formula ϕ at some world w ∈ {h, t}, written I, w |= ϕ,
inductively as follows:

– I, w |= p(t1, . . . , tn) if p(σw(t1), . . . , σw(tn)) ∈ Iw;
– I, w |= t1 = t2 if σw(t1) = σw(t2) �= u;
– I, w �|= ⊥; I, w |= �;
– I, w |= α ∧ β if I, w |= α and I, w |= β;
– I, w |= α ∨ β if I, w |= α or I, w |= β;
– I, w |= α→ β if for all w′ s.t. w ≤ w′: I, w′ �|= α or I, w′ |= β;
– I, w |= ∀x α(x) if for each c ∈ Terms(C): I, w |= α(c);
– I, w |= ∃x α(x) if for some c ∈ Terms(C): I, w |= α(c). �

An important observation is that the first condition above implies that an atom
with an undefined argument will always be valuated as false since, by definition,
u never occurs in ground atoms of Ih or It. Something similar happens with
equality: t1 = t2 will be false if any of the two operands, or even both, are
undefined. As usual, we say that I is a model of a formula ϕ, written I |= ϕ,
when I, h |= ϕ. Similarly, I is a model of a theory Γ when it is a model of all of
its formulas. The next definition introduces the idea of equilibrium models for
SQHT=

F .
3 Note that by total we do not mean that functions cannot be left undefined. We may

still have some term d for which σt(d) = u.

398 P. Cabalar

Definition 4 (Equilibrium model). A model 〈St, St〉 of a theory Γ is an
equilibrium model if there is no strictly smaller state Sh ≺ St that 〈Sh, St〉 is
also model of Γ . �

The Quantified Equilibrium Logic with partial functions (QEL=
F) is the logic

induced by the SQHT=
F equilibrium models.

4 Useful Derived Operators

From the SQHT=
F semantics, it is easy to see that the formula (t = t), usually

included as an axiom for equality, is not valid in SQHT=
F . In fact, I, w |= (t = t)

iff σw(t) �= u, that is, term t is defined. In this way, we can introduce Scott’s [4]
existence operator4 in a standard way: E t

def= (t = t). Condition (ii) in De-
finition 1 implies the strictness condition of E-logic, formulated by the axiom
E f(t) → E t. As happens with (t = t), the substitution axiom for functions:

t1 = t2 → f(t1) = f(t2)

is not valid, since it may be the case that the function is undefined. However,
the following weaker version is an SQHT=

F tautology:

t1 = t2 ∧E f(t1) → f(t1) = f(t2)

To represent the difference between two terms, we may also have several
alternatives. The straightforward one is just ¬(t1 = t2), usually abbreviated as
t1 �= t2. However, this formula can be satisfied when any of the two operands is
undefined. We may sometimes want to express a stronger notion of difference that
behaves as a positive formula (this is usually called apartness in the intuitionistic
literature [17]). In our case, we are especially interested in an apartness operator
t1#t2 where both arguments are required to be defined:

t1#t2
def= E t1 ∧ E t2 ∧ ¬(t1 = t2)

To understand the meaning of this operator, consider the difference between
¬(King(France) = LouisXIV) and King(Spain)#LouisXIV . The first ex-
pression means that we cannot prove that the King of France is Louis XIV,
what includes the case in which France has not a king. The second expression
means that we can prove that the King of Spain (and so, such a concept exists)
is not Louis XIV.

The next operator we introduce has to do with definedness of rule heads in
logic programs. The inclusion of a formula in the consequent of an implication
may have an undesired effect when thinking about its use as a rule head. For
4 Contrarily to the original Scott’s E-logic, variables in SQHT=

F are always defined.
This is not an essential difference: terms may be left undefined instead, and so most
theorems, like (x = y) → (y = x) are expressed here using metavariables for terms
(t1 = t2) → (t2 = t1).

Partial Functions and Equality in Answer Set Programming 399

instance, consider the rule visited(next(x)) ← visited(x) and assume we have
the fact visited(1) but there is no additional information about next(1). We
would expect that the rule above does not yield any particular effect on next(1).
Unfortunately, as visited(next(1)) must be true, the function next(1) must be-
come defined and, as a collateral effect, it will be assigned some arbitrary value,
say next(1) = 10 so that visited(10) is made true. To avoid this problem, we
will use a new operator :- to define a different type of implication where
the consequent is only forced to be true when all the functional terms that are
“necessary to build” the atoms in the consequent are defined. Given a term t
we define its set of structural arguments Args(t) as follows. If t has the form
f(t1, . . . , tn) for any partial function f/n ∈ F , then Args(t) def= {t1, . . . , tn};
otherwise, Args(t) def= t. We extend this definition for any atom A, so that its
set of structural arguments Args(A) corresponds to:

Args(P (t1, . . . , tn)) def= {t1, . . . , tn}

Args(t = t′) def= Args(t) ∪Args(t′)

In our previous example, Args(visited(next(x))) = {next(x)}. Notice that, for
an equality atom t = t′, we do not consider {t, t′} as arguments as we have done
for the rest of predicates, but go down one level instead, considering Args(t) ∪
Args(t′) in its turn. For instance, ifA is the atom friends(mother(x),mother(y)),
then Args(A) would be {mother(x),mother(y)}, whereas for an equality atom
A′ like mother(x) = mother(y), Args(A′) = {x, y}. We define [ϕ] as the result of
replacing each atomA inϕ by the conjunction of allE t→ A for each t ∈ Args(A).
We can now define the new implication operator as follows ϕ :- ψ

def= ψ → [ϕ].
Back to the example, if we use now visited(next(x)) :- visited(x) we obtain, after
applying the previous definitions, that it is equivalent to:

visited(x) → [visited(next(x))]
↔ visited(x) → (E next(x) → visited(next(x)))
↔ visited(x) ∧ E next(x) → visited(next(x))

Another important operator will allow us to establish a direction in a rule
head assignment – remember the discussion about distinguishing between (6)
and (8) in Section 2. We define this assignment operator as follows:

f(t) := t′ def= E t′ → f(t) = t′

Now, our Example 1 would be encoded with the pair of formulas:

second := fish :- first = pasta ∧ ¬friday second := first :- friday

that, after some elementary transformations, lead to:

second = fish← first = pasta ∧ ¬friday
second = first← E first ∧ friday

400 P. Cabalar

Using these operators, a compact way to fix a default value t′ for a function
f(t) would be f(t) := t′ :- ¬(f(t)#t′). Finally, we introduce a nondeterministic
choice assignment with the following set-like expression:

f(t) ∈ {x | ϕ(x)} (10)

where ϕ(x) is a formula (called the set condition) that contains the free variable
x. The intuitive meaning of (10) is self-explanatory. As an example, the formula
a ∈ {x | ∃y Parent(x, y)} means that a should take a value among those x that
are parents of some y. Expression (10) is defined as the conjunction of:

∀x (ϕ(x) → f(t) = x ∨ f(t) �= x) (11)
¬∃x (ϕ(x) ∧ f(t) = x) → ⊥ (12)

Other typical set constructions can be defined in terms of (10):

f(t) ∈ {t′(y) | ∃y ϕ(y)} def= f(t) ∈ {x | ∃y (ϕ(y) ∧ t′(y) = x)}

f(t) ∈ {t′1, . . . , t′n}
def= f(t) ∈ {x | t′1 = x ∨ · · · ∨ t′n = x}

It must be noticed that variable x in (10) is not free, but quantified and
local to this expression. Note that ϕ(x) may contain other quantified and/or
free variables. For instance, observe the difference between:

Person(y) → a(y) ∈ {x | Parent(x, y)} (13)
Person(y) → a(y) ∈ {x | ∃y Parent(x, y)} (14)

In (13) we assign, per each person y, one of her parents to a(y), whereas in (13)
we are assigning any parent as, in fact, we could change the set condition to
∃z Parent(x, z).

At a first sight, it could seem that the formula ∃x(ϕ(x)∧f(t) = x) could cap-
ture the expected meaning of f(t) ∈ {x | ϕ(x)} in a more direct way. Unfortu-
nately, such a formula would not “pick” a value x among those that satisfy ϕ(x).
For instance, if we translate a ∈ {x | ∃y Parent(x, y)} as ∃x(∃y Parent(x, y) ∧
a = x) we would allow the free addition of facts for Parent(x, y). Notice also
that a formula like a ∈ {t} is stronger than an assignment a := t since when
t is undefined, the former is always false, regardless the value of a (it would
informally correspond to an expression like a ∈ ∅).

5 Logic Programs with Partial Functions

In this section we consider a subset of QEL=
F which corresponds to a certain

kind of logic program that allow partial functions but not constructors other
than a finite set of Herbrand constants C = C0. The interest of this syntactic
class is that it can be translated into ground normal logic programs, and so,
equilibrium models can be computed by any of the currently available answer
set provers. From now on, we assume that any function f/n with arity n > 0 is

Partial Functions and Equality in Answer Set Programming 401

partial, f/n ∈ F , and any constant c is a constructor, c ∈ C, unless we include
a declaration c/0 ∈ F . As usual in logic programming notation, we use in this
section capital letters to represent variables.

In what follows we will use the tag ‘FLP’ to refer to functional logic program-
ming definitions, and ‘LP’ to talk about the more restrictive syntax of normal
logic programs (without functions). An FLP-atom has the form5 p(t) or t1 = t2,
where p is a predicate name, t a tuple of terms and t1, t2 a pair of terms. An
FLP-literal is an atom A or its default negation ¬A. We call LP-terms (resp.
LP-atoms, resp. LP-literals) to those not containing partial function symbols.

An FLP-rule is an implication α :- β where β (called body) is a conjunction
of literals, and α (called head) has the form of one the following expressions:

– an atom p(t);
– the truth constant ⊥;
– an assignment f(t) := t′ with f ∈ F ;
– or a choice like f(t) ∈ {x | ϕ(x)} with f ∈ F and ϕ(x) a conjunction of

literals. We call x the choice variable and ϕ(x) the choice condition.

A choice rule is a rule with a choice head. A functional logic program is a set
of FLP-rules. A rule is said to be safe when: (1) if a variable x is the term t′ or
one of the terms in t, or occurs in the scope of negation, or in a choice condition
(excepting the choice variable), then it also occurs in some positive literal in the
body; and (2) if x is a choice variable, then it occurs in some positive literal
of the choice condition ϕ(x). For instance, the rules p(f(X), Y) :- q(Y) and
f ∈ {Y | p(Y)} are safe, whereas the rules f(Z) := 0 or f ∈ {Y | ¬p(Y)} are
not safe. A safe program is a set of safe rules. The following is an example of a
program in FLP syntax:

Example 2 (Hamiltonian cycles). Let Π2 be the FLP-program:

⊥ :- next(X) = next(Y) ∧X �= Y (15)
next(X) ∈ {Z | arc(X,Z)} :- node(X) (16)

visited(1) (17)
visited(next(X)) :- visited(X) (18)
⊥ :- ¬visited(X) ∧ node(X). (19)

An LP-rule is such that its body exclusively contains LP-literals and its head
is either ⊥ or an LP-atom p(t). An LP-program is a set of LP-rules. It is easy
to see that, for LP-rules, α :- β is equivalent to β → α. Thus, an LP-program
has the form of a (standard) normal logic program with constraints and without
partial functions. The absence of partial functions guarantees that QEL=

F and
QEL coincide for this kind of program:

Proposition 1. QEL=
F equilibrium models of an LP-program Π correspond to

QEL equilibrium models of Π.
5 Expressions like t1#t2 are left for a future work.

402 P. Cabalar

Furthermore, it is also very easy to see that, for LP-programs, the definition of
safeness we provided generalises the standard definition for normal logic pro-
grams. As a result, this means in particular that when an LP-program Π is safe,
QEL=

F equilibrium models coincide with the set of stable models of the grounded
version of Π , since QEL satisfies this property.

The translation of an FLP-program Π will be done in two steps. In a first
step, we will define a QEL theory Γ (Π) for a different signature and prove that
it is SQHT=

F equivalent modulo the original signature. This theory Γ (Π) is not
an LP-program, but can be easily translated into an LP-program Π∗ applying
some simple transformations that preserve equivalence wrt equilibrium models
(even in QEL). The main idea of the translation is that, for each partial function
f/n ∈ F occurring in Π we will handle a predicate like holds f(X1, . . . , Xn, V)
in Π∗, or holds f(X, V) for short. The technique of converting a function into a
predicate and shifting the function value as an extra argument is well known in
Functional Logic Programming and has received the name of flattening [18,19].
Obviously, once we deal with a predicate, we will need that no two different
values are assigned to the same function. This can be simply captured by:

⊥ ← holds f(X, V) ∧ holds f(X,W) ∧ ¬(V = W) (20)

with variables V,W not included in X.
Given the original signature Σ = 〈C,F ,P〉 for program Π , the theory Γ (Π)

will deal with a new signature Σ∗ = 〈C, ∅,P∗〉 where P∗ consists of P plus a
new predicate holds f/(n+ 1) per each partial function f/n ∈ F .

Definition 5 (Correspondence of interpretations). Given an HT inter-
pretation I = 〈Sh, St〉 for signature Σ = 〈C,F ,P〉 we define a corresponding
interpretation I∗ = 〈(σh, Jh), (σt, J t)〉 for signature Σ∗ = 〈C, ∅,P∗〉 so that, for
any f/n ∈ F , any tuple c of n elements from C, any predicate p/n ∈ P and any
w ∈ {h, t}:

1. holds f(c, d) ∈ Jw iff σw(c) = d with d ∈ C.
2. p(c) ∈ Jw iff p(c) ∈ Iw. �

Once (20) is fixed, the correspondence between I and I∗ is bidirectional:

Proposition 2. Given signature Σ = 〈C,F ,P〉 and an interpretation J for Σ∗

satisfying (20), then there exists an interpretation I for Σ such that I∗ = J .

Definition 6 (Translation of terms). We define the translation of a term t
as the triple 〈t∗, Φ(t)〉 where t∗ is an LP-term and Φ(t) is a formula s.t.:

1. For an LP-term t, then t∗ def= t and Φ(t) def= �.

2. When t = f(t) with f a partial function, then t∗ def= Xt and Φ(t) def=
Φ(t) ∧ holds f(t∗, Xt) where Xt is a new fresh variable and Φ(t) stands
for the conjunction of all Φ(ti) for all terms ti in the tuple t. �

Partial Functions and Equality in Answer Set Programming 403

For 0-ary partial functions, we would have that t is empty – in this case we
just assume that Φ(t) = �. We introduce now some additional notation. Given
a term t, subterms(t) denotes all its subterms, including t itself. Given a set
of terms T , by T ∗ we mean {t∗ | t ∈ S}. If ρ is a replacement of variables by
Herbrand constants [X ← c], we write I, w, ρ |= ϕ to stand for I, w |= ϕ[X ← c].
Given a conjunction of literals B = L1∧· · ·∧Ln, we denote B∗ def= L∗

1∧· · ·∧L∗
n.

Definition 7 (Translation of literals). The translation of an atom (or posi-
tive literal) A is a formula A∗ defined as follows:

1. If A = p(t), then A∗ def= ∃X
(
p(t∗) ∧ Φ(t)

)
where X is the set of new fresh

variables in subterms(t)∗ (those not occurring in the original literal).
2. If A = (t1 = t2), then A∗ def= ∃X

(
t∗1 = t∗2 ∧ Φ(t1) ∧ Φ(t2)

)
where X is the

set of new fresh variables in subterms(t1)∗ ∪ subterms(t1)∗.

The translation of a negative literal L = ¬A is the formula L∗ def= ¬A∗. �
Definition 8 (Translation of rules). The translation of an (FLP) rule r like
H :- B is a conjunction of formulas Γ (r) defined as follows:

1. If H = ⊥, then Γ (r) is the formula ⊥ ← B∗.
2. If H is like p(t) then Γ (r) is the formula p(t∗) ← Φ(t) ∧B∗
3. If H has the form f(t) := t′ then Γ (r) is the formula

holds f(t∗, t′∗) ← Φ(t) ∧ Φ(t′) ∧B∗
4. If H has the form f(t) ∈ {X | ϕ(X)} then Γ (r) is the conjunction of:

holds f(t∗, X) ∨ ¬holds f(t∗, X) ← Φ(t) ∧B∗ ∧ ϕ(X)∗ (21)
⊥ ← ¬∃X(holds f(t∗, X) ∧ ϕ(X)∗) ∧ Φ(t) ∧B∗ (22)

where we assume that, if X happened to occur in B, we have previously
replaced it in the choice by a new fresh variable symbol, say {Y | ϕ(Y)}.

Definition 9 (Translation of a program Γ (Π)). The translation of an FLP
program Π is a theory Γ (Π) consisting of the union of all Γ (r) per each rule
r ∈ Π plus, for each partial function f/n, the schemata (20). �
Theorem 1 (Correctness of Γ (Π)). For any FLP-program Π with signature
Σ = 〈C,F ,P〉 any pair of interpretations I for Σ and J for Σ∗ such that J = I∗:
I, w |= Π iff I∗, w |= Γ (Π). �
As an example, the translation of Π2 is the theory Γ (Π2):

⊥ ← holds next(X,X0) ∧ holds next(Y,X1) ∧X0 = X1 ∧ ¬(X = Y) (23)
holds next(X,Z) ∨ ¬holds next(X,Z) ← arc(X,Z) ∧ node(X) (24)

⊥ ← ¬∃Z(holds next(X,Z) ∧ arc(X,Z)) ∧ node(X) (25)
visited(1) (26)

visited(X2) ← holds next(X,X2) ∧ visited(X) (27)
⊥ ← ¬visited(X) ∧ node(X) (28)

⊥ ← holds next(X,V) ∧ holds next(X,W) ∧ ¬(V = W) (29)

404 P. Cabalar

Of course, Γ (Π) is not a normal logic program, since it contains disjunction
and negation in the head of “rules”, whereas it may also contain expressions
like ∃X(ϕ(X)) with ϕ(X) a conjunction of literals. However, we can build an
LP-program Π∗ by removing these constructions and introducing new auxiliary
predicates. For instance, a formula like p ∨ ¬p← α is equivalent (w.r.t. equilib-
rium models) to the pair of rules (p← ¬aux∧α) and (aux← ¬p∧α) where aux
is a new auxiliary predicate. Similarly, we can replace a formula ∃X(ϕ(X)) in a
rule body by a new auxiliary predicate aux′, and include a rule (aux′ ← ϕ(X))
for its definition. In our example, these transformations would replace (24) by:

holds next(X,Z) ← ¬aux(X,Z) ∧ arc(X,Z) ∧ node(X)
aux(X,Z) ← ¬holds next(X,Z) ∧ arc(X,Z) ∧ node(X)

and (25) by the rules:

aux′(X) ← holds next(X,Z) ∧ arc(X,Z) ∧ node(X)
⊥ ← ¬aux′(X) ∧ node(X)

where, of course, the auxiliary predicates must incorporate as arguments all the
free variables of the original expression they replace.

Proposition 3. If Π is safe then Π∗ is safe. �

6 Related Work

The present approach has incorporated many of the ideas previously presented
in [20,21]. With respect to other logical characterisations of Functional Program-
ming languages, the closest one is [14], from where we extracted the separation
of constructors and partial functions. The main difference is that QEL=

F provides
a completely logical description of all operators that allows an arbitrary syntax
(including rules with negation, disjunction in the head, etc).

Scott’s E-Logic is not the only choice for logical treatment of partial func-
tions. A related approach is the so-called Logic of Partial Functions (LPF) [22].
The main difference is that LPF is a three-valued logic – formulas containing
undefined terms have a third, undefined truth value. The relation to (relational)
ASP in this way in much more distant than the current approach, since stable
models and their logical counterpart, equilibrium models, are two-valued6.

As for the relation to other approaches exclusively dealing with Herbrand
functions [6,7,8] it seems that they should be embeddable in QEL=, which cor-
responds to the fragment of QEL=

F without partial functions. In a similar way,
the recent approach in [15] seems to correspond to the fragment of QEL=

F with
complete functions (that is, the addition of decidable equality). Formal compar-
isons are left for future work.

6 Note that in this work we are not considering explicit negation.

Partial Functions and Equality in Answer Set Programming 405

7 Conclusions

This paper has tried to clarify some relevant aspects related to the use of func-
tions in ASP for Knowledge Representation. These aspects include definedness,
the treatment of equality or the directionality in function assignments. Although,
as we have shown, the proposed approach can be translated into relational ASP
and thus considered as syntactic sugar, we claim that the use of functions may
provide a more natural, compact and readable way of representing many sce-
narios. The previous experience with a very close language to that of Section 5,
implemented in an online interpreter7 and used for didactic purposes, shows that
the functional notation helps the student concentrate on the mathematical defi-
nition of the domain to be represented, and forget some low level representation
tasks typically present in ASP programming, like adding constraints for unique-
ness of value, using extra variables to replace the ability of nesting functional
terms, or adding conditions to check that function-like predicates are defined.

We also hope that the current approach will help to integrate, in the future,
the explicit treatment of arithmetic functions made by some ASP tools, that are
currently handled outside the formal setting. For instance, the ASP grounder
lparse8 syntactically accepts a program like p(div(10, X)) ← q(X) but raises
a “divide by zero” runtime error if fact q(0) is added to the program. On the
other hand, when div is replaced by a non-built-in function symbol, say f , the
meaning is quite different, and we get {p(f(10, 0)), q(0)} as a stable model. In
this paper we have also identified and separated evaluable and (possibly) partial
functions (like div above) from constructors (like f in the previous example).

We have provided a translation of our functional language into normal logic
programs to show that: (1) it can be implemented with current ASP solvers;
but more important (2) that the proposed semantics is sensible with respect to
the way in which we usually program in the existing ASP paradigm. A topic
for future study is the implementation of a solver that directly handles the
functional semantics. Other open topics are the axiomatisation of the current
logical framework or the addition of a second, explicit (or strong) negation.

Acknowledgements. Many thanks to Joohyung Lee and Yunsong Meng for
detecting some technical errors in a preliminary version of this work, and to the
anonymous referees for their helpful suggestions.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proc. of the 5th Intl. Conf. on Logic Programming, pp. 1070–1080 (1988)

2. Pearce, D., Valverde, A.: Towards a first order equilibrium logic for nonmonotonic
reasoning. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 147–
160. Springer, Heidelberg (2004)

7 Available at http://www.dc.fi.udc.es/∼cabalar/fal/
8 Available at http://www.tcs.hut.fi/Software/smodels/

http://www.dc.fi.udc.es/~cabalar/fal/
http://www.tcs.hut.fi/Software/smodels/

406 P. Cabalar

3. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR
2007. LNCS, vol. 4483, pp. 188–200. Springer, Heidelberg (2007)

4. Scott, D.: Identity and existence in intuitionistic logic. Lecture Notes in Mathe-
matics 753, 660–696 (1979)

5. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm: a 25-year Perspective, pp. 169–
181. Springer, Heidelberg (1999)

6. Syrjänen, T.: Omega-restricted logic programs. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS, vol. 2173, pp. 267–279. Springer,
Heidelberg (2001)

7. Bonatti, P.A.: Reasoning with infinite stable models. Artificial Intelligence 156,
75–111 (2004)

8. Šimkus, M., Eiter, T.: Decidable non-monotonic disjunctive logic programs with
function symbols. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS,
vol. 4790, pp. 514–530. Springer, Heidelberg (2007)

9. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs.
Journal of Logic Programming 17, 301–321 (1993)

10. Hanus, M.: The integration of functions into logic programming: from theory to
practice. Journal of Logic Programming 19(20), 583–628 (1994)

11. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS (LNAI),
vol. 1216. Springer, Heidelberg (1997)

12. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proc.
of the International Joint Conference on Artificial Intelligence (IJCAI 2007), pp.
372–379 (2004)

13. McCarthy, J.: Circumscription: A form of non-monotonic reasoning. Artificial In-
telligence 13, 27–39 (1980)

14. Almendros-Jiménez, J.M., Gavilanes-Franco, A., Gil-Luezas, A.: Algebraic seman-
tics for functional logic programming with polymorphic order-sorted types. In:
Hanus, M., Rodŕıguez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139. Springer,
Heidelberg (1996)

15. Lin, F., Wang, Y.: Answer set programming with functions. In: Proc. of the 11th
Intl. Conf. on Principles of Knowledge Representation and Reasoning, KR 2008
(to appear, 2008)

16. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse,
42–56 (1930)

17. Heyting, A.: Intuitionism. An Introduction. North-Holland, Amsterdam (1956)
18. Naish, L.: Adding equations to NU-Prolog. In: Ma�luszyński, J., Wirsing, M. (eds.)

PLILP 1991. LNCS, vol. 528, pp. 15–26. Springer, Heidelberg (1991)
19. Rouveirol, C.: Flattening and saturation: Two representation changes for general-

ization. Machine Learning 14(1), 219–232 (1994)
20. Cabalar, P., Lorenzo, D.: Logic programs with functions and default values. In:

Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 294–306. Springer,
Heidelberg (2004)

21. Cabalar, P.: A functional action language front-end. In: 3rd Workshop on Answer
Set Programming, ASP 2005 (2005),
http://www.dc.fi.udc.es/ai/∼cabalar/asp05 C.pdf/

22. Barringer, H., Cheng, H., Jones, C.B.: A logic covering undefinedness in program
proofs. Acta Informatica 21, 251–269 (1984)

http://www.dc.fi.udc.es/ai/~cabalar/asp05_C.pdf/

Computable Functions in ASP: Theory and
Implementation�

Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone

Department of Mathematics, University of Calabria, I-87036 Rende (CS), Italy
{calimeri,cozza,ianni,leone}@mat.unical.it

Abstract. Disjunctive Logic Programming (DLP) under the answer set seman-
tics, often referred to as Answer Set Programming (ASP), is a powerful formalism
for knowledge representation and reasoning (KRR). The latest years witness an
increasing effort for embedding functions in the context of ASP. Nevertheless,
at present no ASP system allows for a reasonably unrestricted use of function
terms. Functions are either required not to be recursive or subject to severe syn-
tactic limitations, if allowed at all in ASP systems.

In this work we formally define the new class of finitely-ground programs,
allowing for a powerful (possibly recursive) use of function terms in the full ASP
language with disjunction and negation. We demonstrate that finitely-ground pro-
grams have nice computational properties: (i) both brave and cautious reasoning
are decidable, and (ii) answer sets of finitely-ground programs are computable.
Moreover, the language is highly expressive, as any computable function can be
encoded by a finitely-ground program. Due to the high expressiveness, mem-
bership in the class of finitely-ground program is clearly not decidable (we prove
that it is semi-decidable). We single out also a subset of finitely-ground programs,
called finite-domain programs, which are effectively recognizable, while keeping
computability of both reasoning and answer set computation.

We implement all results in DLV, further extending the language in order
to support list and set terms, along with a rich library of built-in functions for
their manipulation. The resulting ASP system is very powerful: any computable
function can be encoded in a rich and fully declarative KRR language, ensur-
ing termination on every finitely-ground program. In addition, termination is “a
priori” guaranteed if the user asks for the finite-domain check.

1 Introduction

Disjunctive Logic Programming (DLP) under the answer set semantics, often referred
to as Answer Set Programming (ASP) [1,2,3,4,5], evolved significantly during the last
decade, and has been recognized as a convenient and powerful method for declarative
knowledge representation and reasoning. Several systems supporting ASP have been
implemented so far, thereby encouraging a number of applications in many real-world
contexts ranging, e.g., from information integration, to frauds detection, to software

� Supported by M.I.U.R. within projects “Potenziamento e Applicazioni della Programmazione
Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresentazione di conoscenza:
estensioni e tecniche di ottimizzazione.”

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 407–424, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

408 F. Calimeri et al.

configuration, and many others. On the one hand, the above mentioned applications
have confirmed the viability of the exploitation of ASP for advanced knowledge-based
tasks. On the other hand, they have evidenced some limitations of ASP languages and
systems, that should be overcome to make ASP better suited for real-world applica-
tions even in industry. One of the most noticeable limitations is the fact that complex
terms like functions, sets and lists, are not adequately supported by current ASP lan-
guages/systems. Therefore, even by using state-of-the-art systems, one cannot directly
reason about recursive data structures and infinite domains, such as XML/HTML doc-
uments, lists, time, etc. This is a strong limitation, both for standard knowledge-based
tasks and for emerging applications, such as those manipulating XML documents.

The strong need to extend DLP by functions is clearly perceived in the ASP
community, and many relevant contributions have been recently done in this direc-
tion [6,7,8,9,10]. However, we still miss a proposal which is fully satisfactory from a
linguistic viewpoint (high expressiveness) and suited to be incorporated in the existing
ASP systems. Indeed, at present no ASP system allows for a reasonably unrestricted
use of function terms. Functions are either required not to be recursive or subject to
severe syntactic limitations, if allowed at all in ASP systems.

This paper aims at overcoming the above mentioned limitations, toward a powerful
enhancement of ASP systems by functions. The contribution is both theoretical and
practical, and leads to the implementation of a powerful ASP system supporting (recur-
sive) functions, sets, and lists, along with libraries for their manipulations. The main
results can be summarized as follows:

� We formally define the new class of finitely-ground (FG) DLP programs. This
class allows for (possibly recursive) function symbols, disjunction and negation.
We demonstrate that FG programs enjoy many relevant computational properties:
• both brave and cautious reasoning are computable, even for non-ground

queries;
• answer sets are computable;
• each computable function can be expressed by a FG program.

� Since FG programs express any computable function, membership in this class is
obviously not decidable (we prove that it is semi-decidable). For users/applications
where termination needs to be “a priori” guaranteed, we define the class of finite-
domain (FD) programs:
• both reasoning and answer set generation are computable for FD programs

(they are a subclass of FG programs), and, in addition,
• recognizing whether a program is an FD program is decidable.

� We extend the language with list and set terms, along with a rich library of built-in
functions for lists and sets manipulations.

� We implement all results and the full (extended) language in DLV, obtaining a very
powerful system where the user can exploit the full expressiveness ofFG programs
(able to encode any computable function), or require the finite-domain check, get-
ting the guarantee of termination. The system is available for downloading [11]; it
is already in use in many universities and research centers throughout the world.

For space limitations, we cannot include detailed proofs. Further documentation and
examples are available on the web site [11].

Computable Functions in ASP: Theory and Implementation 409

2 DLP with Functions

This section reports the formal specification of the DLP language with function symbols
allowed.

Syntax and notations. A term is either a simple term or a functional term. A simple
term is either a constant or a variable. If t1 . . . tn are terms and f is a function symbol
(functor) of arity n, then: f(t1, . . . , tn) is a functional term. Each ti, 1 ≤ i ≤ n, is
a subterm of f(t1, . . . , tn). The subterm relation is reflexive and transitive, that is: (i)
each term is also a subterm of itself; and (ii) if t1 is a subterm of t2 and t2 is subterm
of t3 then t1 is also a subterm of t3.

Each predicate p has a fixed arity k ≥ 0; by p[i] we denote its i-th argument. If
t1, . . . , tk are terms, then p(t1, . . . , tk) is an atom. A literal l is of the form a or not a,
where a is an atom; in the former case l is positive, and in the latter case negative. A rule
r is of the form α1 ∨ · · · ∨ αk :- β1, . . . , βn, notβn+1, . . . , notβm. where m ≥ 0,
k ≥ 0; α1, . . . , αk and β1, . . . , βm are atoms. We define H(r) = {α1, . . . , αk} (the
head of r) and B(r) = B+(r)∪B−(r) (the body of r), where B+(r) = {β1, . . . , βn}
(the positive body of r) and B−(r) = {not βn+1, . . . , not βm} (the negative body of
r). If H(r) = ∅ then r is a constraint; if B(r) = ∅ and |H(r)| = 1 then r is referred to
as a fact.

A rule is safe if each variable in that rule also appears in at least one positive literal
in the body of that rule. For instance, the rule p(X,f(Y, Z)) :- q(Y), not s(X). is not
safe, because of both X and Z . From now on we assume that all rules are safe and
there is no constraint.1 A DLP program is a finite set P of rules. As usual, a program
(a rule, a literal) is said to be ground if it contains no variables. Given a program P ,
according with the database terminology, a predicate occurring only in facts is referred
to as an EDB predicate, all others as IDB predicates. The set of all facts of P is denoted
by Facts(P); the set of instances of all EDB predicates is denoted by EDB(P) (note
that EDB(P) ⊆ Facts(P)). The set of all head atoms in P is denoted by Heads(P) =⋃

r∈P H(r).

Semantics. The most widely accepted semantics for DLP programs is based on the no-
tion of answer-set, proposed in [3] as a generalization of the concept of stable model [2].

Given a program P , the Herbrand universe of P , denoted by UP , consists of all
(ground) terms that can be built combining constants and functors appearing in P . The
Herbrand base of P , denoted by BP , is the set of all ground atoms obtainable from
the atoms of P by replacing variables with elements from UP . A substitution for a rule
r ∈ P is a mapping from the set of variables of r to the set UP of ground terms. A
ground instance of a rule r is obtained applying a substitution to r. Given a program P
the instantiation (grounding) grnd(P) of P is defined as the set of all ground instances
of its rules. Given a ground program P , an interpretation I for P is a subset of BP .
A positive literal l = a (resp., a negative literal l = not a) is true w.r.t. I if a ∈ I
(resp., a /∈ I); it is false otherwise. Given a ground rule r, we say that r is satisfied w.r.t.

1 Under Answer Set semantics, a constraint :- B(r) can be simulated through the introduction
of a standard rule fail :- B(r), not fail, where fail is a fresh predicate not occurring elsewhere
in the program.

410 F. Calimeri et al.

GA(P) G(P) GC(P)

Fig. 1. Argument, Dependency and Component Graphs of the program in Example 1

I if some atom appearing in H(r) is true w.r.t. I or some literal appearing in B(r) is
false w.r.t. I . Given a ground program P , we say that I is a model of P , iff all rules in
grnd(P) are satisfied w.r.t. I . A model M is minimal if there is no model N for P such
that N ⊂M .

The Gelfond-Lifschitz reduct [3] of P , w.r.t. an interpretation I , is the positive ground
program P I obtained from grnd(P) by: (i) deleting all rules having a negative literal
false w.r.t. I; (ii) deleting all negative literals from the remaining rules. I ⊆ BP is an
answer set for a program P iff I is a minimal model for P I . The set of all answer sets
for P is denoted by AS(P).
Dependency Graphs. We next define three graphs that point out dependencies among
arguments, predicates, and components of a program.

Definition 1. The Argument Graph GA(P) of a program P is a directed graph contain-
ing a node for each argument p[i] of an IDB predicate p of P ; there is an edge (q[j], p[i])
iff there is a rule r ∈ P such that: (a) an atom p(t) appears in the head of r; (b) an atom
q(v) appears in B+(r); (c) p(t) and q(v) share the same variable within the i-th and
j-th term, respectively.

Given a program P , an argument p[i] is said to be recursive with q[j] if there exists a
cycle in GA(P) involving both p[i] and q[j]. Roughly speaking, this graph keeps track of
(body-head) dependencies between the arguments of predicates sharing some variable.
It is actually a more detailed version of the commonly used (predicate) dependency
graph, defined below.

Definition 2. The Dependency Graph G(P) of P is a directed graph whose nodes are
the IDB predicates appearing in P . There is an edge (p2, p1) in G(P) iff there is some
rule r with p2 appearing in B+(r) and p1 in H(r), respectively.

The graph G(P) suggests to split the set of all predicates of P into a number of sets
(called components), one for each strongly connected component (SCC)2 of the graph
itself. Given a predicate p, we denote its component by comp(p); with a small abuse
of notation, we define also comp(l) and comp(a), where l is a literal and a is an atom,
accordingly.

In order to single out dependencies among components, a proper graph is defined
next.

2 We recall here that a strongly connected component of a directed graph is a maximal subset S
of the vertices, such that each vertex in S is reachable from all other vertices in S.

Computable Functions in ASP: Theory and Implementation 411

Definition 3. Given a program P and its Dependency Graph G(P), the Component
Graph of P , denoted GC(P), is a directed labelled graph having a node for each
strongly connected component of G(P) and: (i) an edge (B,A), labelled “+”, if there
is a rule r in P such that there is a predicate q ∈ A occurring in the head of r and a
predicate p ∈ B occurring in the positive body of r; (ii) an edge (B,A), labelled “-”,
if there is a rule r in P such that there is a predicate q ∈ A occurring in the head of r
and a predicate p ∈ B occurring in the negative body of r, and there is no edge (B,A),
with label “+”. Self-cycles are not considered.

Example 1. Consider the following program P , where a is an EDB predicate:

q(g(3)). s(X) ∨ t(f(X)) :- a(X), not q(X).
p(X,Y) :- q(g(X)), t(f(Y)). q(X) :- s(X), p(Y,X).

Graphs GA(P), G(P) and GC(P) are respectively depicted in Figure 1. There are three
SCC in G(P): C{s} = {s}, C{t} = {t} and C{p,q} = {p, q} which are the three nodes
of GC(P).

An ordering among the rules, respecting dependencies pointed out by GC(P), is
defined next.

Definition 4. A path in GC(P) is strong if all its edges are labelled with “+”. If, on
the contrary, there is at least an edge in the path labelled with “-”, the path is weak.
A component ordering for a given program P is a total ordering 〈C1, . . . , Cn〉 of all
components of P s.t., for any Ci, Cj with i < j, both the following conditions hold: (i)
there are no strong paths from Cj to Ci; (ii) if there is a weak path from Cj to Ci, then
there must be a weak path also from Ci to Cj .3

Example 2. Consider the graph GC(P) of previous example. Both C{s} and C{t} are
connected to C{p,q} through a strong path, while a weak path connects: C{s} to C{t},
C{t} to C{s}, C{p,q} to C{s} and C{p,q} to C{t}. Both γ1 = 〈C{s}, C{t}, C{p,q}〉 and
γ2 = 〈C{t}, C{s}, C{p,q}〉 constitute component orderings for the program P .

By means of the graphs defined above, it is possible to identify a set of subprograms
(also called modules) of P , allowing for a modular bottom-up evaluation. We say that
a rule r ∈ P defines a predicate p if p appears in H(r). Once a component ordering
γ = 〈C1, . . . , Cn〉 is given, for each component Ci we define the module of Ci,
denoted by P(Ci), as the set of all rules r defining some predicate p ∈ Ci excepting
those that define also some other predicate belonging to a lower component (i.e., certain
Cj with j < i in γ).

Example 3. Consider the program P of Example 1. If we consider the component or-
dering γ1, the corresponding modules are:

P (C{s}) = { s(X) ∨ t(f(X)) :- a(X), not q(X). }, P (C{t}) = ∅,
P (C{p,q}) = {p(X, Y) :- q(g(X)), t(f(Y))., q(X) :- s(X), p(Y,X)., q(g(3)). }.

3 Note that, given the component ordering γ, Ci stands for the i-th component in γ, and Ci < Cj

means that Ci precedes Cj in γ (i.e., i < j).

412 F. Calimeri et al.

The modules of P are defined, according to a component ordering γ, with the aim
of properly instantiating all rules. It is worth remembering that we deal only with safe
rules, i.e., all variables appear in the positive body; it is therefore enough to instantiate
the positive body. Furthermore, any component ordering γ guarantees that, when r ∈
P (Ci) is instantiated, each nonrecursive predicate p appearing in B+(r) is defined in
a lower component (i.e., in some Cj with j < i in γ). It is also worth remembering
that, according to how the modules of P are defined, if r is a disjunctive rule, then it
is associated only to a unique module P (Ci), chosen in such a way that, among all
componentsCj such that comp(a) = Cj for some a ∈ H(r), it always holds i ≤ j in γ
(that is, the disjunctive rule is associated only to the (unique) module corresponding to
the lowest component among those “covering” all predicates featuring some instance in
the head of r). This implies that the set of the modules of P constitute an exact partition
for it.

3 Finitely-Ground Programs

In this section we introduce a subclass of DLP programs, namely finitely-ground (FG)
programs, having some nice computational properties.

Since the set of ground instances of a rule might be infinite (because of the presence
of function symbols), it is crucial to try to identify those that really matter in order to
compute answer sets. Supposing that S contains all atoms that are potentially true, next
definition singles out the relevant instances of a rule.

Definition 5. Given a rule r and a set S of ground atoms, an S-restricted instance of r
is a ground instance r′ of r such that B+(r′) ⊆ S. The set of all S-restricted instances
of a program P is denoted as InstP (S).

Note that, for any S ⊆ BP , InstP (S) ⊆ grnd(P). Intuitively, this helps selecting,
among all ground instances, those somehow supported by a given set S.

Example 4. Consider the following program P :
t(f(1)). t(f(f(1))). p(1). p(f(X)) :- p(X), t(f(X))).

The set InstP (S) of all S-restricted instances of P , w.r.t. S = Facts(P) is:
t(f(1)). t(f(f(1))). p(1). p(f(1)) :- p(1), t(f(1)).

The presence of negation allows for identifying some further rules which do not
matter for the computation of answer sets, and for simplifying the bodies of some others.
This can be properly done by exploiting a modular evaluation of the program that relies
on a component ordering.

Definition 6. Given a program P , a component ordering 〈C1, . . . , Cn〉, a set Si of
ground rules for Ci, and a set of ground rules R for the components preceding Ci, the
simplification Simpl(Si, R) of Si w.r.t. R is obtained from Si by:

1. deleting each rule whose body contains some negative body literal not a s.t. a ∈
Facts(R), or whose head contains some atom a ∈ Facts(R);

Computable Functions in ASP: Theory and Implementation 413

2. eliminating from the remaining rules each literal l s.t.:
– l = a is a positive body literal and a ∈ Facts(R), or
– l = not a is a negative body literal, comp(a) = Cj with j < i, and a /∈
Heads(R).

Assuming that R contains all instances of the modules preceding Ci, Simpl(Si, R)
deletes from Si all rules whose body is certainly false or whose head is certainly already
true w.r.t. R, and simplifies the remaining rules by removing from the bodies all literals
that are true w.r.t. R.

Example 5. Consider the following program P :

t(1). s(1). s(2).
q(X) :- t(X). p(X) :- s(X), not q(X).

It is easy to see that 〈C1 = {q}, C2 = {p}〉 is the only component ordering for P .
If we consider R = EDB(P) = { t(1)., s(1)., s(2). } and S1 = {q(1) :- t(1).},
then Simpl(S1, R) = {q(1).} (i.e., t(1) is eliminated from body). Considering then
R = {t(1)., s(1)., s(2)., q(1).} and S2 = { p(1) :- s(1), not q(1)., p(2) :- s(2),
not q(2). }, after the simplification we have Simpl(S2, R) = {p(2).}. Indeed, s(2) is
eliminated as it belongs to Facts(R) and not q(2) is eliminated because comp(q(2)) =
C1 precedesC2 in the component ordering and the atom q(2) /∈ Heads(R); in addition,
rule p(1) :- s(1), not q(1). is deleted, since q(1) ∈ Facts(R).

We are now ready to define an operator Φ that acts on a module of a program P in
order to: (i) select only those ground rules whose positive body is contained in a set
of ground atoms consisting of the heads of a given set of rules; (ii) perform a further
simplification among these rules by means of the Simpl operator.

Definition 7. Given a program P , a component ordering 〈C1, . . . , Cn〉, a component
Ci, the module M = P (Ci), a set X of ground rules of M , and a set R of ground rules
belonging only to EDB(P) or to modules of components Cj with j < i, let ΦM,R(X)
be the transformation defined as follows: ΦM,R(X) = Simpl(InstM (Heads(R ∪
X)), R).

Example 6. Let P be the program of Example 1 where the extension of EDB predicate
a is {a(1)}. Considering the component C1 = {s}, the module M = P (C1), and the
sets X = ∅ and R = {a(1)}, we have:
ΦM,R(X) = Simpl(InstM(Heads(R ∪X)), R) =

= Simpl(InstM({a(1)}), {a(1).}) =
= Simpl({s(1) ∨ t(f(1)) :-a(1), not q(1).}, {a(1).}) =
= {s(1) ∨ t(f(1)) :- not q(1).}.

The operator defined above has the following important property.

Proposition 1. ΦM,R always admits a least fixpoint Φ∞
M,R(∅).

Proof. (Sketch) The statement follows from Tarski’s theorem [12]), noting that ΦM,R

is a monotonic operator and that a set of rules forms a meet semilattice under set
containment. �

414 F. Calimeri et al.

By properly composing consecutive applications of Φ∞ to a component ordering,
we can obtain an instantiation which drops many useless rules w.r.t. answer sets
computation.

Definition 8. Given a program P and a component ordering γ = 〈C1, . . . , Cn〉 for
P , the intelligent instantiation P γ of P for γ is the last element Sn of the sequence s.t.
S0 = EDB(P), Si = Si−1 ∪ Φ∞

Mi,Si−1
(∅), where Mi is the program module P (Ci).

Example 7. Let P be the program of Example 1 where the extension of EDB predicate
a is {a(1)}; considering the component ordering γ = 〈C1 = {s}, C2 = {t}, C3 =
{p, q}〉 we have:

– S0 = {a(1).};
– S1 = S0 ∪ Φ∞

M1,S0(∅) = {a(1)., s(1) ∨ t(f(1)) :- not q(1).};
– S2 = S1 ∪ Φ∞

M2,S1(∅) = {a(1)., s(1) ∨ t(f(1)) :- not q(1).};
– S3 = S2 ∪ Φ∞

M3,S2(∅) = {a(1)., s(1) ∨ t(f(1)) :- not q(1).,
q(g(3))., p(3, 1) :- q(g(3)), t(f(1))., q(1) :- s(1), p(3, 1).}.

Thus, the resulting intelligent instantiation P γ of P for γ is:

a(1). q(g(3)). s(1) ∨ t(f(1)) :- not q(1).
p(3, 1) :- q(g(3)), t(f(1)). q(1) :- s(1), p(3, 1).

We are now ready to define the class of FG programs.

Definition 9. A program P is finitely-ground (FG) if P γ is finite, for every component
ordering γ for P .

Example 8. The program of Example 1 is FG: P γ is finite both when γ =
〈C{s}, C{t}, C{p,q}〉 and when γ = 〈C{t}, C{s}, C{p,q}〉 (i.e., for the both of two com-
ponent orderings for P).

4 Properties of Finitely-Ground Programs

In this section the class of FG programs is characterized by identifying some key
properties.

The next theorem shows that we can compute the answer sets of an FG program
by considering intelligent instantiations, instead of the theoretical (possibly infinite)
ground program.

Theorem 1. Let P be anFG program and P γ be the intelligent instantiation of P w.r.t.
a component ordering γ for P . Then,AS(P) = AS(P γ) (i.e., P and P γ have the same
answer sets).

Proof. (Sketch) Given γ = 〈C1, . . . , Cn〉, let denote, as usual, by Mi the program
module P (Ci), and consider the sets S0, . . . , Sn as defined in Definition 8. Since
P =

⋃n
i=0 Mi the theorem can be proven by showing that:

AS(Sk) = AS(
⋃k

i=0 Mi) for 1 ≤ k ≤ n

Computable Functions in ASP: Theory and Implementation 415

where M0 denotes EDB(P). The equation clearly holds for k = 0. Assuming that it
holds for all k ≤ j, we can show that it holds for k = j + 1. The equation above can
be rewritten as:

AS(Sk−1 ∪ Φ∞
Mk,Sk−1

(∅)) = AS(
⋃k−1

i=0 Mi ∪Mk)) for 1 ≤ k ≤ n

The induction hypothesis allows us to assume that the equivalence AS(Sk−1) =
AS(

⋃k−1
i=0 Mi) holds. A careful analysis is needed of the impact that the addition of

Mk to
⋃k−1

i=0 Mi has on answer sets of Sk; in order to prove the theorem, it is enough
to show that the set Φ∞

Mk,Sk−1
(∅) does not drop any “meaningful” rule w.r.t. Mk.

If we disregard the application of the Simpl operator, i.e. we consider the operatorΦ
performing only InstMk

(Heads(Sk−1 ∪ ∅)), then Φ∞
Mk,Sk−1

(∅) clearly generates all
rules having a chance to have a true body in any answer set; omitted rules have a false
body in every answer set, and are therefore irrelevant.

The application of Simpl does not change the scenario: it relies only on previously
derived facts, and on the absence of atoms from heads of previously derived ground
rules.4 If a fact q has been derived in a previous component, then any rule featuring q in
the head or not q in the body is deleted, as it is already satisfied and cannot contribute to
any answer set. The simplification operator also drops, from the bodies, positive atoms
of lower components appearing as facts, as well as negative atoms belonging to lower
components which do not appear in the head of any already generated ground rule. The
presence of facts in the bodies is obviously irrelevant, and the deleted negative atoms
are irrelevant as well. Indeed, by construction of the component dependency graph,
while instantiating a module, all rules defining atoms of lower components have been
already instantiated. Thus, atoms of lower components not appearing in the head of any
generated rule, have no chances to be true in any answer set. �

Corollary 1. An FG program has finitely many answer sets, and each of them is finite.

Theorem 2. Given an FG program P , AS(P) is computable.

Proof. Note that by Theorem 1, answer sets of P can be obtained by computing the
answer sets of P γ for a component ordering γ of choice, which can be easily computed.
Then, P γ can be obtained by computing the sequence of fixpoints of Φ specified in
Definition 8. Each fixpoint is guaranteed to be finitely computable, since the program
is finitely-ground. �

From this property, the main result below immediately follows.

Theorem 3. Cautious and brave reasoning over FG programs are computable. Com-
putability holds even for non-ground queries.

As the next theorem shows, the class of FG programs allows for the encoding of any
computable function.

4 Note that, due to the elimination of true literals performed by the simplification operator
Simpl, the intelligent instantiation of a rule with a non empty body may generate some facts.

416 F. Calimeri et al.

Theorem 4. Given a recursive function f , there exists a DLP program Pf such that,
for any input x for f , Pf ∪ θ(x) is finitely-ground and AS(Pf ∪ θ(x)) encodes f(x),
for θ a simple function encoding x by a set of facts.

Proof. (Sketch) We can build a positive programPf , which encodes the Turing machine
Mf corresponding to f (see [11]). For any input x to Mf , (Pf ∪ θ(x))γ is finite for
any component ordering γ, and AS(Pf ∪ θ(x)) contains an appropriate encoding of
f(x). �

Note that recognizing FG programs is semi-decidable, yet not decidable:

Theorem 5. Recognizing whether P is an FG program is R.E.-complete.

Proof. (Sketch) Semi-decidability is shown by implementing an algorithm evaluating
the sequence given in Definition 8, and answering “yes” if the sequence converges in
finite time.

On the other hand, given a Turing machine M and an input tape x, it is possible to
write a corresponding program PM and a set θ(x) of facts encoding x, such that M
halts on input x iff PM ∪ θ(x) is finitely-ground. The program PM is the same as in the
proof of Theorem 4 and reported in [11]. �

5 Finite-Domain Programs

In this section we single out a subclass of FG programs, called finite-domain (FD)
programs, which ensures the decidability of recognizing membership in the class.

Definition 10. Given a programP , the set of finite-domain arguments (FD arguments)
of P is the maximal (w.r.t. inclusion) set FD(P) of arguments of P such that, for each
argument q[k] ∈ FD(P), every rule r with head predicate q satisfies the following
condition. Let t be the term corresponding to argument q[k] in the head of r. Then,

1. either t is variable-free, or
2. t is a subterm 5 of (the term of) some FD argument of a positive body predicate, or
3. every variable appearing in t also appears in (the term of) a FD argument of a

positive body predicate which is not recursive with q[k].

If all arguments of the predicates of P are FD, then P is said to be an FD program.

Intuitively, FD arguments can range only on a finite set of different ground values.
Observe that FD(P) is well-defined; indeed, it is easy to see that there always exists,
and it is unique, a maximal set satisfying Definition 10 (trivially, given two sets A1 and
A2 of FD arguments for a program P , the set A1 ∪ A2 is also a set of FD arguments
for P).

Example 9. The following is an example of FD program:

q(f(0)). q(X) :- q(f(X)).

5 The condition can be made less strict considering other notions, as, e.g., the norm of a
term [13,14,15].

Computable Functions in ASP: Theory and Implementation 417

Indeed q[1] is the only argument in the program and it is an FD argument, since the
two occurrences of q[1] in a rule head satisfy first and second condition of Definition 10,
respectively.

Example 10. The following is not an FD program:

q(f(0)). q(X) :- q(f(X)).
s(f(X)) :- s(X). v(X) :- q(X), s(X).

We have that all arguments belong to FD(P), except for s[1]. Indeed, s[1] appears as
head argument in the third rule with term f(X), and: (i) f(X) is not variable-free; (ii)
f(X) is not a subterm of some term appearing in a positive body FD argument; (iii)
there is no positive body predicate which is not recursive with s and contains X .

By the following theorems we now point out two key properties of FD programs.

Theorem 6. Recognizing whether P is an FD program is decidable.

Proof. (Sketch) An algorithm deciding whether P is FD or not can be defined as fol-
lows. Arguments of predicates in P are all supposed to beFD at first. If at least one rule
is found, such that for an argument of an head predicate none of the three conditions of
Definition 10 holds, then P is recognized as not being an FD program. If no such rule
is found, the answer is positive. �

Theorem 7. Every FD program is an FG program.

Proof. (Sketch) Given an FD program P , it is possible to find a priori an upper bound
for the maximum nesting level6 of the terms appearing in P γ , for any component order-
ing γ for P . This is given by max nl = (n+ 1) ∗m, where m is the maximum nesting
level of the terms in P , and n is the number of components in γ. Indeed, given that P
is an FD program, it is easy to see that the maximum nesting level cannot increase be-
cause of recursive rules, since, in this case, the second condition of Definition 10 forces
a sub-term relationships between head and body predicates. Hence, the maximum nest-
ing level can increase only because of body-head dependencies among predicates of
different components. We can now compute the set of all possible ground terms t ob-
tained by combining all constants and function symbols appearing in P , such that the
nesting level of t is less or equal to max nl. This is a finite set, and clearly a superset
of the ground terms appearing in P γ . Thus, P γ is necessarily finite. �

The results above allow us to state the following properties for FD programs.

Corollary 2. Let P be an FD program, then:

1. P has finitely many answer sets, and each of them is finite.
2. AS(P) is computable;
3. skeptical and credulous reasoning over P are computable. Computability holds

even if the query at hand is not ground.

6 The nesting level of a ground term is defined inductively as follows: (i) a constant term has
nesting level zero; (ii) a functional term f(t1, . . . , tn) has nesting level equal to the maximum
nesting level among t1, . . . , tn plus one.

418 F. Calimeri et al.

6 An ASP System with Functions, Sets, and Lists

In this section we briefly illustrate the implementation of an ASP system supporting
the language herein presented. Such system actually features an even richer language,
that, besides functions, explicitly supports also complex terms such as lists and sets,
and provides a large library of built-in predicates for facilitating their manipulation.
Thanks to such extensions, the resulting language becomes even more suitable for easy
and compact knowledge representation tasks.

Language. We next informally point out the peculiar features of the fully extended
language, with the help of some sample programs.

In addition to simple and functional terms, there might be also list and set terms;
a term which is not simple is said to be complex. A list term can be of two different
forms: (i) [t1, . . . , tn], where t1, . . . , tn are terms; (ii) [h|t], where h (the head
of the list) is a term, and t (the tail of the list) is a list term. Examples for list terms
are: [jan, feb,mar, apr,may, jun], [jan | [feb,mar, apr, may, jun]], [[jan, 31] |
[[feb, 28], [mar, 31], [apr, 30], [may, 31], [jun, 30]]].

Set terms are used to model collections of data having the usual properties asso-
ciated with the mathematical notion of set. They satisfy idempotence (i.e., sets have
no duplicate elements) and commutativity (i.e., two collections having the same ele-
ments but with a different order represent the same set) properties. A set term is of
the form: {t1, . . . , tn}, where t1, . . . , tn are ground terms. Examples for set terms
are: {red, green, blue}, {[red, 5], [blue, 3], [green, 4]}, {{red, green}, {red, blue},
{green, blue}}. Note that duplicated elements are ignored, thus the sets: {red, green,
blue} and {green, red, blue, green} are actually considered as the same.

As already mentioned, in order to easily handle list and set terms, a rich set of built-
in functions and predicates is provided. Functional terms prefixed by a # symbol are
built-in functions. Such kind of functional terms are supposed to be substituted by the
values resulting from the application of a functor to its arguments, according to some
predefined semantics. For this reason, built-in functions are also referred to as inter-
preted functions. Atoms prefixed by # are, instead, instances of built-in predicates.
Such kind of atoms are evaluated as true or false by means of operations performed on
their arguments, according to some predefined semantics7. Some simple built-in pred-
icates are also available, such as the comparative predicates equality, less-than, and
greater-than (=, <,>) and arithmetic predicates like successor, addition or multipli-
cation, whose meaning is straightforward. A pair of simple examples about complex
terms and proper manipulation functions follows. Another interesting example, i.e., the
Hanoi Tower problem, is reported in [11].

Example 11. Given a directed graph, a simple path is a sequence of nodes, each one
appearing exactly once, such that from each one (but the last) there is an edge to the
next in the sequence. The following program derives all simple paths for a directed
graph, starting from a given edge relation:

path([X,Y]) :- edge(X,Y).
path([X|[Y |W]]) :- edge(X,Y), path([Y |W]), not #member(X, [Y |W]).

7 The specification of the entire library for lists and sets manipulation is available at [11].

Computable Functions in ASP: Theory and Implementation 419

The first rule builds a simple path as a list of two nodes directly connected by an
edge. The second rule constructs a new path adding an element to the list representing
an existing path. The new element will be added only if there is an edge connecting it to
the head of an already existing path. The external predicate #member (which is part of
the above mentioned library for lists and sets manipulation) allows to avoid the insertion
of an element that is already included in the list; without this check, the construction
would never terminate in the presence of circular paths. Even if not an FD program, it
is easy to see that this is an FG program; thus, the system is able to effectively compute
the (in this case, unique) answer set.

Example 12. Let us imagine that the administrator of a social network wants to in-
crease the connections between users. In order to do that, (s)he decides to propose a
connection to pairs of users that result, from their personal profile, to share more than
two interests. If the data about users are given by means of EDB atoms of the form
user(id, {interest1, . . . , interestn}), the following rule would compute the set of
common interests between all pairs of users:

sharedInterests(U1, U2, #intersection(S1, S2)) :-user(U1, S1), user(U2, S2), U1 =U2.

where the interpreted function #intersection takes as input two sets and returns their
intersection. Then, the predicate selecting all pairs of users sharing more than two in-
terests could be defined as follows:

proposeConnection(pair(U1, U2)) :- sharedInterests(U1, U2, S), #card(S) > 2.

Here, the interpreted function #card returns the cardinality of a given set, which is
compared to the constant 2 by means of the built-in predicate “>”.

Implementation. The presented language has been implemented on top of the state-
of-the-art ASP system DLV [16]. Complex terms have been implemented by using a
couple of built-in predicates for packing and unpacking them (see below). These func-
tions, along with the library for lists and sets manipulation have been incorporated in
DLV by exploiting the framework introduced in [17].

In particular, support for complex terms is actually achieved by suitably rewriting the
rules they appear in. The resulting rewritten program does not contain complex terms
any more, but a number of instances of proper built-in predicates. We briefly illustrate in
the following how the rewriting is performed in case of functional terms; the cases of list
and set terms are treated analogously. Firstly, any functional term t = f(X1, . . . , Xn),
appearing in some rule r ∈ P , is replaced by a fresh variable Ft and then, one of the
following atom is added to B(r):

- #function pack(Ft, f, X1, . . . , Xn) if t appears in H(r);
- #function unpack(Ft, f, X1, . . . , Xn) if t appears in B(r).

This transformation is applied to the rule r until no functional terms appear in it. The
role of an atom #function pack is to build a functional term starting from a functor
and its arguments; while an atom #function unpack acts unfolding a functional term
to give values to its arguments. So, the former binds the Ft variable, provided that all

420 F. Calimeri et al.

other terms are already bound, the latter binds (checks values, in case they are already
bound) theX1, . . . , Xn variables according to the binding for theFt variable (the whole
functional term).

Example 13. The rule: p(f(f(X))) :- q(X, g(X,Y)). will be rewritten as follow:

p(Ft1) :- #function pack(Ft1, f, F t2), #function pack(Ft2, f, X),
q(X, Ft3), #function unpack(Ft3, g, X, Y).

Note that rewriting thenested functional termf(f(X)) requires two#function pack
atoms in the body: (i) for the inner f function havingX as argument and (ii) for the outer
f function having as argument the fresh variable Ft2, representing the inner functional
term.

The resulting ASP system is indeed very powerful: the user can exploit the full expres-
siveness of FG programs (plus the ease given by the availability of complex terms), at
the price of giving the guarantee of termination up. In this respect, it is worth stating
that the system grounder fully complies with the definition of intelligent instantiation
introduced in this work (see Section 3 and Definition 8). This implies, among other
things, that the system is guaranteed to terminate and correctly compute all answer sets
for any program resulting as finitely-ground. Nevertheless, the system features a syn-
tactic FD programs recognizer, based on the algorithm sketched in Theorem 6. This
kind of finite-domain check, which is active by default, ensures a priori computability
for all accepted programs.

The system prototype, called DLV-complex, is available at [11]; the above men-
tioned library for list and set terms manipulation is available for free download as well,
together with a reference guide and a number of examples. Some preliminary tests
have been carried out in order to measure how much the new features cost in terms
of performances: rewriting times are negligible; the cost of evaluating function terms
(pack/unpack functions) is low (about 1.5 times a comparison built-in as ’<’); there
is no overhead at all on answer-sets computation. Therefore, the system can profitably
deal with real-world problems. For instance, in the area of self-healing Web Services
DLV-complex is already exploited for the computation of minimum cardinality diag-
noses [18], and functional terms are here employed to replace existential quantification.
In summary, the introduction of functions brings only a little overhead, while it offers
a significant gain in terms of knowledge-modeling power and program clarity. In some
cases, the better problem encoding obtained through functions can bring also a signifi-
cant computational gain.8

7 Related Works

Functional terms are widely used in logic formalisms stemming from first order logic.
Introduction and treatment of functional terms (or similar constructs) have been studied

8 For instance, the encoding for Tower of Hanoi reported in [11] against the classical guess-
and-check encoding (a disjunctive version of the Smodels program exploited for the First ASP
competition [19]) allows one to enjoy nice speedups and to scale much better while increasing
the number of disks.

Computable Functions in ASP: Theory and Implementation 421

indeed in several fields, such as Logic Programming and Deductive Databases. In the
ASP community, the treatment of functional terms has recently received quite some
attention [6,7,8,9,10]. We next focus on the main proposals for introducing functional
terms in ASP.

Finitary Programs [10,6] are a major contribution to the introduction of recursive
functional terms (and thus infinite domains) in logic programming under stable model
semantics.

Given a normal (or-free) program P , a labelled dependency graph LDG(P) is asso-
ciated to grnd(P). The set of nodes consists of the (infinite) set of atoms in BP ; there
is an edge (A,B) (from A to B) if there is a rule r ∈ grnd(P) such that A ∈ H(r) and
B ∈ B(r); in particular, the edge is labelled ¬ if B ∈ B−(r). Program P is finitary if:
(i) from any node in LDG(P) only a finite sets of nodes is reachable (i.e., the program
is finitely recursive, as any atom depends only on a finite set of other atoms), and (ii)
the dependency graph LDG(P) has only a finite number of cycles with an odd number
of negated (¬) edges (called odd-cycles).

The class of finitary programs can be seen as a “dual” notion of the class of finitely-
ground programs. The former is suitable for a top-down evaluation, while the latter
allows for a bottom-up computation. Comparing the computational properties of the
two classes, we observe:

– Both finitary programs and finitely-ground programs can express any computable
function.

– Ground queries are decidable for both finitary and finitely-ground programs; how-
ever, for finitary programs, to obtain decidability one needs to additionally know
(“a priori”) what is the set of atoms involved in odd-cycles [20].

– Answer sets on finitely-ground programs are computable, while they are not com-
putable on finitary programs. The same holds for nonground queries.

– Recognizing if a program is finitely-ground is semi-decidable; while recognizing if
a program is finitary is undecidable.9

Finitary and FG programs are not comparable: there are finitary programs that are
not finitely-ground, and finitely-ground programs that are not finitary. The syntactic
restrictions imposed by the two notions somehow come from the underlying compu-
tational approaches (top-down vs bottom-up). Finitary programs impose that all rule
variables must occur in the head; while finitely-ground programs require that all rule
variables occur in the positive body. Therefore, p(X,Y) :- q(X). is safe for finitary
programs, while it is not for finitely-ground programs (as Y is not range-restricted). On
the contrary, p(X,Y) :- q(X,V), r(V, Y) is safe for finitely-ground programs, while
it is not admissible for finitary programs (because of the “local” variable V). Simi-
larly, for the nesting level of the functions: it cannot increase head-to-body for finitary
programs, while it cannot increase body-to-head for finitely-ground programs. For in-
stance, p(X) :- p(f(X)). is not finitary, while p(f(X)) :- p(X). is not finitely-ground.

9 Indeed, recognizing a finitary program has not been proven to be semi-decidable. In particular,
recognizing the validity of the first condition of finitary programs (finite-recursion) has been
proven to be not decidable (see [10], Theorem 26), while recognizing the second condition
(finite odd cycles) has been proven to be not semi-decidable (see [10], Theorem 27).

422 F. Calimeri et al.

Importantly, finitary programs are or-free; while finitely-ground programs allow for dis-
junctive rules. The class of finitary programs has been extended to the disjunctive case
in [21]. To this end, a third condition on the disjunctive heads is added to the definition
of finitary programs, in order to guarantee the decidability of ground querying.

Concluding, we observe that the bottom-up nature of the notion of FG programs al-
lows for an immediate implementation of this class in ASP systems (as ASP instantiators
are based on a bottom-up computational model). Indeed, we were able to enhance DLV
to deal with finitely-ground by small changes in its instantiator, keeping the database
optimization techniques which rely on the bottom-up model and significantly improve
the efficiency of the instantiation. While an ASP instantiator should be replaced by a
top-down grounder to deal with finitary programs.

ω-restricted Programs [9] allow for function symbols under Answer Set semantics.
They have been effectively implemented into SMODELS [22] - a very popular ASP
system. The notion of ω-restricted program relies on the concept of ω-stratification.
An ω-stratification corresponds, essentially, to a traditional stratification (i.e., a func-
tion mapping each predicate name to a level number) w.r.t. negation, extended by the
(uppermost) ω-stratum, which contains all predicates depending negatively on each
other (basically, this stratum contains entirely the unstratified part of the program). In
order to avoid infiniteness/undecidability, programs must fulfill some syntactic con-
ditions w.r.t. an ω-stratification. In particular, each variable appearing in a rule must
also occur in a positive body literal belonging to a strictly lower stratum than the
head. The above restrictions are strong enough to guarantee the computability of an-
swer sets, yet losing recursive completeness. Thus, ω-restricted programs are strictly
less expressive than both finitary and FG programs (which can express all computable
functions). From a merely syntactic viewpoint, the class of ω-restricted programs is
uncomparable with that of finitary programs, while it is strictly contained in the class
of FD programs (and thus, of FG programs). Indeed, if a program P is ω-restricted,
then each variable appearing in a rule head fulfills Condition 3 of Definition 10 (thus,
P is FD). On the contrary, there are FD programs that are not ω-restricted: for in-
stance, the FD program made of the single rule p(X) :- p(f(X)) is FD but it is not
ω-restricted.

FDNC programs [7] allow for function symbols in DLP programs. In order to retain
the decidability of the standard reasoning tasks, the structure of any rule must be cho-
sen among one out of seven predefined forms. These syntactic restrictions ensure that
programs have a forest-shaped model property. Answer sets of FDNC programs are in
general infinite, but have a finite representation which can be exploited for knowledge
compilation and fast query answering. The class of FDNC programs is less expressive
than both finitary and finitely-ground programs. From a syntactic viewpoint, FDNC

programs are uncomparable with both finitary and finitely-ground programs. Notably,
FDNC programs are finitely recursive, but not necessarily finitary.

Other works. Recently, in [8], functions have been proposed as a tool for obtaining
a more direct and compact representation of problems, and for improving the perfor-
mance of ASP computation by reducing the size of resulting ground programs. The
class of programs which is considered is strictly contained in ω-restricted programs:

Computable Functions in ASP: Theory and Implementation 423

indeed, predicates as well as functions must range over finite domains, which must be
explicitly (and extensively) provided.

The idea of FG programs is also related to termination studies of SLD-resolution
for Prolog programs (see e.g. [15,13,14]). In this context, several notion of norm for
complex terms were introduced. Intuitively, proving that norms of sub-goals are non-
increasing during top-down evaluation ensures decidability of a given program. Note
that such techniques can not be applied in a straightforward way to our setting, for a
series of technical differences. First, propagation of norm information should be studied
from rules bodies to heads while traditional termination analysis works the other way
around. Also, top-down termination analysis often integrates right recursion avoidance
techniques, which are not required in the context of ASP.

As for the deductive database field, we recall that one of the first comprehensive pro-
posals has been LDL [23], a declarative language featuring a non-disjunctive logic pro-
gramming paradigm based on bottom-up model query evaluation. LDL provides a rich
data model including the possibility to manage complex objects, lists and sets. The lan-
guage allows for a stratified form of negation, while functional terms are managed by
means of “infinite” base relations computed by external procedures; proper restrictions
(called constraints) and checks based on structural properties of the program (interde-
pendencies between arguments) ensure that a finite number of tuples are generated for
each relation.

With respect to the enriched language presented in Section 6, it is worth remembering
that the book [1] showed examples of how certain kinds of reasoning about sets and
lists could be captured by propositional ASPs, thus giving examples of programs with
function symbols that can be rewritten as propositional ASPs.

8 Conclusions

We have formally defined the class ofFGprograms, which allows for (possibly recursive)
complex terms in the full ASP language (logic programs with disjunction and negation).
We have proven that, for each programP in this class, there exists a finite subsetP ′ of its
instantiation having precisely the same answer sets as P . Importantly, such a subset P ′

is computable for FG programs. It turns out that: (i) both cautious and brave reasoning
tasks are computable for finitely ground programs, even if the query is not ground, (ii) the
answer sets of the program are computable as well. We have also demonstrated thatFG
programs can express every computable function. We have singled out also a subclass of
FG programs, called finite-domain programs, which are efficiently recognizable, while
keeping the computability of the reasoning tasks. We have implemented all results in
the DLV system, further extending the language with list and set terms, along with a
rich library for their manipulation. The resulting system is very powerful: it combines
the expressiveness of functions, sets, and lists, with the knowledge modeling features of
ASP in a fully declarative framework. The system is available for downloading from [11],
where the user can find also a manual and further examples; DLV-complex is already
successfully used in many universities and research institutes. Ongoing work focuses on
the extensions of the classes of finitely-ground and finitely-domain programs and on their
combinations with the notion of finitary and FDNC programs.

424 F. Calimeri et al.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. In: CUP
(2003)

2. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In:
ICLP/SLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)

3. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
NGC 9, 365–385 (1991)

4. Lifschitz, V.: Answer Set Planning. In: Schreye, D.D. (ed.) ICLP 1999, pp. 23–37 (1999)
5. Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming Par-

adigm. In: The Logic Programming Paradigm – A 25-Year Perspective, pp. 375–398 (1999)
6. Baselice, S., Bonatti, P.A., Criscuolo, G.: On Finitely Recursive Programs. In: Dahl, V.,

Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 89–103. Springer, Heidelberg (2007)
7. Simkus, M., Eiter, T.: FDNC: Decidable Non-monotonic Disjunctive Logic Programs with

Function Symbols. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790,
pp. 514–530. Springer, Heidelberg (2007)

8. Lin, F., Wang, Y.: Answer Set Programming with Functions. In: KR 2008 (to appear, 2008)
9. Syrjänen, T.: Omega-restricted logic programs. In: Eiter, T., Faber, W., Truszczyński, M.

(eds.) LPNMR 2001. LNCS, vol. 2173. Springer, Heidelberg (2001)
10. Bonatti, P.A.: Reasoning with infinite stable models. Artificial Intelligence 156(1), 75–111

(2004)
11. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: DLV-Complex homepage (since 2008),

http://www.mat.unical.it/dlv-complex
12. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 285–

309 (1955)
13. Bossi, A., Cocco, N., Fabris, M.: Norms on Terms and their use in Proving Universal Termi-

nation of a Logic Program. Theoretical Computer Science 124(2), 297–328 (1994)
14. Bruynooghe, M., Codish, M., Gallagher, J.P., Genaim, S., Vanhoof, W.: Termination analy-

sis of logic programs through combination of type-based norms. ACM TOPLAS 29(2), 10
(2007)

15. Schreye, D.D., Decorte, S.: Termination of Logic Programs: The Never-Ending Story.
JLP 19/20, 199–260 (1994)

16. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)

17. Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value invention in logic
programming. AMAI 50(3-4), 333–361 (2007)

18. Friedrich, G., Ivanchenko, V.: Diagnosis from first principles for workflow executions.
Tech. Rep., http://proserver3-iwas.uni-klu.ac.at/download area/
Technical-Reports/technical report 2008 02.pdf

19. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first
answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS, vol. 4483, pp. 3–17. Springer, Heidelberg (2007)

20. Bonatti, P.A.: Erratum to: Reasoning with infinite stable models. Artificial Intelligence Forth-
coming

21. Bonatti, P.A.: Reasoning with infinite stable models II: Disjunctive programs. In: Stuckey,
P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 333–346. Springer, Heidelberg (2002)

22. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. Artificial Intelligence 138, 181–234 (2002)

23. Naqvi, S., Tsur, S.: A logical language for data and knowledge bases. CS press, New York
(1989)

http://www.mat.unical.it/dlv-complex
http://proserver3-iwas.uni-klu.ac.at/download_area/Technical-Reports/technical_report_2008_02.pdf
http://proserver3-iwas.uni-klu.ac.at/download_area/Technical-Reports/technical_report_2008_02.pdf

Composing Normal Programs with Function
Symbols

Sabrina Baselice and Piero A. Bonatti

Università di Napoli Federico II

Abstract. Several expressive, decidable fragments of Answer Set Pro-
gramming with function symbols have been identified over the past years.
Undecidability results suggest that there are no maximal decidable
program classes encompassing all these fragments; this raises a sort of in-
teroperability question: Given two programs belonging to different frag-
ments, does their union preserve the nice computational properties of
each fragment? In this paper we give a positive answer to this ques-
tion and outline two of its possible applications. First, membership to
a “good” fragment can be checked once and independently for each
program module; this allows modular answer set programming with func-
tion symbols. As a second application, we extend known decidability re-
sults, by showing how different forms of recursion can be simultaneously
supported.

1 Introduction

Answer Set Programming (ASP) is one of the most interesting achievements in
the area of Logic Programming and Nonmonotonic Reasoning. It is a declar-
ative problem solving paradigm, mainly centered around some well-engineered
implementations of the stable model semantics of logic programs [1,2], such as
Smodels and DLV [3,4].

The existing ASP languages are being extended with function symbols to over-
come several drawbacks of Datalog versions, related to expressiveness, encoding
style, and memory requirements [5]. However, function symbols cannot be freely
used because reasoning would otherwise become highly undecidable [6,7]; it is
necessary to restrict program syntax so as to guarantee the decidability of the
reasoning tasks of interest. Some of the main approaches in this direction are
ω-restricted programs [8], finitary programs [5], and FDNC programs [9].

These “good” fragments of ASP are mutually incomparable. Moreover, the
class of finitary programs is undecidable [5], therefore one can only approximately
check whether a given program is finitary, and no best approximation exists
(even worse, there exist infinitely many incomparable implementations of the
membership check). Then an important question is: Can one safely compose
a program out of modules that have been independently proven to belong to
different “good” ASP fragments, thereby taking the best out of each approach?
By “safely” we mean that the compound program should preserve the good
computational properties of the constituent programs.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 425–439, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

426 S. Baselice and P.A. Bonatti

Of course, a positive answer to this question would imply that membership
of a given ASP library to one of the good fragments needs to be checked only
once and that the library—roughly speaking—is guaranteed to be usable in
every context. A second implication is that the decidability results for individual
fragments could be extended to hybrid compound programs that belong to none
of the fragments that component programs belong to. In other words, it would
be possible to systematically derive new good fragments from the known ones.

In this paper, we make a first step along these lines by identifying a range
of “good” composition patterns that preserve decidability under fairly general
conditions. As a consequence, for these kinds of composition, program checking
can be modularized and new decidability results can be systematically derived.

In this paper we deal with compositions of finitary, ω-restricted, and finitely
triggering modules. Finitely triggering modules support recursion patterns com-
plementary to those allowed in finitary programs.

We shall first prove that the property of being finitely recursive or finitary
is preserved by domain extensions in most cases. Then we shall apply this per-
sistency result to prove decidability results for suitable combinations of finitary
and non-finitary programs.

The paper is organized as follows. After a section on preliminaries, we prove
in Section 3 that the classes of finitely recursive and finitary programs are closed
under domain extensions. Section 4 introduces finitely triggering programs and a
generalization thereof, covering also ω-restricted programs. The forms of module
compositions we deal with and some properties of homogeneous module compo-
sition are introduced in Section 5. Then Section 6 completes the analysis with
decidability and undecidability results for the possible forms of composition. A
final discussion of the results and directions for future work can be found in
Section 7.

2 Preliminaries

We assume the reader to be familiar with classical logic programming [10].
(Normal) logic programs are sets of rules

A← L1, ..., Ln (n ≥ 0),

where A is a logical atom and each Li (i = 1, ..., n) is a literal, that is, either a
logical atom B or a negated atom notB.

If r is a rule with the above structure, then let head(r) = A and body(r) =
{L1, ..., Ln}. Moreover, let body+(r) (respectively body−(r)) be the set of all
atoms B s.t. B (respectively notB) belongs to body(r).

The ground instantiation of a program P is denoted by Ground(P), and the
set of atoms occurring in Ground(P) is denoted by atom(P). Similarly, atom(r)
denotes the set of atoms occurring in a rule r.

A Herbrand model M of P is a stable model of P iff M = lm(PM), where
lm(X) denotes the least model of a positive program X , and PM is the Gelfond-
Lifschitz transformation of P , obtained from Ground(P) by

Composing Normal Programs with Function Symbols 427

i) removing all rules r such that body−(r) ∩M �= ∅, and
ii) removing all negative literals from the body of the remaining rules [1,2].

Normal programs may have one, none, or multiple stable models. We say that
a program is consistent if it has at least one stable model; otherwise the program
is inconsistent. A skeptical consequence of a program P is any formula satisfied
by all the stable models of P . A credulous consequence of P is any formula
satisfied by at least one stable model of P .

The dependency graph of a program P is a labelled directed graph, denoted
by DG(P), whose vertices are the ground atoms of P ’s language. Moreover,

i) there exists an edge labelled ‘+’ (called positive edge) from A to B iff for
some rule r ∈ Ground(P), A = head(r) and B ∈ body(r);

ii) there exists an edge labelled ‘-’ (called negative edge) from A to B iff for
some rule r ∈ Ground(P), A = head(r) and notB ∈ body(r).

An atom A depends positively (respectively negatively) on B if there is a
directed path from A to B in the dependency graph with an even (respectively
odd) number of negative edges. Moreover, each atom depends positively on itself.
A depends on B if A depends positively or negatively on B.

An odd-cycle is a cycle in the dependency graph with an odd number of
negative edges. A ground atom is odd-cyclic if it occurs in an odd-cycle. Note
that there exists an odd-cycle iff some ground atom A depends negatively on
itself.

Definition 1. A program P is finitely recursive iff each ground atom A depends
on finitely many ground atoms in DG(P).

Decidability results will involve an important subclass of finitely recursive pro-
grams:

Definition 2 (Finitary programs). We say that a normal program P is fini-
tary if the following conditions hold:

1. P is finitely recursive.
2. There are finitely many odd-cyclic atoms in the dependency graph DG(P).

For example, most standard list manipulation programs (member, append,
remove etc.) are finitely recursive. The reader can find numerous examples of fi-
nitely recursive programs in [5]. Finitary programs have very good computational
properties. In particular, given a finitary program P and the set of its odd-cyclic
atoms, both skeptical and credulous ground inferences are decidable [11]).

Definition 3 (Splitting set and bottom program [12],[13]). A splitting set
of a logic program P is any set U of atoms such that, for all rules r ∈ Ground(P),
if head(r) ∈ U then atom(r) ⊆ U . If U is a splitting set for P , we also say that
U splits P . The set of rules r ∈ Ground(P) such that head(r) ∈ U is called the
bottom of P relative to the splitting set U and is denoted by botU (P).

428 S. Baselice and P.A. Bonatti

The bottom program provides the projection of P ’s stable models on the lan-
guage determined by the splitting set. The top module determines the rest of
each stable model; for this purpose it should be partially evaluated w.r.t. the
stable models of the bottom.

Definition 4 (Partial evaluation [12],[13]). The partially evaluated top of
a logic program P with splitting set U w.r.t. a set of ground atoms X is the
program topU (P,X) =

{r′ | there exists r ∈ Ground(P) \ botU (P) s.t. head(r′) = head(r),

(body+(r) ∩ U) ⊆ X and (body−(r) ∩ U) ∩X = ∅,
body+(r′) = body+(r) \ U and body−(r′) = body−(r) \ U} .

We are finally ready to formulate the splitting theorem (and hence the modular
construction of stable models based on the top and bottom programs) in formal
terms.

Theorem 5 (Splitting theorem [13]). Let U be a splitting set for a logic
program P . An interpretation M is a stable model of P iff M = J ∪ I, where

1. I is a stable model of botU (P), and
2. J is a stable model of topU (P, I).

3 Persistency of the Finitely Recursiveness Property

We start by proving some important auxiliary results of independent interest,
namely, that under mild restrictions both finitely recursive program and finitary
programs remain such when their domain is extended with new terms.

Let P and Q be logic programs and Ground(P,Q) be the set of all instances of
P ’s rules that belong to Ground(P ∪Q). Intuitively, Ground(P,Q) is the ground
instantiation of P w.r.t. an extended language, comprising both the symbols
occurring in P and those occurring in Q.

First we need to link each path in a dependency graph to the (nonground)
rules that generate it.

Definition 6. A dependency sequence for a program P is a (possibly infinite)
sequence of (possibly nonground) atoms A1, A2, . . . , Ai, . . . such that there exists
a corresponding sequence of rules R1, R2, . . . Ri, . . . with the following properties:

1. each Ri is an instance of a rule in P ;
2. for all Ai in the sequence but the last element (if any), Ai = head(Ri) and

Ai+1 occurs in body(Ri) (possibly in the scope of a negation symbol).

Note that every path in the dependency graph is a dependency sequence.
A dependency sequence ∆ is odd-cyclic if ∆ = A1, . . . , An, A1 and the number

of indexes i such that Bi occurs negated in body(Ri) (cf. condition c) is odd.

Composing Normal Programs with Function Symbols 429

Lemma 7 (Lifting). For all paths π in the dependency graph of Ground(P,Q)
there exist a dependency sequence ∆ for P and a substitution σ such that ∆σ =
π. Moreover all the constants and function symbols in ∆ occur in P .

To prove this lemma we need some additional terminology. The set of P -external
terms of an expression E, denoted by xtP (E), is the set of all terms f(t) occur-
ring in E such that f does not occur in P , and such that for some occurrence
of f(t) in E, no term enclosing this occurrence has the same property (in other
words, in all the enclosing terms, the most external symbol is in P ’s language).

Proof. Let π = A1, A2, . . . , Ai, . . . be a (possibly infinite) path in the dependency
graph of Ground(P,Q). By definition, there must be a set of rules R1, R2, . . . ,
Ri, . . . and substitutions θ1, θ2, . . . , θi, . . . such that for all i > 0

a) Ri ∈ P ;
b) head(Ri)θi = Ai;
c) there exists an atom Bi occurring (possibly negated) in body(Ri) such that

Biθi = Ai+1.

For each P -external term t occurring in the range of some θi (more precisely,
t ∈
⋃

i>0
⋃

u∈range(θi) xtP (u)), introduce a new, distinct variable vt. Let σ be the
substitution mapping each vt on the corresponding term t.

Now each θi can be expressed as θ′iσ, where θ′i is obtained from θi by replacing
each P -external term t in its range with vt.

Since by b) and c) Biθi = head(Ri+1)θi+1 = Ai+1, after replacing each exter-
nal term t with vt, we have that for all i > 0, Biθ

′
i = head(Ri+1)θ′i+1. Then the

sequence ∆ = 〈head(Ri)θ′i〉i>0 is a dependency sequence for P induced by rules

R1θ
′
1, R2θ

′
2, . . . , Riθ

′
i, . . .

and clearly ∆σ = π. Moreover, since all P -external terms have been removed by
the above construction, all the constants and function symbols occurring in ∆
occur also in P . �

A similar result holds for odd-cycles.

Lemma 8. For all programs P and Q, if the dependency graph of Ground(P,Q)
has an odd cycle with P -external terms then P has a nonground dependency
sequence based on the same rules that generate the odd cycle.

Proof. Let π = A1, . . . , An, A1 be an odd-cyclic path for Ground(P,Q) containing
some P -external terms. By Lemma 7, there exist a dependency sequence ∆ for
P and a substitution Σ such that ∆σ = π and ∆ contains no occurrences of P -
external terms. Since π contains some P -external terms, it follows that σ must be
nontrivial and ∆ nonground. Moreover, as illustrated in the proof of Lemma 7,
∆ is based on the same sequence of rules that generate π. �

Now we prove that the class of finitely recursive programs with infinite domains
is closed under domain extensions.

430 S. Baselice and P.A. Bonatti

Theorem 9. If P is finitely recursive and has an infinite Herbrand domain then
for all programs Q, Ground(P,Q) is finitely recursive.

Proof. Suppose not. Then either the dependency graph of P has an infinite
path π, or some of its nodes (atoms) A is infinitely branching. First assume
that π is a path in the dependency graph of Ground(P,Q) containing infinitely
many distinct atoms. By Lemma 7, there exists a dependency sequence ∆ whose
constants and functions occur in P , and there exists a substitution σ such that
∆σ = π. Now, since π contains infinitely many distinct atoms, there are only
two possibilities:

a) there is no upper bound to the nesting level of the atoms in ∆, or
b) there is no upper bound to the number of distinct variables occurring in ∆.

In the first case, by binding any constant in P ’s vocabulary to the variables
in ∆ we necessarily obtain a path in Ground(P) with infinitely many distinct
atoms with unbounded depth, which contradicts the hypothesis that P is finitely
recursive.

Similarly, in the second case, we can bind the infinitely many variables occur-
ring in ∆ to larger and larger ground terms taken from the Herbrand domain of
P , thereby obtaining a path in Ground(P) with infinitely many distinct atoms
with unbounded depth. Then case b) contradicts the hypothesis, too.

Now, suppose some ground atom A is infinitely branching in the dependency
graph. Then, there must be a rule r whose body contains a variable X not
occurring in head(r). Consequently, A must be infinitely branching also in the
dependency graph of Ground(P), because its Herbrand domain is infinite. This
contradicts the hypothesis that P is finitely recursive. �

When a program’s domain is finite we need some restriction on its local variables.
Recall that a local variable of a rule R is a variable that occurs in body(R) and
not in head(R).

Theorem 10. If P is a Datalog program without local variables, then for all
programs Q, Ground(P,Q) is finitely recursive.

Proof. Suppose not. As in the previous theorem we have to consider two cases.
Let π be a path in the dependency graph of Ground(P,Q) containing infinitely
many distinct atoms. By Lemma 7, there is a dependency sequence ∆ whose
constants and functions occur in P , and there exists a substitution σ such that
∆σ = π. Now consider the rules Ri (i > 0) underlying ∆ (cf. Def. 6). Since P
has no local variables, the same must be true of the instances Ri, and hence
for all i > 0, the variables occurring in Ai+1 occur also in Ai. It follows that
all the variables occurring in ∆ occur also in its first element A1. Moreover,
since function and constant symbols come from P , which is function-free, we
have that the nesting depth of all atoms is 1. Since both the number of distinct
variables and atom nesting depth are bounded in ∆ it follows that ∆ contains
finitely many distinct atoms. But this implies that also ∆σ—and hence π—can
only contain finitely many distinct atoms, and this contradicts the assumption.

Composing Normal Programs with Function Symbols 431

Now, suppose some atom A is infinitely branching. Then P should contain a
rule with a local variable—a contradiction. �

The restriction on local variables is necessary: Consider a simple finitely recursive
Datalog program P = {p(X) ← q(X,Y)} with a local variable Y and a program
Q = {r(f(0))}. In Ground(P,Q), each atom p(t) depends on infinitely many
atoms q(t, u) where u = 0, f(0), f(f(0)), . . . therefore P is not persistently finitely
recursive.

Of course, the classes of finitely recursive and finitary programs are closed
also under program inclusion.

Proposition 11. If P ⊇ Q and P is finitely recursive (resp. finitary) then Q is
finitely recursive (resp. finitary).

Proof. P ⊇ Q implies that any set of paths in the dependency graph of Q that
violate the definition of finitely recursive (resp. finitary) programs must occur
in the dependency graph of P , too. This immediately entails the contrapositive
of the proposition, which is equivalent to what is to be proved. �

We are finally ready to state the main theorem of this section, that follows easily
from the above results.

Definition 12. A logic program P is persistently FR iff for all programs Q,
Ground(P,Q) is finitely recursive. Moreover P is persistently finitary iff for all
programs Q, Ground(P,Q) is finitary.

Theorem 13. P is persistently FR iff some of the following conditions hold:

a) P is a finitely recursive program with an infinite Herbrand domain;
b) P is Datalog and has no local variables.

Moreover, P is persistently finitary iff some of the following conditions hold:

c) P is a finitary program with an infinite Herbrand domain;
d) P is a Datalog programs with no local variables and ground odd-cyclic de-

pendency sequences only.

This theorem is very important as it proves that most programs (in particular
those with function symbols, that are in the main focus of this paper) locally
retain their properties when they are included as subprograms in larger sets of
rules. In the rest of the paper we shall identify the forms of compositions with
other subprograms that preserve the good computational properties of finitely
recursive and finitary programs at the level of the entire program.

4 Programs with Finite Semantics

Most of the finitary programs of practical interest that can be found in the liter-
ature are finitely recursive because during any top-down recursive computation
some group of arguments becomes smaller and smaller at each recursive call, as
in the following program:

432 S. Baselice and P.A. Bonatti

nat(0).
nat(s(X)) ← nat(X).

Now we introduce a class of programs based on the opposite principle, that is,
during any top-down recursion some group of arguments becomes larger and
larger. Therefore, any bottom-up computation converges.

Definition 14. A program P is finitely triggering (FT for short) iff for each
ground atom A in the Herbrand base of P , only finitely many other atoms depend
on A.

Example 15. The program

p(a). p(f(f(b))). p(f(f(f(c)))).
p(X) ← p(f(X)).

is finitely triggering. To prove this, it suffices to note that an atom p(t) depends
on p(u) iff t is a strict subterm of u.

Clearly, if P is finitely triggering and safe,1 then for all finite interpretations
I, a bottom-up evaluation of P I terminates after a finite number of steps and
produces a finite model. As a consequence:

Theorem 16. Let P be a safe, finitely triggering program. Then

a) P has finitely many stable models, and each of them is finite;
b) the set of stable models of P is decidable, and so are credulous and skeptical

inferences from P .

By analogy with finitely recursive and finitary programs, we can prove that the
class of finitely triggering programs is closed under domain extensions. In this
case, the extra restrictions needed for Datalog programs concern those variables
that occur only in the head (and make a rule unsafe).

Note that, if all facts in a finitely triggering program P are ground then P
is safe. Indeed, since for each ground atom A in Ground(P) only finitely many
ground atoms depend on A, it is necessary that, for all rule r in P , any ground
substitution for body(r) is a ground substitution for head(r).

Definition 17. P is persistently FT iff for all programs Q, Ground(P,Q) is
finitely triggering.

Theorem 18. P is persistently FT iff some of the following conditions hold:

a) P is a finitely triggering program with an infinite Herbrand domain;
b) P is Datalog and safe.

The property of having a finite semantics (in the sense of Theorem 16) is shared
by ω-restricted programs [8]. In the rest of the paper we will abstract all these
program classes by means of the following notion:
1 Recall that P is safe iff for every rule R ∈ P , each variable occurring in head(R)

occurs also in body+(R).

Composing Normal Programs with Function Symbols 433

Definition 19. A class of programs C has the computable finite semantics prop-
erty (CFSP for short) iff (i) for all P in C, P has finitely many stable models
each of which is finite, and (ii) there exists a computable function f mapping
each member of C onto its set of stable models.
C has the persistent CFSP (PCFSP for short) iff C has the CFSP and is

closed under domain extensions.

Safe finitely triggering programs enjoy the PCFSP by Theorem 18. By a sim-
ple recursion on ω-stratifications [8], it can be easily shown that ω-restricted
programs enjoy the PCFSP, too.

5 Program Module Composition

Classes of logic programs such as finitary programs, finitely triggering programs,
ω-restricted programs, etc. guarantee good computational properties by impos-
ing different restrictions on their programs. If P and Q are two normal programs
belonging to these classes, is it possible to reason on the program P ∪Q by tak-
ing advantage of properties of P and Q? The idea is to “compose” P and Q to
obtain a program P ∪Q that, as a whole, might not be subject to the restrictions
on P or Q (in particular this happens when P and Q belong to different classes)
but that again enjoys good computational properties.

To do this it is necessary to identify the relationship between the predicates
defined in P and those defined in Q. If P can call predicates defined in Q without
redefining them, in that case P depends on Q (slight variations of this notion
have been introduced for different purposes in [14,15]). If the predicates defined
in Q do not occur in P and vice versa, then P and Q are independent. Next we
formalize these intuitive concepts.

Metavariables P and Q are supposed to range over normal programs. Def(P)
denotes the set of predicates defined in P , that is, the set of all predicate symbols
occurring in the head of some rule in P , while Called(P) is the set of predicates
called by P , that is, the set of all predicate symbols occurring in the body of
some rule in P .

Now, the dependency relations for normal logic programs can be defined as
follows:
P depends on Q, in symbols P �Q, if and only if

Def(P) ∩ Def(Q) = ∅ , (1)
Def(P) ∩ Called(Q) = ∅ , (2)
Called(P) ∩ Def(Q) �= ∅ . (3)

Conversely, P and Q are independent (equivalently, P is independent of Q),
in symbols P‖Q, if and only if

Def(P) ∩ Def(Q) = ∅ , (4)
Def(P) ∩ Called(Q) = ∅ , (5)
Called(P) ∩ Def(Q) = ∅ . (6)

434 S. Baselice and P.A. Bonatti

Note that P‖Q if and only if Q‖P , while � is asymmetric.
Nested compositions of homogeneous modules can be collapsed into a single

module of the same kind (this will allow us to focus on compositions of hetero-
geneous modules later on). First consider compositions of finitary programs. We
need four auxiliary results:

Lemma 20. If P is persistently FR then for all P ′ ⊆ P , P ′ is persistently FR.

Proof. Suppose that there exists a subset P ′ of P s.t. P ′ is not persistently
FR. Then there exists Q s.t. Ground(P ′, Q) is not finitely recursive, i.e., its
dependency graph contains either an infinite path or an infinitely branching
node. However, the dependency graph of Ground(P ′, Q) is a subgraph of the
dependency graph of Ground(P,Q). This implies that Ground(P,Q) is not a FR
program, either. This contradicts the hypothesis. �

Theorem 21. Suppose that P � Q or P‖Q. Then P ∪Q is persistently FR iff
both P and Q are persistently FR.

Proof. The only-if-part of theorem follows from Lemma 20. Now consider the
opposite implication.

By Theorem 13 P (resp. Q) is persistently FR iff some of the following con-
ditions hold:

a) it is finitely recursive with an infinite Herbrand domain;
b) it is Datalog and has no local variables.

We will prove the if-part by considering all the possible combinations of programs
satisfying conditions a) or b).

Suppose that both P and Q are datalog without local variables. Clearly, P ∪Q
has the same property, therefore, by Theorem 13, it is persistently FR.

Next, if P and Q are persistently FR and at least one of them satisfies condi-
tion a), we will prove that P ∪Q is finitely recursive with an infinite Herbrand
domain by proving that the union of two persistently FR programs, for which
a dependency relation holds, is always a finitely recursive program. Then the
observation that if P or Q has an infinite Herbrand domain also P ∪ Q has,
concludes the proof.

If P and Q are persistently FR then Ground(P,Q) and Ground(Q,P) are
finitely recursive and, for each atom A in Ground(P ∪ Q), if there are some
atoms which A depends on, the predicate symbol of A either belongs to Def(Q)
or belongs to Def(P). If the predicate symbol of A belongs to Def(Q) then A
depends on finitely many atoms because Ground(Q,P) is finitely recursive and,
by definition of dependency relations,A cannot depend on atoms in Ground(P,Q)
not occurring in Ground(Q,P).

If the predicate symbol of A belongs to Def(P) then, in Ground(P ∪ Q), A
depends on the finite set of ground atoms S0 = {B1, B2, . . . , Bk} in the finitely
recursive program Ground(P,Q), and on the finitely many and finite sets of
ground atoms S1, . . . , Sk on which each Bi in S0 depends in the finitely recursive
program Ground(Q,P). Note that the predicate symbol in A does not belong to

Composing Normal Programs with Function Symbols 435

Def(Q) and that if the predicate symbol of Bi belongs to Def(Q) then it does
not depends on atoms in Ground(P,Q), otherwise Si is empty. �
Let OC(P) be the set of the predicate symbols of the odd-cyclic atoms occurring
in the dependency graph DG(P) of P . The following proposition easily follows
from the definitions:

Proposition 22. If P �Q or P‖Q then OC(Q) ∩OC(P) = ∅.
Corollary 23. If P �Q or P‖Q then OC(P ∪Q) = OC(Q) ∪ OC(P)

Finally we can prove the main result:

Theorem 24. Suppose that P �Q or P‖Q. Then P ∪Q is persistently finitary
iff both P and Q are persistently finitary.

Proof. By Theorem 21, P ∪Q is persistently FR iff P and Q are persistently FR.
Now, we have to prove only that, for any programQ′, Ground(P ∪Q,Q′) contains
only finitely many odd-cyclic atoms iff Ground(P,Q′) and Ground(Q,Q′) do.

By Proposition 22 and Corollary 23, if P � Q or P‖Q, the set of odd-cyclic
atoms in Ground(P ∪Q) is the union of the set of odd-cyclic atoms in Ground(P)
and the set of odd-cyclic atoms in Ground(Q).

Since definitions of dependency relations are only syntactic, if P �Q or P‖Q
then, for any program Q′, Ground(P,Q′) � Ground(Q,Q′) or Ground(P,Q′)‖
Ground(Q, Q′), respectively. It follows that Proposition 22 and Corollary 23 again
hold for Ground(P,Q′) and Ground(Q,Q′), and then Ground(P ∪Q,Q′) contains
finitely many odd-cyclic atoms iff Ground(P,Q′) and Ground(Q,Q′) contain fi-
nitely many odd-cyclic atoms. �
The above results show that program modules that have been independently
proved to be finitary or finitely recursive can be freely composed as their union
preserves their properties. In particular, if both programs are finitary then reason-
ing in the union program is decidable (given the odd-cycles of the two modules).

Moreover, as a consequence of the above theorem, finitary modules with no
interposed non-finitary module can be dealt with as a single finitary module.
Next we prove that similar properties hold for program classes enjoying the
PCFSP. We start again with some preliminary results.

Lemma 25. If P‖Q, then a set of ground atoms M is a stable model of P ∪Q
if and only if M = MQ ∪MP where:

– MQ is a stable model of Ground(Q,P), and
– MP is a stable model of Ground(P,Q).

Proof. By definition of dependency relations we can derive that Ground(Q,P) =
botatom(Ground(Q,P))(P ∪Q). So, by the splitting theorem, M is a stable model of
P ∪Q iff M = MQ ∪MP where MQ is a stable model of Ground(Q,P) and MP

is a stable model of topatom(Ground(Q,P))(Ground(P,Q),MQ).
Note that topatom(Ground(Q,P))(Ground(P,Q),MQ) = Ground(P,Q) because,

by definition of independency relation, MQ cannot contain atoms that occur
in the body of some rule of Ground(P,Q). Then MP is also a stable model of
Ground(P,Q). �

436 S. Baselice and P.A. Bonatti

The result we were aiming at immediately follows as a corollary:

Corollary 26. If P and Q belong to a program class with the PCFSP and P‖Q,
then
a) P ∪Q has the PCFSP;
b) the set of stable models of P ∪ Q, as well as its skeptical and credulous

consequences are all decidable.

For the special case of finitely triggering programs, we can extend the above
result to � dependencies using dependency sequences, by analogy with the proof
for finitary programs:

Theorem 27. If P and Q are persistently FT programs and P � Q or P‖Q,
then P ∪Q is persistently FT.

It can be shown that the result for P �Q cannot be extended to PCFSP classes
such as ω-restricted programs (hint: when P depends on the ω-stratum of Q the
composite program is generally not ω-restricted).

6 Decidability and Undecidability Results

Here we discuss which kinds of compositions lead to decidable inference prob-
lems. We start with the homogeneous composition of finitary programs.

Theorem 28. Given two persistently finitary programs P and Q such that ei-
ther P �Q or P‖Q, and given the sets of odd-cyclic atoms of the two programs,
OC(P) and OC(Q), both the set of ground skeptical consequences and the set of
ground credulous consequences of P ∪Q are decidable.

Proof. By Theorem 24, P ∪ Q is persistently finitary. Note that its (finite) set
of odd-cyclic atoms is OC(P) ∪ OC(Q), which is effectively computable from
OC(P) and OC(Q). Then the skeptical and the credulous consequences of P ∪Q
are decidable as proved in [5]. �

We can compose a finitary program with one with the PCFSP only in the fol-
lowing cases:

Theorem 29. Let Q belong to a class with the PCFSP, let P be persistently
finitary, and suppose that either P �Q or P‖Q. Then the problems of checking
whether a given ground goal G is a skeptical, resp. credulous consequence of P∪Q
given the set of odd-cyclic atoms of P is decidable.

Proof. (Sketch) If P‖Q then exploit Lemma 25 and the separate decidability
results for classes with the PCFSP and for finitary programs.

If P � Q, note that by the splitting set theorem, the problem of reasoning
with P ∪Q can be reduced to reasoning with the partial evaluation of P w.r.t.
the stable models of Ground(Q,P), that are finitely many, finite, and effectively
computable by definition. Note that the partial evaluation of a finitary program

Composing Normal Programs with Function Symbols 437

is still finitary and that in this particular kind of compositions the set of odd-
cyclic atoms is not changed by the partial evaluation, therefore the problem
of reasoning with P ∪ Q is reduced to a finite number of decidable reasoning
problems over computable finitary programs. �
In general the opposite dependency (Q�P) leads to undecidable reasoning prob-
lems. We show it by simulating any given Turing machine M with a FT program
QM. The tape will be encoded with three terms representing the tape on the left
of the current symbol v, the current symbol itself, and the tape on the right of
v. Each configuration is encoded by an atom c(s, l, v, r, n) where s is the current
state, the triple (l, v, r) encodes the tape, and n is a counter which is decremented
at each computation step. The simulation of M halts when n reaches zero. For
each transition from a current state s and v to a state s′, that rewrites v with v′

and moves the head to the right, QM contains the following rules:
c(s′, [v′ | L], X, R, N) ← c(s, L, v, [X | R], s(N))
c(s′, [v′ | L], blank , [], N) ← c(s, L, v, [], s(N))

The rules for transitions that move the head to the left are symmetric. Further-
more, QM contains m rules:

terminate ← c(fi, L, V, R, 0) (i = 1, . . . , m)

where f1, . . . , fm are the final states of M. Finally, QM contains
c(s0, [], v0, [v1, . . . , vn], N) ← nat(N)

where s0 is the initial state of M. Clearly, terminate is a logical consequence
of QM ∪ {nat(sn(0))} iff M terminates in n steps on input v = v0, . . . , vn.
Note that QM is finitely triggering due to the counter, and this property is
persistent because the domain is infinite. Now it suffices to compose QM with
the persistently finitary program P :

nat(0).
nat(s(X)) ← nat(X).

to obtain a composition QM � P where QM has the PCFSP, P is persistently
finitary, and inference is undecidable, as terminate is a logical consequence of
the compound program iff M terminates on input v = v0, . . . , vn. Furthermore,
by extending QM with

diverge ← not terminate

we obtain a co-r.e.-hard goal (diverge). Therefore, the complexity of reasoning
with this kind of compositions is not semidecidable either.

We are left to consider the homogeneous composition of programs belonging
to a class with the PCFSP. When P‖Q, inferences are decidable by Corollary 26.

When P �Q, the definition of PCFSP is too abstract to prove general results.
Here we provide a decidability result for finitely triggering programs:

Theorem 30. Given two safe, persistently FT programs P and Q such that
either P � Q or P‖Q, both the set of skeptical consequences and the set of
credulous consequences of P ∪Q are decidable.

Proof. A straightforward consequence of Theorem 27 and Theorem 16.

438 S. Baselice and P.A. Bonatti

7 Conclusions and Future Work

Under mild restrictions on local variables (that can be relaxed as shown in [5]
by binding local variables with generalized domain predicates) finitary programs
can be freely composed without affecting their good properties. We proved also
that in some cases hybrid compositions are possible, thereby supporting de-
cidable reasoning in the presence of different forms of recursion covering both
finitely recursive and finitely triggering patterns. Our decidability results are
summarized in the following table.

Persis. Finitary PCFSP

Persis. Finitary decidable decidable
PCFSP undecidable dec. for Persis. FT

To prove these results we showed that the class of finitely recursive programs
with infinite domains is closed under domain extensions, which is of independent
theoretical interest.

According to the above table and the results on homogeneous composition
(Theorem 24, Corollary 26, and Theorem 27) we can currently handle compound
programs consisting of a bottom layer of modules with the PCFSP, and a free
upper network of persistently finitary modules. In the bottom layer independent
modules can be freely added, while dependencies must be limited to persistently
FT programs only, according to our current results.

It is worth pointing out that the definitions and results of this paper can
be extended to disjunctive logic programs with minor modifications. Since the
notion of finitary programs can be extended to disjunctive logic programs in
several possible ways, space limitations induced us to postpone their treatment
to a future journal version.

Our analysis should be extended to explore compositions involving FDNC
modules. FDNC programs [9] are a recently introduced fragment of the class of
finitely recursive programs, where inference decidability derives from a certain
guarded structure of programs rather than consistency results and restrictions on
odd-cycles. Since interesting fragments of description logics (and nonmonotonic
extensions thereof) can be encoded into FDNC programs, their inclusion in our
composition framework is of particular interest and may have an impact on
rule-based semantic web approaches.

Acknowledgements

This work is partially supported by the PRIN project Enhancement and Ap-
plications of Disjunctive Logic Programming, funded by the Italian Ministry of
Research (MIUR). The authors are grateful to the anonymous referees for their
constructive comments.

Composing Normal Programs with Function Symbols 439

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proc. of the 5th ICLP, pp. 1070–1080. MIT Press, Cambridge (1988)

2. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3-4), 365–386 (1991)

3. Niemelä, I., Simons, P.: Smodels - an implementation of the stable model and
well-founded semantics for normal lp. [16], 421–430

4. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for
non-monotonic reasoning. [16], 364–375

5. Bonatti, P.A.: Reasoning with infinite stable models. Artif. Intell. 156(1), 75–111
(2004)

6. Marek, V.W., Nerode, A., Remmel, J.B.: The stable models of a predicate logic
program. J. Log. Program. 21(3), 129–153 (1994)

7. Marek, V.W., Remmel, J.B.: On the expressibility of stable logic programming.
[17], 107–120

8. Syrjänen, T.: Omega-restricted logic programs. [17], 267–279
9. Simkus, M., Eiter, T.: FDNC: Decidable non-monotonic disjunctive logic programs

with function symbols. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS,
vol. 4790, pp. 514–530. Springer, Heidelberg (2007)

10. Lloyd, J.W.: Foundations of Logic Programming, 1st edn. Springer, Heidelberg
(1984)

11. Baselice, S., Bonatti, P.A., Criscuolo, G.: On finitely recursive programs. In: Dahl,
V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 89–103. Springer, Heidelberg
(2007)

12. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

13. Lifschitz, V., Turner, H.: Splitting a Logic Program. In: Proceedings of the 12th
International Conference on Logic Programming, Kanagawa 1995. MIT Press Series
Logic Program, pp. 581–595. MIT Press, Cambridge (1995)

14. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database
Syst. 22(3), 364–418 (1997)

15. Eiter, T., Leone, N., Saccà, D.: On the partial semantics for disjunctive deductive
databases. Ann. Math. Artif. Intell. 19(1-2), 59–96 (1997)

16. Dix, J., Furbach, U., Nerode, A. (eds.): LPNMR 1997. LNCS, vol. 1265. Springer,
Heidelberg (1997)

17. Eiter, T., Faber, W., Truszczynski, M. (eds.): LPNMR 2001. LNCS, vol. 2173.
Springer, Heidelberg (2001)

Verification from Declarative Specifications
Using Logic Programming

Marco Montali1, Paolo Torroni1, Marco Alberti2, Federico Chesani1,
Marco Gavanelli2, Evelina Lamma2, and Paola Mello1

1 DEIS, University of Bologna. V.le Risorgimento 2, 40136 Bologna, Italy
2 ENDIF, University of Ferrara. V. Saragat 1, 44100 Ferrara, Italy

Abstract. In recent years, the declarative programming philosophy has
had a visible impact on new emerging disciplines, such as heteroge-
neous multi-agent systems and flexible business processes. We address
the problem of formal verification for systems specified using declarative
languages, focusing in particular on the Business Process Management
field. We propose a verification method based on the g-SCIFF abductive
logic programming proof procedure and evaluate our method empirically,
by comparing its performance with that of other verification frameworks.

1 Introduction

Since its introduction, the declarative programming paradigm has been success-
fully adopted by IT researchers and practitioners. As in the case of logic pro-
gramming, the separation of logic aspects from control aspects long advocated
by Kowalski [1] enables the programmer to more easily write correct programs,
improve and modify them. In recent years, the declarative programming phi-
losophy has had a visible impact on new emerging disciplines. Examples are
multi-agent interaction protocol specification languages, which rely on declara-
tive concepts such as commitments [2] or expectations [3] and make an extensive
use of rules, business rules [4] and declarative Business Process (BP) specification
languages such as ConDec [5]. In ConDec, business processes are specified fol-
lowing an open and declarative approach: rather than completely fix the control
flow among activities, ConDec focuses on the (minimal) set of constraints that
must be satisfied during the execution, providing an high degree of flexibility.

Although declarative technologies improve readability and modifiability, and
help reducing programming errors, what makes systems trustworthy and reliable
is formal verification. Since the temporal dimension plays in these settings a fun-
damental role, a natural choice would be to model such systems using temporal
logic specifications. In particular, ConDec models can be represented as a con-
junction of (propositional) Linear Temporal Logic (LTL, [6]) formulae, each one
formalizing a specific constraint in the model [5]. By adopting this choice, the
problem of consistency and properties verification can be cast as a satisfiability
problem. This problem, in turn, is often reduced to model checking [7]. However,
it is well known that the construction of the input for model checking algorithms
takes a considerable amount of resources. This is especially true if we consider

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 440–454, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Verification from Declarative Specifications Using Logic Programming 441

declarative specifications such as the ones of ConDec, in which the system is not
represented as a Kripke structure, but it is itself specified as an LTL formula;
the translation of an LTL formula into an automaton is exponential in the size
of the formula, and it becomes undecidable for variants of temporal logic with
explicit time, such as Metric Temporal Logic (MTL) with dense time [8].

Unlike model checking, by adopting an approach based on Logic Programming
(LP) a system’s specifications can be directly represented as a logic formula, han-
dled by a proof system with no need for a translation. Hence, we address the
verification problem by using Abductive Logic Programming (ALP, [9]), and in
particular the SCIFF framework [3]. SCIFF is an ALP rule-based language and
family of proof procedures for the specification and verification of event-based
systems. The language describes which events are expected (not) to occur when
certain other events happen; it includes universally and existentially quantified
variables, constraint logic programming (CLP) constraints and quantifier restric-
tions [10]. It has an explicit representation of time, which can be modelled as a
discrete or as a dense variable, depending on the constraint solver of choice. Two
different proof procedures can be then used to verify SCIFF specifications, rang-
ing from run-time/a-posteriori compliance verification (SCIFF proof procedure)
to static verification of properties (g-SCIFF proof procedure).

We focus on the last point, addressing the problem of ConDec static verifica-
tion by (i) automatically translating ConDec models into the SCIFF framework
(following the mapping proposed in [11]) and (ii) using g-SCIFF for reasoning.
Via g-SCIFF, we can carry out a goal-directed verification task, without hav-
ing to generate an intermediate format (as in model checking, where the formula
specifying the system must be translated into an automaton). In this setting, ab-
duction is used to generate (simulate) partially specified execution traces which
comply with the specification and entail the goal of interest. The experiments
we run to compare the performance of g-SCIFF and that of other verification
tools support our claims and motivate us to pursue this line of research.

The paper is organized as follows. In Section 2 we discuss the application
domains, proposing some examples of specification and verification in the con-
text of Business Process Management (BPM). Section 3 presents the SCIFF
framework and our verification method based on g-SCIFF. Section 4 evaluates
it experimentally, in relation with other verification techniques. Related work
is described in Section 5. Finally, Section 6 discusses advantages and limits of
g-SCIFF and concludes the paper by outlining future work.

2 Declarative Business Processes: Specification and
Verification

If we skim through recent BPM, Web Service choreography, and Multi-Agent
System literature, we will find a strong push for declarativeness. In the BPM
context, van der Aalst and Pesic recently proposed a declarative flow language
(ConDec, [5]) to specify, enact, and monitor business processes. Their claim
is that declarative languages fit better with complex, unpredictable processes,

442 M. Montali et al.

payment
failure

choose
item

standard
payment

1-click
payment

payment
done

send
receipt

accept
advert

close
order

register

0..1

0..1

Fig. 1. A ConDec model

where a good balance between support and flexibility is of key importance. To
motivate their claim, the authors show a simple example with two activities,
A and B, which can be executed multiple times but exclude each other, i.e., if
A is executed B cannot be executed and vice-versa. In procedural languages,
such as Petri nets, it is difficult to specify the above process without introducing
additional assumptions and choice points, which lead to pointlessly complicate
the model. This constraint can instead be easily expressed via a simple declara-
tive LTL expression: ¬(♦A∧♦B). This is also true for LP rules. For example, in
SCIFF we could use two ICs, H(a, T) ⇒ EN(b, T ′) and H(b, T) ⇒ EN(a, T ′), to
define precisely the intended model without introducing additional constraints.

2.1 A ConDec Example

In this article, we focus on the BPM domain. We use ConDec [5] as a declar-
ative process specification language. Fig. 1 shows the ConDec specification of
a payment protocol. Boxes represent instances of activities. Numbers (e.g., 0;
N..M) above the boxes are cardinality constraints that tell how many instances
of the activity have to be done (e.g., never; between N and M). Edges and ar-
rows represent relations between activities. Double line arrows indicate alternate
execution (after A, B must be done before A can be done again), while barred
arrows and lines indicate negative relations (doing A disallows doing B). Fi-
nally, a solid circle on one end of an edge indicates which activity activates the
relation associated with the edge. For instance, the execution of accept advert
in Fig. 1 does not activate any relation, because there is no circle on its end (a
valid model could contain an instance of accept advert and nothing else), reg-
ister instead activates a relation with accept advert (a model is not valid if it
contains only register). If there is more than one circle, the relation is activated
by each one of the activities that have a circle. Arrows with multiple sources
and/or destinations indicate temporal relations activated/satisfied by either of
the source/destination activities. The parties involved—a merchant, a customer,
and a banking service to handle the payment—are left implicit.

In our example, the six left-most boxes are customer actions, payment done/
payment failure model a banking service notification about the termination status
of the payment action, and send receipt is a merchant action. The ConDec chart
specifies relations and constraints among such actions. If register is done (once or
more than once), then also accept advert must be done (before or after register)
at least once. No temporal ordering is implied by such a relation. Conversely,

Verification from Declarative Specifications Using Logic Programming 443

standard
payment

accept
advert

send
receipt

1..*0 0

accept
advert

send
receipt

1-click
payment

1..*1..*

a) b)

Fig. 2. Two sample queries: checking (a) existential and (b) universal properties

the arrow from choose item to close order indicates that, if close order is done,
choose item must be done at least once before close order. However, due to the
barred arrow, close order cannot be followed by (any instance of) choose item.
The 0..1 cardinality constraints say that close order and send receipt can be done
at most once. 1-click payment must be preceded by register and by close order,
whereas standard payment needs to be preceded only by close order (registration is
not required). After 1-click or standard payment, either payment done or payment
failure must follow, and no other payment can be done, before either of payment
done/failure is done. After payment done there must be at most one instance of
send receipt and before send receipt there must be at least a payment done. Sample
valid models are: the empty model (no activity executed), a model containing one
instance of accept advert and nothing else, and a model containing 5 instances
of choose item followed by a close order. A model containing only one instance
of 1-click payment instead is not valid.

2.2 Static Verification of ConDec Models

Let us consider some examples of verification on the model. A first, simple type
of verification is known as checking for dead activities [12]. We want to check
whether a given activity, say send receipt, can be executed. To verify the query,
we add a 1..* cardinality constraint on the activity. If the extended specification
is unfeasible, it means that send receipt cannot be executed in any possible valid
model, indicating that probably there is a mistake in the design. In our example,
a verifier should return a positive answer, together with a sample valid execution,
such as: choose item → close order → standard payment → payment done → send
receipt, which amounts to a proof that send receipt is not a dead activity.

Let us consider a more elaborated example. We want to check whether it is
still possible to have a complete transaction, if we add some constraints such as:
the customer does not accept to receive ads, and the merchant does not offer
standard payment. To verify the query, we add a 0 cardinality constraint on
accept advert and on standard payment, and a 1..* cardinality constraint on send
receipt, expressing that we want to obtain a complete transaction (see Fig. 2(a))1.
Such an extended specification is unsatisfiable: a verifier should return a negative
answer.

Let us now consider another complex property. A merchant wants to make
sure that during a transaction with 1-click payment a receipt is always sent after
the customer has accepted the ads. Since the query is, in this case, universal,

1 This technique is also used to avoid vacuous answers, in which the model is trivially
satisfied if nothing happens.

444 M. Montali et al.

payment
failure

standard
payment

1-click
payment

payment
done

close
order

accept
advert

0

(0,6)

(0,6)

(0,3)

(0,8)

send
receipt (0,12)

1..*

(0,8)

(0,3)

Fig. 3. Sample query concerning verification of properties on models with explicit time

to verify we have extend the specifications with the query’s negation, which is
an existential query (“does there exist a transaction executing 1-click payment
in which accept advert is not executed before send receipt?”). The negated query
corresponds to the relations shown in Fig. 2(b). Given the model, this query
should succeed, since there is no temporal constraint associated with accept
advert, thus accept advert does not have to be executed before send receipt in
all valid models. The success of the existential negated query amounts to a
counterexample against the initial (universal) query. A verifier should produce
such a counterexample: choose item → close order → register → 1-click payment
→ payment done → send receipt → accept advert. That could lead a system
designer to decide to improve the model, for example, by introducing an arrow
from accept advert to send receipt.

Let us finally consider an example of a query with explicit time; we adopt
an extended ConDec notation, proposed in [11]. In such a notation, arrows can
be labeled with (start time, end time) pairs. The meaning of an arrow labelled
(Ts, Te) linking two activities A and B is: B must be done between Ts and Te

time units after A. A labeled barred arrow instead indicates that B cannot be
executed between Ts and Te time units after A. In this way we can express
minimum and maximum latency constraints. For instance, the query depicted
in Fig. 3 contains a (0, 12) labelled barred arrow, expressing that B must occur
after A and at most 12 time units after A (maximum latency constraint on the
sequence A . . . B). The query also contains a 0 cardinality constraint on accept
advert (the customer does not accept ads). The intuition behind the whole query
is: “is there a transaction with no accept advert, terminating with a send receipt
within 12 time units as of close order, given that close order, 1-click payment,
and standard payment cause a latency of 6, 3, and 8 time units?”. It turns out
that the specification is unfeasible, because the 0 cardinality constraint on accept
advert rules out the 1-click payment path, and the standard payment path takes
more than 12 time units. A verifier should return failure.

3 The SCIFF Framework

SCIFF was initially proposed to specify and verify agent interaction protocols [3],
but it has also been successfully applied in the context of service choreographies,
electronic contracts and, in particular, declarative business processes [13,11].

Verification from Declarative Specifications Using Logic Programming 445

3.1 The SCIFF Language

SCIFF specifications consist of an abductive logic program, i.e., a triplet 〈P , IC,
A〉 where P is a logic program (a collection of clauses), IC is a set of integrity
constraints (IC) and A is a set of abducible predicates. SCIFF considers events
as first class objects. Events can be, for example, sending a message, or starting
an action, and they are associated with a time point. Events are identified by a
special functor, H, and are described by an arbitrary term (possibly containing
variables). SCIFF uses ICs to model relations among events and expectations
about events. Expectations are abducibles identified by functors E and EN. E
are “positive” expectations, and indicate events to be expected. EN are “nega-
tive” expectations and model events that are expected not to occur. Happened
events and expectations explicitly contain a time variable, to represent when
the event occurred/is expected (not) to occur. Event and time variables can be
constrained by means of Prolog predicates or CLP constraints [14]; the latter
are especially useful to specify orderings between events and quantitative time
constraints (such as delays and deadlines). An IC is a forward body ⇒ head rule
which links happened events and expectations. Typically, the body contains a
conjunction of happened events, whereas the head is a disjunction of conjunc-
tions of positive and negative expectations. ICs are interpreted in a reactive
manner; the intuition is that when the body of a rule becomes true (i.e., the
involved events occur), then the rule fires, and the expectations in the head are
generated by abduction. For example, H(a, T) ⇒ EN(b, T ′) defines a relation
between events a and b, saying that if a occurs at time T , b should not occur at
any time. Instead, H(a, T) ⇒ E(b, T ′)∧T ′ ≤ T + 300 says that if a occurs, then
an event b should occur no later than 300 time units after a.

To exhibit a correct behavior, given a goal G and a triplet 〈P , IC,A〉, a set of
abduced expectations must be fulfilled by corresponding events. The concept of
fulfillment is formally captured by the SCIFF declarative semantics [3], which
intuitively states that P , together with the abduced literals, must entail G ∧IC,
positive expectations must have a corresponding matching happened event, and
negative expectations must not have a corresponding matching event.

3.2 Static Verification Using g-SCIFF

The SCIFF framework includes two different proof procedures to perform ver-
ification. The SCIFF proof procedure checks the compliance of a narrative of
events with the specification, by matching events with expectations during the
execution (run-time monitoring) or a-posteriori. The g-SCIFF proof procedure
is a “generative” extension of the SCIFF proof procedure whose purpose is to
prove system properties at design time (static verification), or to generate coun-
terexamples of properties that do not hold.

The proof procedures are implemented in SICStus 4 and are freely available2.
Their implementation features a unique design, that has not been used before in
other abductive proof procedures. First, the various transitions in the operational
2 See http://lia.deis.unibo.it/sciff/

http://lia.deis.unibo.it/sciff/

446 M. Montali et al.

semantics are implemented as constraint handling rules (CHR, [15])3. The second
important feature is their ability to interface with constraint solvers: both with
the CLP(FD) solver and with the CLP(R) solver embedded in SICStus. The user
can thus choose the most suitable solver for the application at hand, which is an
important issue in practice. It is well known, in fact, that no solver dominates
the other, and we measured, in different applications, orders of magnitude of
improvements by switching solver. In this paper we discuss static verification,
reporting the results obtained with the CLP(R) solver, which is based on the
simplex algorithm, and features a complete propagation of linear constraints.

Existing formal verification tools rely on model checking or theorem proving.
However, a drawback of most model checking tools is that they typically only
accommodate discrete time and finite domains. Moreover, the cardinality of do-
mains impacts heavily on the performance of the verification process, especially
in relation to the production of a model consisting of a state automaton. On the
other hand, theorem proving in general has a low level of automation, and it may
be hard to use, because it heavily relies on the user’s expertise [17]. g-SCIFF
presents interesting features from both approaches. Like theorem proving, its
performance is not heavily affected by domain cardinality, and it accommodates
domains with infinite elements, such as dense time. Similarly to model checking,
it works in a push-button style, thus offering a high level of automation.

In the style of [18], we do verification by abduction: in g-SCIFF, event occur-
rences are abduced as well as expectations, in order to model all the possible
evolutions of the system being verified. More specifically, g-SCIFF works by
applying the transitions sketched in the following, until a fix-point is reached:

Unfolding substitutes an atom with its definitions in P ;
Propagation given an implication (a(X) ∧ R) ⇒ H and an abduced literal

a(Y), generates the implication (X = Y ∧R) ⇒ H ;
Case Analysis Given an implication (c(X)∧R) ⇒ H in which c is a constraint

(possibly the equality constraint ‘=’), generates two children: c(X) ∧ (R ⇒
H) and ¬c(X);

Splitting distributes conjunctions and disjunctions;
Logical Equivalences performs usual replacements: true⇒ A with A, etc.;
Constraint Solving posts constraints to the constraint solver of choice;
Fulfilment declares fulfilled;

– an expectation E(p, t) if there is a corresponding literal H(p, t), or
– an expectation EN(p, t) if there is no matching literal H(p, t) and it

cannot happen in the sequel (e.g., because a deadline has expired);
Violation declares violated an expectation: symmetrical to fulfilment;
Fulfiller if an expectation E(p, t) is not fulfilled, abduces an event H(p, t);
Consistency imposes consistency of the set of expectations, by which E(p, t)

and EN(p, t) cause failure.

3 Other proof procedures [16] have been implemented on top of CHR, but with a dif-
ferent design: they map integrity constraints (instead of transitions) into constraint
handling rules. This choice gives more efficiency, but less flexibility.

Verification from Declarative Specifications Using Logic Programming 447

Most of the transitions above are the same as the ones of the SCIFF proof
procedure. The main difference with g-SCIFF stands in the fulfiller transition,
that is not applied in SCIFF, by only in g-SCIFF. In particular, g-SCIFF uses
fulfiller to generate narratives of events (“histories”) starting from the specifica-
tion (and the query of interest): abduction is used to simulate executions of the
system which comply with the specification and entail the query. To do so, it
applies the rule E(P, T) → H(P, T), which fulfills an expectation by abducing a
matching event (possibly with variables). Fulfiller is applied only at the fix-point
of the other transitions. SCIFF and g-SCIFF also exploit an implementation of
reified unification (a solver on equality/disequality of terms) which takes into
consideration quantifier restrictions [10] and variable quantification. Histories
are thus generated intensionally, and hypothetical events can contain variables,
possibly subject to CLP constraints.

Verification of properties is conducted as follows. An existential property can
be passed to g-SCIFF as a goal containing positive expectations: if the g-SCIFF
proof procedure succeeds in proving the goal, the generated history proves that
there exists a way to obtain the goal via a valid execution of the activities. A
universal property Q can be negated (as in model checking), and then passed
to g-SCIFF. If the g-SCIFF proof procedure succeeds in finding a history which
satisfies the negated property, such a history is a counterexample against Q.

The examples shown in Section 2.1 are correctly handled by g-SCIFF. The
first one (check for dead activity) completes in 10ms4, the second one (Fig. 2(a)),
in 20ms, the third one (Fig. 2(b)) in 420ms, and the last one (Fig. 3) in 80ms.

4 Experimental Evaluation

A ConDec chart is a good starting point to compare two verification methods:
satisfiability checking LTL formulas via model checking, and g-SCIFF.

Indeed, the semantics of ConDec can be given both in terms of LTL formulae
[5,11] and of SCIFF programs [11]. By adopting LTL, each ConDec constraint
is associated with a formula; the conjunction of all formulae (“conjunction for-
mula”) gives the semantics of the entire chart. In SCIFF the approach is similar:
each ConDec constraint is mapped to a set of ICs, and the entire model is rep-
resented by the union of all ICs.

For example, the relation between accept advert and register corresponds to
the LTL formula (♦register) ⇒ (♦accept advert) and to the following IC:

H(register, T)⇒ E(acceptAdvert, T ′).

The barred arrow from close order to choose item corresponds to the LTL
formula �(close order ⇒ ¬(♦choose item)) and to the following IC:

H(closeOrder, T) ⇒ EN(chooseItem, T ′) ∧ T ′ > T.

4 Experiments have been performed on a MacBook Intel CoreDuo 2 GHz machine.

448 M. Montali et al.

standard payment

complete
payment

start
payment

step
1

step
2

step
N

...

start
failure

step1
failure

stepN-1
failure

stepN
failure

Fig. 4. Parametric extension to the model presented in Fig.1

Finally, the relation between payment done and send receipt corresponds to the
LTL formula (�(payment done ⇒ ♦send receipt)) ∧ ((♦send receipt) ⇒ ((¬send
receipt)Upayment done)) and to the following two ICs:

H(paymentDone, T)⇒ E(receipt, T ′) ∧ T ′ > T

H(receipt, T)⇒ E(paymentDone, T ′) ∧ T ′ < T.

We run an extensive experimental evaluation to compare g-SCIFF with model
checking techniques. To the best of our knowledge, there are no benchmarks on
the verification of declarative business process specifications. We created our
own, starting from the sample model introduced in Section 2.1, Fig. 1, and
extending the standard payment activity as follows. Instead of a single activ-
ity, standard payment consists of a chain of N activities in alternate succession:
start payment •⇒• step 1 •⇒• step 2 •⇒• . . . •⇒• step N •⇒• complete payment

in which every two consecutive steps are linked by an alternate succession rela-
tion. Moreover, we model a possible failure at each of these steps (start failure,
step 1 failure, . . .). This extension to the model is depicted in Fig. 4. Addition-
ally, we add a K..* cardinality constraint on action payment failure, meaning that
payment failure must occur at least K times. The new model is thus parametric
on N and K. We complicated the model in such a way to stress g-SCIFF and
emphasize its performance results in both favorable and unfavorable cases.

4.1 Verifying ConDec Models with g-SCIFF and Model Checking
Techniques

To verify ConDec models with g-SCIFF, we adopted the following methodology.
Given a ConDec specification S and a query (negated query, if the query is
universal) Q:

1. Build a SCIFF specification which formalizes S, following the translation
described in [11]; do the same with Q.

2. Run g-SCIFF with the translation of Q as goal: if the query is entailed by
Q, then g-SCIFF generates an execution trace which complies with S and,
at the same time, satisfies Q.

In the LTL setting, the problem of static verification is cast as a satisfiability
problem, which in turn can be reduced to model checking [7]:

Verification from Declarative Specifications Using Logic Programming 449

1. Map activities to boolean variables (1=execution);
2. Build a “conjunction-formula” φ of S and Q, following the translation de-

scribed in [5];
3. Build a universal model M, capable to generate all the activity execution

traces;
4. Model check ¬φ against M: if the model checker finds a counterexample, φ

is satisfiable and the counterexample is in fact an execution trace satisfying
both S and Q.

In order to choose a suitable model checker, we followed on the results of an
experimental investigation conducted by Rozier and Vardi on LTL satisfiability
checking [7], by which it emerges that the symbolic approach is clearly superior
to the explicit approach, and that NuSMV [19] is the best performing model
checker in the state of the art for the benchmarks they considered. We thus
chose to run our benchmarks to compare g-SCIFF with NuSMV5.

Unfortunately, the comparison could not cover all relevant aspects of the lan-
guage, such as some temporal aspect, because neither NuSMV nor any other
model checker cited in [7] offers all of the features offered by SCIFF. As a future
work, we plan to compare the performance of g-SCIFF against that of other
model checkers for MTL [8]. However, since existing MTL tools seem to use
classical model checking and not symbolic model checking, our feeling is that
g-SCIFF would largely outperform them on these instances.

4.2 Experimental Results

We compared g-SCIFF with NuSMV on two sets of benchmarks:

1. the existential query presented in Section 2.1, Fig. 2(a)6;
2. a variation of the above, without the 0 cardinality constraint on std payment.

Of the two benchmarks, the first one concerns verification of unsatisfiable spec-
ifications and the second one verification of satisfiable specifications. The latter
requires producing an example demonstrating satisfiability, which generally in-
creases the runtime. The input files are available on a Web site7. The runtime
resulting from the benchmarks is reported in Table 1 and Table 2. Fig. 5 shows
the ratio NuSMV/g-SCIFF runtime, in Log scale.

It turns out that g-SCIFF outperforms NuSMV in most cases, up to several
orders of magnitude. This is especially true for the first benchmark, for which
g-SCIFF is able to complete the verification task always in less than 0.15s, while
NuSMV takes up to 136s. For the second benchmark, g-SCIFF does compara-
tively better as N increases, for a given K, whereas NuSMV improves with respect
to g-SCIFF and eventually outperforms it, for a given N, as K increases. This
5 It is worth noticing that explicit model checkers, such as SPIN, in our experiments

could not handle in reasonable time a ConDec chart such as the one we described
earlier.

6 The 0 cardinality constraint is set on the start payment activity.
7 See http://www.lia.deis.unibo.it/research/climb/iclp08benchmarks.zip

http://www.lia.deis.unibo.it/research/climb/iclp08benchmarks.zip

450 M. Montali et al.

Table 1. Results of first benchmark (SCIFF/NuSMV), in seconds

K \N 0 1 2 3 4 5
0 0.01/0.20 0.02/0.57 0.03/1.01 0.02/3.04 0.02/6.45 0.03/20.1
1 0.02/0.35 0.03/0.91 0.03/2.68 0.04/4.80 0.04/8.72 0.04/29.8
2 0.02/0.46 0.04/1.86 0.05/4.84 0.05/10.8 0.07/36.6 0.07/40.0
3 0.03/0.54 0.05/2.40 0.06/8.75 0.07/20.1 0.09/38.6 0.10/94.8
4 0.05/0.63 0.05/2.34 0.08/9.51 0.10/27.1 0.11/56.63 0.14/132
5 0.05/1.02 0.07/2.96 0.09/8.58 0.12/29.0 0.14/136 0.15/134

Table 2. Results of second benchmark (SCIFF/NuSMV), in seconds

K \N 0 1 2 3 4 5
0 0.02/0.28 0.03/1.02 0.04/1.82 0.05/5.69 0.07/12.7 0.08/37.9
1 0.06/0.66 0.06/1.67 0.07/4.92 0.08/9.21 0.11/17.3 0.15/57.39
2 0.14/0.82 0.23/3.44 0.33/8.94 0.45/22.1 0.61/75.4 0.91/72.86
3 0.51/1.01 1.17/4.46 1.87/15.87 3.77/41.2 5.36/79.2 11.4/215
4 1.97/1.17 4.79/4.43 10.10/17.7 26.8/52.2 61.9/116 166/268
5 5.78/2.00 16.5/5.71 48.23/16.7 120/60.5 244/296 446/259

Fig. 5. Charts showing the ratio NuSMV/g-SCIFF runtime, in Log scale

is the case, because NuSMV’s runtime is somehow proportional to the size of
the LTL formula to be checked, whereas the runtime of g-SCIFF, which follows
a “simulation by abduction” approach, heavily depends on the type of query
it has to answer to, rather than on its length, and on the order of clauses and
on the type of functors used in the SCIFF program. This suggests that suitable
heuristics that choose how to explore the search tree could help improve the
g-SCIFF performance. This is subject for future research.

Verification from Declarative Specifications Using Logic Programming 451

5 Related Work

We discuss other related approaches to verification, starting by those using ALP.
Alessandra Russo et al. [18] exploit abduction for verification of declarative spec-
ifications expressed in terms of required reactions to events. They use the event
calculus (EC) and include an explicit time structure. Global systems invariants
are proved by refutation, and adopting a goal-driven approach similar to ours.
The main difference concerns the underlying specification language: while Russo
et al. rely on a general purpose ALP proof procedure which handles EC spec-
ifications and requirements, we adopt a language which directly captures the
notion of occurred events and expectations, whose temporal relationships are
mapped on CLP constraints. In this way, for the time structure we can rely on
a variety of CLP domains (e.g., integers, reals, just to mention the two most
relevant ones).

Another system aimed at proving properties of graphical specifications trans-
lated to logic programming formalisms is West2East [20], where interaction pro-
tocols modeled in Agent UML are translated to a Prolog program representing
the corresponding finite state machine, whose properties can be verified exploit-
ing the Prolog meta-programming facilities. However, the focus of that work is
more on agent oriented software engineering, rather than verification: the sys-
tem allows (conjunctions of) existential or universal queries about the exchanged
messages (i.e., to check if a given message is guaranteed to be exchanged in at
least one or all of the possible protocol instatiations) or guard conditions, and
it is not obvious how to express and verify more complex properties.

In [21], the authors propose a mixed informal-formal approach to BP design
and verification. Differently from this work, they consider a procedural language
for the specification of business processes (XPDL). Verification is carried on,
formally, by exploiting the Situation Calculus, a dialect of First Order Logic,
and its Golog interpreter in particular.

In [22], Fisher and Dixon propose a clausal temporal resolution method to
prove satisfiability of arbitrary propositional LTL formulae. The approach is two-
fold: first, the LTL formula is translated into a standard normal form (SNF),
which preserves satisfiability; then a resolution method, encompassing classical
as well as temporal resolution rules, is applied until either no further resolvents
can be generated or false is derived, in which case the formula is unsatisfiable.
From a theoretical point of view, clausal temporal resolution always terminates,
while avoiding the state-explosion problem; however, the translation to SNF
produces large formulas, and finding suitable candidates for applying a temporal
resolution step makes the resolution procedure exponential in the size of the
formula. Furthermore, in case of satisfiability no example is produced.

Differently from the approach here presented, in other works LP and CLP
have been exploited to implement model checking techniques. Of course, since
they mimic model checking, they inherit the same drawbacks of classical model
checkers when applied for the static verification of ConDec models.

For example, Delzanno and Podelski [23] propose to translate a procedural sys-
tem specification into a CLP program. Safety and liveness properties,

452 M. Montali et al.

expressed in Computation Tree Logic, are checked by composing them with
the translated program, and by calculating the least and the greatest fix-point
sets.

In [24], Gupta and Pontelli model the observed system through an automa-
ton, and convert it into CLP. As in our approach, they cannot handle infinite
sequences without the intervention of the user: the user is supposed to provide a
predicate that generates a finite number of sequences of events representing all
the possible evolutions of the system.

6 Discussion and Conclusion

A most prominent feature and, in our opinion, a major advantage of the ap-
proach we present, with respect to other approaches to verification in the same
application domains, is the language, as we have discussed earlier. It is declara-
tive and it accommodates explicit time and dense domains. A software engineer
can specify the system using a compact, intuitive graphical language such as
ConDec, then the specification is mapped automatically to a SCIFF program.
Using g-SCIFF, It is possible to verify the specification’s properties. Using the
SCIFF proof procedure it is possible to monitor and verify at run-time that the
execution of an implemented system complies with the specifications. This elim-
inates the problem of having to produce two sets of specifications (one for static
and one for run-time verification) and of verifying that they are equivalent.

Apart from the language, the main difference with model checking is that
queries are evaluated top-down, i.e., starting from a goal. No model needs to
be generated, which eliminates a computationally expensive step. By going top-
down, the verification algorithm only considers relevant portions of the search
space, which can boost performance. On the downside, the performance strongly
depends on the way SCIFF programs are written w.r.t. the property. Due to the
left-most, depth-first search tree exploration strategy inherited from Prolog by
SCIFF, the order of clauses influences the performance, and so does the ordering
of atoms inside the clauses. However, this does not impact on soundness.

A major drawback of our approach is that it does not always guarantee termi-
nation, as opposed to unbounded model checkers, which typically guarantee that
the verification algorithm terminates even when checking formulae producing
models of infinite length, such as, for instance, �(a→ ♦a). In general, g-SCIFF
would not terminate in such a case - although it does terminate if it is used with
finite domains, such as discrete time and limited time span. However, g-SCIFF
implements a work-around to address this deficiency, similar to the one used
in bounded model checking. In particular, g-SCIFF can be invoked in bounded
mode, which restricts the number of actions generated by g-SCIFF. In this way,
g-SCIFF does not guarantee completeness in the general case, but it is still able
to say that, for example, a query fails with models consisting of at most N ac-
tions. Another technique implemented by SCIFF is iterative deepening, which
can be used to address similar cases at the cost of a worse performance. How-
ever, we emphasize that we are proposing g-SCIFF for use in application domains

Verification from Declarative Specifications Using Logic Programming 453

in which interactions are expected to eventually terminate. A typical ConDec
model does not contain infinite loops—at least, not intentionally. In particular,
all ConDec relations individually produce loop-free SCIFF programs, and spec-
ifications such as the one we presented earlier do not have this problem. Thus,
although a combination of ConDec relations can indeed produce infinite loops,
we can consider them to be uncommon cases which can be identified through a
pre-processing phase and verified by using g-SCIFF with iterative deepening. A
promising approach to deal with infinite computations during verification seems
to be Coinductive Logic Programming [25,26], since Coinductive LP extends the
usual operational semantics of logic programming to allow reasoning over infinite
and cyclic structures and properties. It might be, therefore, a useful approach
to deal with models which lead to infinite g-SCIFF computations. This issue,
together with a more extensive theoretical and experimental evaluation, will be
our next research direction.

Acknowledgments. This work has been partially supported by the FIRB
project TOCAI.IT.

References

1. Kowalski, R.A.: Algorithm = logic + control. Communications of the ACM 22(7),
424–436 (1979)

2. Singh, M.P.: Agent communication language: rethinking the principles. IEEE Com-
puter, 40–47 (December 1998)

3. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable
agent interaction in abductive logic programming: the SCIFF framework. ACM
Transactions on Computational Logic 9(4), 1–43 (2008)

4. Nalepa, G.: Proposal of business process and rules modeling with the xtt method.
In: International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), pp. 500–506 (2007)

5. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

6. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pp. 995–1072. MIT Press,
Cambridge (1990)

7. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Model Checking Soft-
ware. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–
167. Springer, Heidelberg (2007)

8. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Infor-
mation and Computation 104, 35–77 (1993)

9. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Log. Com-
put. 2(6), 719–770 (1992)

10. Bürckert, H.: A resolution principle for constrained logics. Artificial Intelligence 66,
235–271 (1994)

11. Montali, M., Pesic, M., van der Aalst, W.M., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographies. ACM Transac-
tion on the Web (submitted, 2008)

454 M. Montali et al.

12. Pesic, M., Schonenberg, H., van der Aalst, W.: Declare: Full support for loosely-
structured processes. In: 11th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2007), Annapolis, Maryland, USA, October 15-19,
2007, pp. 287–300. IEEE Computer Society, Los Alamitos (2007)

13. Bryl, V., Mello, P., Montali, M., Torroni, P., Zannone, N.: B-Tropos: Agent-
oriented requirements engineering meets computational logic for declarative busi-
ness process modeling and verification. In: Sadri, F., Satoh, K. (eds.) CLIMA VIII.
LNCS (LNAI), vol. 5056, pp. 157–176. Springer, Heidelberg (2008)

14. Jaffar, J., Maher, M.: Constraint logic programming: a survey. Journal of Logic
Programming 19(20), 503–582 (1994)

15. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming 37(1-3), 95–138 (1998)

16. Christiansen, H., Dahl, V.: HYPROLOG: A new logic programming language with
assumptions and abduction. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS,
vol. 3668, pp. 159–173. Springer, Heidelberg (2005)

17. Halpern, J.Y., Vardi, M.Y.: Model checking vs. theorem proving: A manifesto. In:
Artificial intelligence and mathematical theory of computation: papers in honor of
John McCarthy, pp. 151–176 (1991)

18. Russo, A., Miller, R., Nuseibeh, B., Kramer, J.: An abductive approach for
analysing event-based requirements specifications. In: Stuckey, P. (ed.) ICLP 2002.
LNCS, vol. 2401, pp. 22–37. Springer, Heidelberg (2002)

19. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic
model checker. International Journal on Software Tools for Technology Trans-
fer 2(4), 410–425 (2000)

20. Casella, G., Mascardi, V.: West2east: exploiting web service technologies to engi-
neer agent-based software. IJAOSE 1(3/4), 396–434 (2007)

21. Li, B., Iijima, J.: Architecture on a hybrid business process design and verification
system. In: International Conference on Wireless Communications, Networking and
Mobile Computing (WiCom), pp. 6199–6204 (2007)

22. Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Transactions
on Computational Logic 2(1), 12–56 (2001)

23. Delzanno, G., Podelski, A.: Model checking in clp. In: Cleaveland, W.R. (ed.)
TACAS 1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)

24. Gupta, G., Pontelli, E.: A constraint-based approach for specification and verifi-
cation of real-time systems. In: Proceedings of the 18th IEEE Real-Time Systems
Symposium (RTSS 1997), pp. 230–239. IEEE Computer Society, Los Alamitos
(1997)

25. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive logic pro-
gramming and its applications. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS,
vol. 4670, pp. 27–44. Springer, Heidelberg (2007)

26. Jaffar, J., Santosa, A.E., Voicu, R.: A clp proof method for timed automata. In:
Proceedings of the 25th IEEE Real-Time Systems Symposium (RTSS 2004), pp.
175–186. IEEE Computer Society, Los Alamitos (2004)

Prolog Based Description Logic Reasoning

Gergely Lukácsy, Péter Szeredi, and Balázs Kádár

Budapest University of Technology and Economics
Department of Computer Science and Information Theory

1117 Budapest, Magyar tudósok körútja 2., Hungary
{lukacsy,szeredi}@cs.bme.hu

Abstract. In this paper we present the recent developments of the DLog
system, an ABox reasoning engine for the the SHIQ description logic
language. DLog differs from traditional description logic reasoners in
that it transforms description logic axioms into a Prolog program. The
transformation is done independently from the ABox, i.e. the set of as-
sertions about the individuals. This makes it possible to store the ABox
assertions in a database, rather than in memory. This approach results
in better scalability and helps using description logic ontologies directly
on top of existing information sources.

The transformation involves several optimisation steps, which aim at
producing more efficient Prolog programs. In this paper we focus on the
partial evaluation technique we apply to obtain programs that do not use
logic variables. This simplifies the implementation, improves performance
and opens up the possibility of compiling into Mercury code.

In the paper we also present the recent architectural changes in the
DLog system, summarise the most important features of the implemen-
tation and evaluate the performance of DLog by comparing it to the best
available description logic reasoners.

Keywords: description logic, logic programming, resolution, large data
sets.

1 Introduction

Description Logics (DLs) are becoming widespread as more and more systems
start using semantic technologies. Similarly to [1], the motivation for our work
comes from the realisation that DLs are, or soon will be, used to reason on
large amounts of data. On the Web, for example, we already have tremendous
amounts of meta-information. Obviously, such information sources cannot be
stored directly in memory.

Thus, we are interested in querying DL concepts where the assertions about
the individuals – the so called ABox – may be stored externally, e.g. in databases.
We found that most existing DL reasoners are not suitable for this task, as the
traditional algorithms for querying DL concepts need to examine the whole ABox
to answer a query. This results in scalability problems and undermines the point
of using databases.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 455–469, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

456 G. Lukácsy, P. Szeredi, and B. Kádár

We have developed an approach where the inference algorithm is divided
into two phases. From the given terminological knowledge, without accessing
the underlying data set, we first create a query-plan, in the form of a Prolog
program. Subsequently, this query-plan can be run on the ABox data, to obtain
the required results. This algorithm has been incorporated in the ABox reasoning
engine DLog, which is available at http://dlog-reasoner.sourceforge.net.

In this paper we focus on the recent developments of the DLog system, which
include a partial evaluation technique we apply to avoid using logic variables
in the Prolog programs generated, as well as the architectural redesign of the
system. The complete description of other aspects of DLog, including the detailed
explanation of the optimisation techniques, can be found in [2].

This paper is structured as follows. In Section 2 we introduce Description
Logics and summarise existing theorem proving approaches for DLs. Section 3
gives an overview of the DLog approach. Section 4 discusses a new optimisation
technique, called unfolding. Section 5 presents the architecture and the imple-
mentation details of the DLog server extension. Finally, before concluding the
paper, we compare the performance of DLog with other reasoning systems.

2 Preliminaries and Related Work

Description Logics [3] are a family of simple logic languages used for knowl-
edge representation. DLs are used for describing various kinds of knowledge of
a selected field as well as of general nature. The Description Logic approach
uses concepts to represent sets of objects i.e. unary relations, and roles to de-
scribe binary relations between objects. Objects are the instances occurring in
the modelled application field, and thus are also called instances or individuals.

A DL knowledge base is a set of DL axioms consisting of two disjoint parts:
the TBox and the ABox. The TBox (terminology box) contains terminological
axioms, such as C / D (concept C is subsumed by concept D). The ABox
(assertion box) stores knowledge about the individuals in the world, e.g. the
concept assertion C(i) states that individual i is an instance of the concept C.

Concepts and roles may either be atomic or composite. A composite concept
is built from atomic concepts using constructors. The expressiveness of a DL
language depends on the constructors allowed for building composite concepts
or roles. We use the DL language SHIQ in this paper which is one the most
widely used DL variant. For more details we refer the reader to the first two
chapters of [3].

In this paper, we will deal with two ABox-reasoning problems: instance check
and instance retrieval. In an instance check problem, a query-concept C and
an individual i is given. The question is whether C(i) is entailed by the TBox
and the ABox. In an instance retrieval problem the task is to retrieve all the
instances of a query-concept C, entailed by the given TBox and ABox.

Traditionally, ABox-reasoning is based on the tableau inference algorithm. An
individual i is inferred to be an instance of a concept C, if the tableau algorithm
reports inconsistency for the given TBox and ABox, when the latter is extended
with the indirect assertion ¬C(i). This approach cannot be directly used for

Prolog Based Description Logic Reasoning 457

high volume instance retrieval, because it requires checking all instances in the
ABox. Novel techniques have been developed recently, such as [4], to overcome
this drawback of the tableau approach. These techniques have been incorporated
in the state-of-the-art DL reasoners, such as RacerPro and Pellet, the two tableau
reasoners used in our performance evaluation in Section 6.

In [5], a resolution-based inference algorithm is described, which is not as
sensitive to the increase of the ABox size as the tableau-based methods. How-
ever, this approach still requires the input of the whole content of the ABox
before attempting to answer any queries. The KAON2 system [1] provides an
implementation of this approach.

Article [6] introduces the term Description Logic Programming. This idea uses
a direct transformation of ALC concepts into definite Horn-clauses, and poses
some restrictions on the form of the knowledge base, which disallow axioms
requiring disjunctive reasoning. Further important work on Description Logic
Programming includes [7,8,9].

The Prolog Technology Theorem Prover approach (PTTP) was developed by
Mark E. Stickel in the late 1980’s [10], providing a theorem prover for First
Order Logic (FOL) on top of Prolog. This means that an arbitrary FOL formula
is transformed into a set of Horn-clauses, and FOL reasoning is performed using
Prolog execution. In PTTP, each first order clause gives rise to a number of
Horn-clauses, the so-called contrapositives. By using contrapositives each literal
of a FOL clause will appear in the head of a Horn clause, ensuring that it can
participate in a resolution step in spite of the restricted selection rule of Prolog.

In the PTTP approach, ancestor resolution is used instead of factoring infer-
ence rule. Ancestor resolution is implemented in Prolog by building an ancestor
list which contains open predicate calls (i.e. calls which were entered or re-
entered, but have not been exited yet, according to the Procedure-Box model
of Prolog execution). If the ancestor list contains a literal which can be unified
with the negation of the current goal literal, then the goal literal succeeds and
the unification with the ancestor element is performed. Note that in order to
retain completeness, as an alternative to ancestor resolution, one has to try to
prove the current goal using normal resolution as well.

There are two further features to make the PTTP approach complete. First,
to avoid infinite loops, iterative deepening is used as opposed to the standard
depth-first Prolog search strategy. Second, in contrast with Prolog, PTTP uses
occurs check during unification.

3 An Overview of the DLog Approach

In this section we give a high level overview of the DLog reasoner. Let us consider
the following DL knowledge base example:

1 ∃hasFriend. Alcoholic � ¬Alcoholic
2 ∃hasParent.¬Alcoholic � ¬Alcoholic

3 hasParent(i1, i2) hasParent(i1, i3) hasFriend(i2, i3)

458 G. Lukácsy, P. Szeredi, and B. Kádár

The axiom in line 1 states that if someone has a friend who is alcoholic, then he
is not alcoholic. Line 2 states that if someone has a parent, who is not an alcohol
addict, then he is not alcoholic either. The ABox in line 3 contains assertions
for the hasParent and hasFriend relations, but nothing about someone being
alcoholic or non-alcoholic. Interestingly, it is possible to conclude that i1 is non-
alcoholic as one of his parents has to be non-alcoholic.

The common properties of such problems is that solving them requires case
analysis and therefore the trivial Prolog translation usually does not work.

The first step of our sound and complete SHIQ to Prolog transformation
process is to convert a SHIQ knowledge base to a set of first order clauses of
a specific form. Here we rely on the saturation techniques described in [1] and
[11]. In the present paper we only make use of the fact that the output of these
transformations takes a specific form: [1] and [11] prove that for an arbitrary
SHIQ knowledge base KB, the resulting set of first-order clauses, denoted by
DL(KB), only contains clauses of the form listed in Figure 1.

(1) ¬R(x, y) ∨ S(y, x)

(2) ¬R(x, y) ∨ S(x, y)

(3) P(x)

(4)
∨

i,j,k ¬Rk(xi, xj) ∨
∨

i P(xi) ∨
∨

i,j(xi = xj)

(5) R(a, b)

(6) C(a)

Fig. 1. The format of FOL clauses generated from SHIQ knowledge bases

Here clause types (1)–(4) correspond to the TBox, while (5) and (6) are ABox
clause templates. P(x) denotes a nonempty disjunction of possibly negated unary
literals: (¬)P1(x) ∨ . . . ∨ (¬)Pn(x). A clause of type (4) has further properties:
it contains at least one negative binary literal, and at least one unary literal,
but the set of variable equalities may be empty. Also, its negative binary literals
contain all the variables of the clause. Furthermore, if we build a graph from the
binary literals by converting R(x, y) to an edge x→ y, this graph will be a tree.

Note that, in contrast with [1], all clauses containing function symbols are
eliminated: the resulting clauses can be resolved further only with ABox clauses.
This forms the basis of a pure two phase reasoning framework, where every pos-
sible ABox-independent reasoning step is performed before accessing the ABox
itself, allowing us to store the content of the ABox in an external database.

Actually, in the general transformation, we use only certain properties of the
clauses in Figure 1. These properties are satisfied by a subset of first order clauses
that is, in fact, larger than the set of clauses that can be generated from a SHIQ
KB. We call these clauses DL clauses. As a consequence of this, our results can
be used for DL knowledge bases that are more expressive than SHIQ. This
includes the use of certain role constructors, such as union. Furthermore, some

Prolog Based Description Logic Reasoning 459

parts of the knowledge base can be supplied by the user directly in the form of
first order clauses. More details can be found in [2].

As the clauses of a SHIQ knowledge base KB are normal first-order clauses
we can apply the PTTP technology (cf. Section 2) directly on these. This involves
the generation of contrapositives of DL(KB), which also requires the introduction
of new predicate names for negated literals.

We have simplified the PTTP approach for the special case of DL clauses.
The following list is a brief summary of the principles we use in the execution
of DL predicates, in comparison with their counterparts in PTTP:

– DLog uses normal Prolog unification, rather than occurs check;
– DLog uses loop elimination, instead of iterative deepening;
– DLog eliminates contrapositives with negated binary literals in the head;
– DLog does not apply ancestor resolution for roles;
– DLog uses deterministic ancestor resolution.

In [2], we have proved that these modifications result in a reasoner on DL clauses,
which is sound and complete.

We have implemented the specialised PTTP approach as follows. First, we
transform the DL clauses to a DL predicate format simply by generating all
contrapositives and grouping these into predicates. For very simple knowledge
bases, not requiring ancestor resolution nor loop elimination, the DL predicate
translation produces a sound, executable Prolog code. For more complex knowl-
edge bases, such as the alcoholic example, one has to include loop elimination
and ancestor resolution in the DL predicates themselves.1 The complete and
formalised transformation process is presented in [2].

As an example, the DL predicate format of the above alcoholic problem is
shown below:

1 alcoholic(A) :- hasParent(B, A), alcoholic(B).

2 not_alcoholic(A) :- hasParent(A, B), not_alcoholic(B).
3 not_alcoholic(A) :- hasFriend(A, B), alcoholic(B).
4 not_alcoholic(A) :- hasFriend(B, A), alcoholic(B).

5 hasParent(i1, i2). hasParent(i1, i3). hasFriend(i2, i3).

Figure 2 shows the executable Prolog code generated for the DL predicate
alcoholic, as shown in line 1 above. Lines 1 and 2 of the figure implement
loop elimination and ancestor resolution, respectively. Line 3 is derived from the
single DL clause of alcoholic, by extending the head and appropriate body
calls with an additional argument, storing the ancestor list.

Note that an additional clause is required in the Prolog code, if the ABox
contains assertions for the given unary predicate. For example, if there were
assertions for alcoholic in the ABox, then the alcoholic predicate would
have a fourth clause of form: alcoholic(A, _) :- alcoholic(A).

1 Another option is to use an interpreter catering for loop elimination and ancestor
resolution, see [12].

460 G. Lukácsy, P. Szeredi, and B. Kádár

1 alcoholic(A, B) :- member(C, B), C == alcoholic(A), !, fail.
2 alcoholic(A, B) :- memberchk(not_alcoholic(A), B).
3 alcoholic(A, B) :- C = [alcoholic(A)|B], hasParent(D,A), alcoholic(D,C).

Fig. 2. The Prolog translation of the predicate alcoholic

4 Unfolding

The present section discusses an important optimisation in the translation of
DL predicates to Prolog code. This transformation uses well known partial eval-
uation techniques to produce Prolog code that is both more efficient and uses
simpler data structures, relying on the specific features of DL predicates.

4.1 Motivation and Goals

Recall that DL predicates contain body goals with at most two arguments, and
that only unary predicates require ancestor resolution and loop elimination.
These two execution elements rely on maintaining a list of (unary) ancestor
goals, which, in general, are not necessarily ground.

Non-ground ancestors can only be created in the early phase of execution. As
soon as a binary goal exits successfully, or a unary goal succeeds and instantiates
its argument, the query variable is instantiated and from this point onwards all
unary goal invocations, as well as the ancestor list, are ground. This is because
such goals are brought to the front of the clause body the goal ordering algorithm,
as described in [2].

The main goal of the unfolding transformation is to eliminate the phase in-
volving non-ground ancestors. This is achieved by repeatedly unfolding clauses
with unary goals only, until an invocation of either a binary goal, or of a unary
ABox predicate, i.e. a predicate which is defined solely by ABox facts, appears
in the body. Naturally, in the process of unfolding both ancestor resolution and
loop elimination has to be taken care of.

This transformation has several advantages. Performing ancestor resolution
at compile time obviously saves runtime. What is more important, it may well be
the case that ancestor resolution can be fully eliminated for certain predicates,
thus also avoiding the need for building ancestor lists for these predicates. Even
when ancestor lists are needed, they are ground, and thus no logic variables occur
in the DLog code. This means the DL predicates can be potentially compiled to
Mercury, rather than to plain Prolog, with obvious efficiency implications. Un-
folding also opens the possibility for a more efficient implementation of ancestor
storage, such as hash tables2.
2 Hash tables have already been introduced in the previous version of DLog. However

there we had to rely on the so called superset transformation, cf. Section 3, to
ensure that all unary goals are ground. By the use of unfolding, the calculation of
the superset, a potentially expensive operation, can be avoided.

Prolog Based Description Logic Reasoning 461

4.2 An Example

Let us consider the following simple TBox:

¬Alcoholic 4 Worried � Happy (1)
Happy 4 Worried � ∃hasFriend.� (2)

Worried 4 ¬Happy (3)
Worried 4 ∃hasFriend.Alcoholic (4)

The DL predicates corresponding to the above TBox are shown below. Com-
ments indicate which DL axiom gives rise to the given clause. Clauses which are
contrapositives of “main” translations are shown in italics.

not_alcoholic(X) :- worried(X), happy(X). (1)
not_alcoholic(Y) :- hasFriend(X, Y), not_worried(X). (4)

happy(X) :- worried(X), hasFriend(X, _). (2)
happy(X) :- not_worried(X). (3)

worried(X) :- not_happy(X). (3)
worried(X) :- hasFriend(X, Y), alcoholic(Y). (4)

not_worried(X) :- happy(X), alcoholic(X). (1)
not_worried(X) :- not_happy(X), hasFriend(X, _). (2)

not_happy(X) :- worried(X), alcoholic(X). (1)

Note that the above code cannot be directly executed in Prolog. Because
alcoholic can be called within not alcoholic, the invocation of the latter has
to be put on the ancestor list, while the definition of the former has to cater for
ancestor resolution. The same holds for the happy–not happy pair of predicates.
Therefore, similarly to the Prolog code in Figure 2, a second argument is added
to these predicates to store the ancestor list, and their definition is extended by
a clause performing the ancestor resolution.

In contrast with this fairly complex translation, the unfolding optimisation
results in Prolog code that does not require ancestor resolution. The executable
Prolog code resulting from the optimisation is shown below, under the assump-
tion that the ABox only contains facts for hasFriend and worried.

happy(A) :- hasFriend(A, _).

not_alcoholic(A) :- worried(A), hasFriend(A, _).
not_alcoholic(A) :- hasFriend(A, A).

4.3 The Process of Transformation

The unfolding transformation takes a set of DL predicates and an ABox signature
(the list of functors present in the ABox), and produces an equivalent set of

462 G. Lukácsy, P. Szeredi, and B. Kádár

annotated DL predicates, i.e. DL predicates in which each goal is associated
with an explicit ancestor list. This list contains the terms that have to be added
to the ancestor list, maintained by the DLog execution, when the given goal is
invoked. Note that this annotation is implicit in the input DL predicates, as each
goal is assumed to be annotated with its parent goal.

In general, each unary input predicate p/1 is duplicated in the output: there
is an entry version, named p/1, and an inner version, named ’p$’/1. The inner
version is equivalent to the original, while the entry version is a specialisation
of the inner predicate, under the assumption that the ancestor list supplied to
the predicate is empty. Note that this is the case when the given predicate is
invoked from outside.

The entry version of a predicate is omitted from the output, if it has no clauses,
and the inner version is only included if it is invoked (perhaps indirectly, through
other inner predicates) from one of the entry predicates. For instance, consider
the unfolded code of the example at the end of Section 4.2. This Prolog program
does not contain the entry predicate not worried/1 because all its clauses fail,
when called with an empty ancestor list. Furthermore, the code contains no inner
predicates, because none is invoked from the entry ones.

The transformation process consists of the following phases, discussed below
in detail.

1. Equivalence transformations:
(a) primary and secondary unfolding,
(b) simplification

2. Specialisation of entry predicates
3. Composing the target program.

Primary unfolding is a process applied to each unary DL predicate. We start
with a most general invocation of the given predicate, say p(X), and repeatedly
expand the goal sequence at hand by nondeterministically replacing a unary goal
with a clause body of its definition. The expansion goes on until a binary or an
ABox predicate invocation appears in the sequence (recall that this ensures that
ancestor lists are ground). Depending on the option settings, the expansion will
continue after this minimal objective is achieved, but only for those unary goals
whose argument is the same variable as that of the original goal (i.e. X in our
example). Having enumerated all expansions B of goal p(X), the set of clauses
‘p(X) :- B.’ forms the result of the primary unfolding.

For example, let us consider the following simple program:

p(X) :- q(X), r(X).

q(X) :- a(X).

q(X) :- b(X,Y), p(Y).

The minimal primary unfolding of p/1 is the following (assuming a/1 is an ABox
predicate, and ignoring annotations for the moment):

p(X) :- a(X), r(X).

p(X) :- b(X,Y), p(Y), r(X).

Prolog Based Description Logic Reasoning 463

If multiple unary goals are available for expansion, as e.g. in q(X),r(X) after
the first expansion of p(X), we select the goal whose definition is the smallest
(in terms of clauses). Thus, if r/1 had only a single clause, then we would have
chosen to expand the goal r(X), rather than q(X), in the above example.

In addition to using the clauses of its predicate definition, a goal can also be
satisfied through ABox assertions or using ancestor resolution. Primary unfold-
ing has to take this into account. If, for example, q/1 is present in the ABox
signature, i.e. there are some ABox assertions of form q(...), then a third clause
for p/1 is generated:

p(X) :- qabox(X), r(X).

The abox subscript indicates here that it is not the whole q/1 predicate which is
to be called, only its ABox assertions. The above clause can obviously be treated
as satisfying the minimal unfolding objective.

Furthermore, if q/1 can succeed via ancestor resolution (i.e. it can be reached
from not q/1) then a fourth clause is added:

p(X) :- ’$checkanc’(not q(X)), r(X).

Here the ’$checkanc’ goal indicates that an ancestor check has to be performed:
if not q(X) unifies with an element on the current ancestor list, then this call
should succeed; otherwise it should fail. Note that a clause containing the special
’$checkanc’ goal is treated as satisfying the minimal unfolding requirement, as
it will always be removed at entry predicate specialisation (see below).

Also note that these additional clauses, generated during primary unfolding,
correspond to the additional clauses in the Prolog translation, cf. Figure 2.

During primary unfolding an ancestor list is maintained. Each time an expan-
sion is performed, the goal being expanded is added to the ancestor list. The
goals in the unfolded clauses are annotated with their ancestor lists. In the above
example this results in the following (the ancestors are shown as subscripts):

p(X) :- a(X), rp(X)(X). (5)
p(X) :- b(X,Y), pp(X),q(X)(Y), rp(X)(X). (6)

Note that no ancestors are given for the goals a and b, as these predicate invo-
cations access the ABox only, and so are not dependent on the ancestor list.

The ancestor list maintained during unfolding is also needed to perform the
loop elimination and ancestor resolution operations. For example, assume that
the predicate q/1 has a third clause: ‘q(X) :- p(X).’ When unfolding this clause
within p/1, we detect that its body, p(X), is bound to fail, because of loop
elimination. Correspondingly, in spite of the third clause for q/1, the unfolded
p/1 will still contain the clauses (5) and (6) only.

Similarly, if the third clause added to q/1 is ’q(X) :- not p(X).’, then pri-
mary unfolding will determine that a successful ancestor resolution can be ap-
plied at this point. Thus the unfolded p/1 is extended with a third clause:

p(X) :- rp(X)(X). (7)

Note that both (5) and (6) are consequences of the above clause. This is detected
in the program simplification phase, and both clauses are removed. Thus, in this

464 G. Lukácsy, P. Szeredi, and B. Kádár

last variant, the unfolded Prolog code for p/1 contains a single clause only, (7).
Primary unfolding is performed only once, at the beginning of the optimisation.

Secondary unfolding is the expansion of a unary goal in a unary clause, where
the goal argument is different from the head variable. We apply secondary un-
folding only in the deterministic case. This means that secondary unfolding is
applicable to qAncs(Y) if:

– q/1 cannot succeed via ancestor resolution, has no ABox clauses, but does
have a single TBox clause, and, furthermore, the Ancs ancestor list has no
member with the functor q/1, (i.e. we are not inside another primary or
secondary unfolding for q/1); or

– q/1 cannot succeed via ancestor resolution, has no TBox clauses, but does
have ABox clauses; or

– q/1 has no TBox and no ABox clauses, but it can succeed via ancestor
resolution.

In the first case the goal qAncs(Y) is expanded to the body of the single clause of
predicate q/1. In the second case the goal is replaced by qabox(Y). Finally, in the
third case, the goal in question is replaced by ’$checkanc’(not_q(Y)), provided
no member of the ancestor list Ancs has the functor not q/1. Otherwise, if Ancs
has a member not q(Z)3, then we still have two cases. Let p/1 denote the
functor of the predicate in which the given invocation of q/1 is found. If p/1
cannot be reached from not q/1, then the goal can only succeed if Y and Z are
the same. Therefore the goal is replaced by the unification Y = Z. Otherwise, a
goal ’$checkanc’(not_q(Y), not_q(Z)) is generated, whose task is either to
unify its two arguments, or to unify the first argument with a member of the
current ancestor list.

The main purpose of secondary unfolding is to clarify the ancestor resolution
dependencies in the program. When the goal in question succeeds through the
ABox, it becomes clear that it does not need the ancestor list argument. Sim-
ilarly, if the third case is resolved through the unification of two variables, the
ancestor list argument becomes unnecessary.

Secondary unfolding is first performed together with primary unfolding, but
it is then repeated, possibly several times, within program simplification.

Program simplification is the phase of the transformation where redundancies
are removed. There are three basic simplifications:

– removal of a group of goals posing a constraint which is weaker than some
other group of goals in the same clause body,

– removal of a clause whose body poses a stronger constraint than some other
body in the same predicate,

– removal of unnecessary ancestor annotations.

The essence of the first two simplifications is best illustrated with an example.
Consider a clause body containing the following two groups of goals:
3 Each functor can occur only once on an Ancs ancestor list, because nested unfolding

of the same predicate is disallowed, cf. the first case of secondary unfolding.

Prolog Based Description Logic Reasoning 465

b(X, Y), q(Y) and b(X, Z), q(Z), r(Z).

Assuming that variables Y and Z do not occur elsewhere, we can notice that
the first group of goals poses a weaker constraint than the second group, and
therefore the first group is unnecessary. For the same reason, if the above two
goal groups occur as complete clause bodies within the same predicate, then the
clause with the second, stronger constraint will be removed.

Regarding the third simplification, let us note that a term p(X) is included in
the ancestor annotation of a goal q(Y) for the purpose of being put on the ances-
tor list of q. However, there is no need to include p(X) in the ancestor list of q if
there are no goals reachable from within q that may make use of this ancestor (i.e.
goals invoking the predicate not p/1 or being of form ’$checkanc’(p(_)...)).
Note also that there are several optimisations which result in the removal of goals
and clauses. This means that even if p(X) was considered a necessary ancestor
at an earlier stage, it may become superfluous later, when no more goals making
use of it are reachable from q. To cater for this, simplifications and secondary
unfolding are performed repeatedly, until a fixpoint is reached. At this point the
first phase, that of equivalence transformations, is completed.

Specialisation of entry predicates is the second phase. Here we specialise the
output of phase 1 under the assumption that the ancestor list of the predicate
is empty (which is the case for entry predicates). Although the optimisation is
driven by this assumption, we keep track of the functors whose absence from the
ancestor list is really needed for the given optimisation to work. If the optimised
entry version of p/1 is not guaranteed to work correctly for an invocation where
q() is present on p/1’s ancestor list, p/1 is said to be sensitive to q/1. For each
predicate, we keep track of the predicate functors it is sensitive to.

We start the phase by removing all clauses that contain a ’$checkanc’/1
or ’$checkanc’/2 goal. Obviously, when the enclosing predicate is called with
an empty ancestor list, these goals will fail. Whenever we remove a clause of
a predicate p/1, because of the presence of a ’$checkanc’(q()...) goal, we
note that p/1 is sensitive to q/1.

When clauses are removed, some predicates may become empty. If such a
predicate, say r/1, has no ABox clauses either, it will always fail, unless called
with a goal in its ancestor list to which it is sensitive. Consequently, if a clause C
of another predicate t/1 calls rAncs(Y), where Ancs does not contain any goals
to which r/1 is sensitive, then C can be removed. Note that at the same time
t/1 inherits the sensitivity of r/1, i.e. it becomes sensitive to all the predicates
r/1 is sensitive to. This process is continued until a fixpoint is reached.

The next task of this phase is the identification of the query predicates, i.e.
non-recursive predicates which need no ancestor resolution at all. A query pred-
icate can only call ABox predicates and query predicates. Thus a list of query
predicates is built, again iteratively, until a fixpoint is reached. Note that we
assign a cumulated sensitivity to each query predicate, which is the union of
its own sensitivity and the sensitivities of any predicates it calls, directly or
indirectly. This will be used in the next, final phase.

466 G. Lukácsy, P. Szeredi, and B. Kádár

Composing the target program means putting together the entry predi-
cates, as produced by phase 2, with inner predicates, which are the output of
phase 1. More precisely, the set of inner predicates is obtained by renaming: p/1
becomes ’p$’/1. Note that all goals in the entry predicate bodies also undergo
this renaming, as do the terms on the ancestor lists.

Next, as the final optimisation, we revert some goals to call the entry, rather
than the inner version. Namely, if p/1 is a query predicate, which is called by
a goal in a context where none of the functors of the cumulated sensitivity of
p/1 can appear on the ancestor list of the goal, then this invocation can call the
entry version of p/1, instead of its renamed, inner version.

Having performed this optimisation we can remove those inner predicates
which are never called.

Status of the implementation. The unfold optimisation has been imple-
mented and is being integrated into the DLog system. At present we are capable
of executing queries for those knowledge bases whose optimised form consists of
query predicates only. This is the case, for example, for the LUBM test suite; its
performance is evaluated in Section 6.

5 DLog Server Architecture

We have extended the DLog implementation, as described in [2], into a server
architecture which supports multiple interfaces such as DIG, OWL, etc., and is
capable of operating in a server mode, as required by popular tools such as the
Protégé ontology editor. DLog was originally developed in SICStus Prolog, and
has been recently ported to the open source SWI Prolog.

The general architecture of the DLog system is shown in Figure 3. Here, the
rectangles with rounded corners represent the modules of the DLog system. The
logger and configuration modules, used by all other modules, are not shown in the
figure. The configuration module manages both global settings (such as server
ports), and knowledge base specific settings (such as the selection of optimisa-
tions to use). The modular structure of the DLog system makes implementing
new features (such as new interfaces) fairly easy.

The system provides a console interface to access all features locally, and
server interfaces for other applications (for example, the DIG interface [13] used
by Protégé). The input arriving from these sources may contain TBox axioms,
ABox assertions, queries, or control messages (e.g. creating a new database or
setting system parameters). After transforming the input to an internal repre-
sentation, the interfaces pass it to the knowledge base manager, which executes
the command. The system can manage multiple knowledge bases simultaneously.

The ABox translator module processes the ABox, which either contains the
assertions themselves, or the description of how to access the databases contain-
ing the assertions. It produces ABox code, which is a Prolog module containing
either the assertions themselves or the appropriate database access predicates.
The ABox translator also generates the signature of the ABox, as required by
the TBox translator. The TBox axioms are first processed by the DL translator

Prolog Based Description Logic Reasoning 467

R
em

ot
e

cl
ie

nt
L
oc

al
co

ns
ol

e
External

Interfaces

DIG

OWL

KRSS

Console

TBox

ABox

Control

Queries
K

no
w

le
dg

e
B

as
e

M
an

ag
er

DL
translator

TBox
translator

ABox
sig.

ABox
translator

A
B

ox
co

de
T

B
ox

co
de

Query
module

Hash

Fig. 3. The architecture of the DLog system

module, which transforms the DL formulae to a set of DL clauses [11]. The re-
sults are passed on to the TBox translator module which generates the TBox
code, a Prolog program that can be directly executed to answer instance check
and instance retrieval queries. The queries are executed by the Query module by
using this program. The Prolog program generated as TBox code relies on the
Hash module, which implements a hash table in C, to speed up loop elimination
and ancestor resolution.

6 Evaluation

We have compared our system with three state-of-the-art ABox reasoners: Rac-
erPro 1.9.0, Pellet 1.5.0, and the latest version of KAON2 (August 2007). For
the benchmark we have used publicly available benchmark ontologies (LUBM
and VICODI), as well as the ontology corresponding to the Iocaste problem in-
troduced in [2]. The tests were performed on a Fujitsu-Siemens S7020 laptop
with 1.25GB memory.

A sample of the test results is presented in Table 1. Here the values are given
in seconds and dash (-) indicates a timeout of 600 seconds. For the LUBM test
cases we show the DLog execution with the unfolding optimisation turned off
and on (the latter is denoted by the UF suffix). The fastest total time in each

468 G. Lukácsy, P. Szeredi, and B. Kádár

Table 1. Sample results of performance evaluation

Test Iocaste10 Iocaste1000 LUBM1 LUBM1UF LUBM4 LUBM4UF VICODI

D
L
og

load 0.07 0.33 6.96 7.06 21.34 21.44 8.61

runtime 0.00 0.01 0.26 0.23 1.32 1.10 0.05

total 0.07 0.34 7.22 7.29 22.66 22.54 8.66

K
A

O
N

2 load 0.45 - 6.56 N/A 28.73 N/A 5.88

runtime 0.72 - 0.70 N/A 1.69 N/A 0.36

total 1.17 - 7.26 N/A 30.42 N/A 6.24

R
ac

er
P

ro load 0.01 0.51 24.28 N/A - N/A 34.96

runtime 0.07 1.68 117.89 N/A - N/A 76.48

total 0.08 2.19 142.17 N/A - N/A 111.44

P
el

le
t load 1.27 2.19 16.76 N/A - N/A -

runtime 0.19 456.40 31.93 N/A - N/A -

total 1.46 458.58 48.69 N/A - N/A -

column is set in boldface (except for the results with unfolding). For detailed
performance evaluation, including tests with ABoxes stored in databases, see [2].

We found that the larger the ABox, the better DLog performs compared to
its peers. Our implementation of unfolding, still in its prototype stage produces
10-15% speed-up at runtime, with a constant (approx. 0.1 sec) cost at load time,
which we believe is very promising.

7 Conclusions

In this paper we have presented the Description Logic reasoning system DLog.
Unlike the traditional Tableau based approach, DLog determines the instances
of a given SHIQ concept by transforming the knowledge base into a Prolog
program. This technique allows us to use top-down query execution and to store
the content of the ABox externally in a database, something which is essential
when large amounts of data are involved.

Following an overview of other optimisation techniques we presented the newly
introduced unfolding optimisation. This is basically a partial evaluation tech-
nique used to unfold clauses containing no binary literals. As a result we can
obtain programs where we no longer need to cater for executing unary predicates
with uninstantiated arguments (except for the outermost query predicate).

We have compared DLog with the best available ABox reasoning systems.
From the test results we can conclude that in all of the scenarios DLog is signif-
icantly faster than traditional reasoning systems.

As an overall conclusion, we believe that our results are very promising and
clearly show that Description Logic is an interesting application field for Prolog
and logic programming.

Prolog Based Description Logic Reasoning 469

Acknowledgements

The authors acknowledge the support of the Hungarian NKFP programme for
the SINTAGMA project under grant no. 2/052/2004. We are also grateful to
Tamás Benkő and the anonymous reviewers for their comments on earlier ver-
sions of the paper. Thanks are due to Zsolt Zombori for his work [11] on the
design and implementation of critical components of the DLog system.

References

1. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. Ph.D thesis, Universität Karlsruhe, Karlsruhe, Germany (2006)

2. Lukácsy, G., Szeredi, P.: Efficient description logic reasoning in Prolog: the DLog
system. Technical report, Budapest University of Technology and Economics, The-
ory and Practice of Logic Programming (submitted, 2008),
http://sintagma.szit.bme.hu/lukacsy/publikaciok/dlog tplp.pdf

3. Baader, F., Nutt, W.: Basic description logics. In: Baader, F., Calvanese, D.,
McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.) Description Logic Hand-
book. Cambridge University Press, Cambridge (2003)

4. Haarslev, V., Möller, R.: Optimization techniques for retrieving resources described
in OWL/RDF documents: First results. In: Proc. KR 2004, Whistler, BC, Canada,
June 2-5, 2004, pp. 163–173 (2004)

5. Hustadt, U., Motik, B., Sattler, U.: Reasoning for Description Logics around SHIQ
in a resolution framework. Technical report, FZI, Karlsruhe (2004)

6. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: Proc. of WWW 2003, pp. 48–57.
ACM, New York (2003)

7. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive
description logics. In: Proceedings of IJCAI 2005, pp. 466–471 (2005)

8. Samuel, K., Obrst, L., Stoutenburg, S., Fox, K., Franklin, P., Johnson, A., Laskey,
K.J., Nichols, D., Lopez, S., Peterson, J.: Translating OWL and Semantic Web
Rules into Prolog: Moving toward Description Logic Programs. TPLP 8(3), 301–
322 (2008)

9. Motik, B., Rosati, R.: A Faithful Integration of Description Logics with Logic Pro-
gramming. In: Veloso, M.M. (ed.) Proc. of the 20th Int. Joint Conference on Artifi-
cial Intelligence (IJCAI 2007), Hyderabad, India, pp. 477–482. Morgan Kaufmann
Publishers, San Francisco (2007)

10. Stickel, M.E.: A Prolog technology theorem prover: a new exposition and imple-
mentation in Prolog. Theoretical Computer Science 104(1), 109–128 (1992)

11. Zombori, Z.: Efficient two-phase data reasoning for Description Logics. In: Pro-
ceedings of the IFIP International Conference on Artificial Intelligence, Milan,
Italy (2008), http://www.cs.bme.hu/∼zombori/BME/dlog/dl reasoning.pdf

12. Nagy, Z., Lukácsy, G., Szeredi, P.: Translating description logic queries to Prolog.
In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 168–182. Springer,
Heidelberg (2005)

13. Bechhofer, S.: The DIG interface (2006), http://dig.cs.manchester.ac.uk/

http://sintagma.szit.bme.hu/lukacsy/publikaciok/dlog_tplp.pdf
http://www.cs.bme.hu/~zombori/BME/dlog/dl_reasoning.pdf
http://dig.cs.manchester.ac.uk/

Resource Management Policy Handling Multiple
Use-Cases in MPSoC Platforms Using Constraint

Programming

Luca Benini1, Davide Bertozzi2, and Michela Milano1

1 DEIS, University of Bologna
V.le Risorgimento 2, 40136, Bologna, Italy

{luca.benini, michela.milano}@unibo.it
2 Dipartimento di Ingegneria, University of Ferrara

V. Saragat 1, 41100, Ferrara, Italy
dbertozzi@ing.unife.it

Abstract. Multi-processor system-on-chip (MPSoC) technology is finding
widespread application in the embedded system domain, like in cell phones, au-
tomotive control units or avionics. Once deployed in field, these devices always
run the same set of applications, in a well-characterized context. It is therefore
possible to spend a large amount of time for off-line software optimization and
then deploy the results on the field. Each possible set of applications that can be
active simultaneously in an MPSoC platform leads to a different use-case that the
system has to be verified and tested for. Above all, smooth switching between
use-cases falls within the scope of the resource manager, since users should not
experience artifacts or delays when a transition between any two consecutive use-
cases takes place. In this paper, we propose a semi-static approach to the resource
management problem, where the allocation and scheduling solutions for the tasks
in each use-case are computed off-line via a Logic Based Benders Decomposition
approach using Constraint Programming and stored for use in run-time mapping
decisions. The solutions are logically organized in a lattice, so that the transition
costs between any two consecutive use-cases can be bound. The resulting frame-
work exhibits both a high level of flexibility and orders of magnitude speed ups
w.r.t. monolithic approaches that do not exploit decomposition.

1 Introduction

The ever increasing hardware/software parallelism of digital integrated systems raises
new challenges for optimization techniques in the field of electronic design automation.
In essence, applications are increasingly developed as a set of concurrent tasks executed
onto an hardware platform consisting of parallel computation units [2]. This paradigm
is at the core of Multi-Processor System-on-Chip (MPSoC) technology.

Mapping several tens or even hundreds of tasks onto a parallel hardware architecture
has been faced either via fast heuristic algorithms [15] or exact approaches [14,18,19,8].
The former ones provide very limited or no information on the distance between the best
computed solution and the optimal one, and sometimes they even fail to find existing
feasible solutions. In contrast, the latter ones provide the optimal solution but exhibit

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 470–484, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Resource Management Policy Handling Multiple Use-Cases in MPSoC Platforms 471

exponential worst case complexity. The effort in developing exact methods is to devise
algorithms that are efficient in practice.

This paper moves a significant step further with respect to previous work. In fact,
here we consider that in state-of-the-art MPSoC platforms multiple applications with
different performance requirements and resource utilization needs might run in paral-
lel [5]. Even focusing on a single application, there are a number of execution modes
associated with the different user-tunable options (multiple resolution video processing
capabilities, multiple video recording features [3,4]). This leads to the proliferation of
possible use-cases (or compound modes) that the system has to be verified and tested
for [1].

The number of active applications in each compound mode depends on the appli-
cation domain and on the computation power provided by the underlying hardware
platforms. In high-end modern television platforms, up to 60 applications can run si-
multaneously, corresponding to an order of 260 possible use cases. No mature method-
ology can handle even the design-time analysis of such a huge use-case space. Dynamic
resource management schemes are used in practice in these platforms [9,7], which take
purely on-line allocation and scheduling decisions. Unfortunately, these approaches do
not provide any guarantee on optimal allocation of system resources, hence the system
must be significantly over-designed, with undesirable cost implications.

In low-end MPSoC platforms, from a couple up to a dozen of active applications
might be running in parallel in each compound mode. For instance, a mobile phone
should be able to run concurrent applications such as listening to MP3 music, sending
an sms and downloading some Java applications in the background [10]. Moreover, 4
categories of use-cases were identified for ambient intelligence in [11].

Many critical challenges still have to be addressed by system designers when devel-
oping admission control and resource management policies for their MPSoCs. Smooth
switching between use-cases has to be enforced, so that users do not experience any
noticeable artifacts or delays when a transition between any two consecutive use-cases
takes place. On the other hand, the higher the mode switching overhead to reconfig-
ure the system and adapt it to the new working conditions, the higher the efficiency
of the system in the new execution scenario. Finally, since the number of use-cases is
exponential in the number of applications in the system, finding a design-time map-
ping of applications on the processors for each use-case requires computation-efficient
optimization engines.

This paper proposes a semi-static approach to the resource management problem
for low- to medium-end MPSoC platforms. We model applications with exposed task
level parallelism as generic task graphs, and compute off-line optimal allocations and
schedules for each use-case. The allocation and scheduling is faced using a Logic Based
Benders Decomposition approach based on Constraint Programming achieving orders
of magnitude speed ups with respect to monolithic approaches using either Constraint
Programming or Integer Programming [19]. Computed system configurations are stored
for use in run-time mapping decisions. Our approach features two basic innovations
with respect to previous work.

First, we assume a target MPSoC platform supporting run-time migration of tasks
from their native execution processor to a destination one featuring a lower workload.

472 L. Benini, D. Bertozzi, and M. Milano

This feature provides additional degrees of freedom for system reconfiguration during
use-case switchings. This however complicates the resource management strategy and
the associated optimization problem, which must trade-off the migration cost with the
efficiency of the new execution scenario.

Second, we do not compute task allocations and schedules for each use-case in iso-
lation, but pose a bound on the transition cost to the next possible use-cases. This is
accomplished by logically organizing use-case specific mapping problems in a lattice.
The lattice can be built around the critical use-cases that absolutely require optimal sys-
tem configuration for their execution. Depending on system requirements, they might be
the worst case execution scenario where all applications are active or the most frequent
use-cases.

2 Logic Based Benders Decomposition

The technique we use in this paper is derived from a method, known in Operations
Research as Benders Decomposition [16], and refined by [17] with the name of Logic-
based Benders Decomposition. The classical Benders Decomposition method decom-
poses a problem into two loosely connected subproblems. It enumerates values for the
connecting variables. For each set of values enumerated, it solves the subproblem that
results from fixing the connecting variables to these values. Solution of the subproblem
generates a Benders cut that the connecting variables must satisfy in all subsequent so-
lutions enumerated. The process converges providing the optimal solution of the prob-
lem overall. The classical Benders approach, however, requires that the subproblem be
a continuous linear or nonlinear programming problem. Scheduling is a combinatorial
problem that has no practical linear or nonlinear programming model. Therefore, the
Benders decomposition idea can be extended to a logic-based form (Logic Based Ben-
ders Decomposition - LBBD) that accommodates an arbitrary subproblem, such as a
discrete scheduling problem. More formally, as introduced in [17], a problem can be
written as

min f(y) (1)

s.t pi(y) i ∈ I1 Master Problem Constraints (2)

gi(x) i ∈ I2 Subproblem Constraints (3)

qi(y) → hi(x) i ∈ I3 Conditional Constraints (4)

y ∈ Y Master Problem Variables (5)

xj ∈ Di Subproblem Variables (6)

We have master problem constraints, subproblem constraints and conditional con-
straints linking the two models. If we solve the master problem to optimality, we ob-
tain values for variables y in I1, namely ȳ and the remaining problem is a feasibility
problem:

gi(x) i ∈ I2 Subproblem Constraints (7)

qi(ȳ) → hi(x) i ∈ I3 Conditional Constraints (8)

xj ∈ Di Subproblem Variables (9)

Resource Management Policy Handling Multiple Use-Cases in MPSoC Platforms 473

We can add to this problem a secondary objective function, say f1(x) to discriminate
among feasible solutions. If the problem is infeasible, a Benders cut By(y) is created
constraining variables y.

In practice, to avoid the generation of master problem solutions that are trivially
infeasible for the subproblem, it is worth adding a relaxation of the subproblem to the
master problem.

Deciding to use the LBBD to solve a combinatorial optimization problem implies a
number of design choices that strongly affect the overall performance of the algorithm.
Design choices are:

– how to decompose the problem, i.e., which constraints are part of the master prob-
lem and which instead are part of the subproblem;

– which technique and which model to chose for each component
– which Benders cuts to use, establishing the interaction between the master and the

subproblem;
– which relaxation to use so as to avoid the generation of trivially infeasible solutions

in the master problem.

3 Migration-Enabled MPSoC Architecture and Use-Cases

The resource management strategy proposed in this work targets the MPSoC architec-
ture template illustrated in Fig. 1, which matches several recently proposed industrial
MPSoC platforms [12]. It consists of a configurable number of processor cores. Each
processor core has its own private memory which can be accessed in a contention-free
regime. It can be used to store task code and private data, as well as to store communi-
cation queues between tasks mapped on the same processor. In contrast, the processor
cores compete to access the system shared memory, which serves as the mailbox for
inter-processor communication or to store global data structures. The system intercon-
nect can be a shared bus, in case the private memories are local to their processors, or a
crossbar where each private memory resides on a separate branch. This way, communi-
cation parallelism can take place.

Applications for this kind of systems are represented as directed acyclic task graphs
where nodes represent application functional blocks and arcs are data-dependencies due
to communication and synchronization. We suppose we have a number of task graphs
representing single applications that might be active at the samne time on the target
platform.

In principle, every possible combination of applications (use-case) can be optimized
in isolation. Allocation of tasks to processors, memory requirements to memory slots
and communication requirements to system interconnects is performed along with a
schedule of the overall use-case. The objective function that we consider in this paper
is the communication cost. In practice, however, the optimization of each use-case is
not independent from the others. The efficient execution of the new scenario might in
fact require background tasks (those that remain active in two consecutive use-cases)
to be redistributed throughout the system so to efficiently allocate newly activated tasks
and optimally execute the new global task set. This can be achieved by means of a

474 L. Benini, D. Bertozzi, and M. Milano

SHARED

PRIVATE
MEMORYPROCESSOR

CORE

PRIVATE
MEMORYPROCESSOR

CORE

PRIVATE
MEMORYPROCESSOR

CORE

SYSTEM INTERCONNECT

.............

MEMORY

Fig. 1. Reference MPSoC platform

task migration mechanism, provided the associated transition cost remains within pre-
defined bounds. In fact, a task which migrates from one core to another one needs to be
temporarily suspended. Moreover, a migration event induces a traffic peak on the bus,
which might impair execution quality of other running tasks. These fluctuations need to
be controlled not to significantly impact user-perceived performance.

Task migration has been traditionally used in computer clusters. Its feasibility in the
context of performance sensitive and power constrained MPSoCs has been proved by
[13]. The migration software support considered in this paper is based on the same
principles and implementation.

4 Handling Multiple Use-Cases

In the context of multiple use-cases, we have to find the optimal allocation and schedul-
ing for each of them. The aim is not to consider each use-case in isolation, but to place
them all in a lattice where every transition between use-cases has a bounded migration
cost. The purpose is on one hand to meet migration cost bound for the entire life time of
the system, and to obtain on the other hand a flexible and reliable design methodology.

A use-case is composed by a number of task graphs. Each task graph g has a number
of tasks NTg. Each task t has memory requirementmemt, a state statet that should be
possibly migrated during use-case transitions, a communication requirement with the
preceding task comt and a duration durt, including the time to acquire input data, for
executing and for writing output data. Each task graph has an associated deadline. In
this paper we consider pipelined task graphs where communicating tasks are those with
consecutive indexes. In addition we consider the pipeline at working rate. Therefore,
we always consider a number of pipeline iterations equal to the number of tasks in the
pipeline.

The problem we face is to allocate tasks to processors, memory requirement to stor-
age devices and schedule the overall application so as to minimize the communication
cost (bus utilization) for each use case and have bounded migration cost transitions
between use cases.

Let us consider a simple example. Suppose we have an MPSoC platform with three
processors running at 400 MHz, three 500 KB private memories, and a 1 MB shared

Resource Management Policy Handling Multiple Use-Cases in MPSoC Platforms 475

Table 1. Task requirement of task graph A

t tA
0 tA

1 tA
2 tA

3 tA
4 tA

5 tA
6 tA

7

durt 3.0 2.5 1.0 1.0 2.0 0.65 1.5 1.0
statet 50 40 100 50 20 10 50 40
memt 20 80 30 150 30 110 40 10
comt 0 35 60 20 30 20 10 30

Table 2. Task requirement of task graph B

t tB
0 tB

1 tB
2 tB

3 tB
4

durt 8.0 6.0 9.0 7.0 8.0
statet 10 10 30 20 10
memt 10 50 30 30 20
comt 0 30 50 10 40

Table 3. Task requirement of task graph C

t tC
0 tC

1 tC
2 tC

3 tC
4 tC

5

durt 0.9 1.6 0.4 0.5 0.8 0.7
statet 10 10 30 20 30 15
memt 10 50 30 30 15 20
comt 0 30 50 10 40 20

memory divided in 3 mailboxes (333 KB each). The real time constraint for all task
graphs be 33 ms. We have three pipelined task graphs, A, B and C. A contains 8
tasks, B 5 tasks, while C has 6 tasks. In tables 1, 2 and 3 we model their requirements
(durations are in milliseconds, all other values in KB).

The optimal mapping for task graph A in isolation (leading to a feasible schedule) is
the following: from tA0 to tA4 on one processor (say P1), and tA5 , tA6 and tA7 on a second
processor (say P2). Clearly, mapping all tasks on a single processor is infeasible for
the deadline constraint. The notation we use to express this solution is the following
SolA = [{tA0 , tA1 , tA2 , tA3 , tA4 }, {tA5 , tA6 , tA7 }]. Note that the allocation of groups of tasks
to processor is subject to permutation symmetries. In this mapping, the communication
cost of the task graph A is 320. In fact, tA4 and tA5 communicate with a cost of 20 that
should be multiplied by the number of pipeline iterations (8) equal to the number of
tasks in the task graph and multiplied by 2 for the writing and reading activities.

The optimal mapping for task graph B in isolation is the following: tB0 , tB1 and tB2
on one processor (say P1), tB3 and tB4 on a second processor (say P2), i.e. SolB =
[{tB0 , tB1 , tB2 }, {tB3 , tB4 }]. In this mapping, the communication cost of the task graph B
is 100.

The optimal solution for task graph C maps all tasks on a single processor with zero
communication cost.

If more than one use-case can be active at the same time, we cannot simply optimize
single task graphs in isolation, but we have to take into account all their combinations.

476 L. Benini, D. Bertozzi, and M. Milano

One possibility, explained in this example, is to start optimizing the maximum load use-
case where all three task graphs are running at the same time. The optimal solution for
use-case ABC is

SolABC = [{tA
0 , tA

5 , tB
2 , tB

4 , tC
5 }, {tA

1 , tA
2 , tA

6 , tA
7 , tB

0 , tB
3 , tC

1 , tC
3 }, {tA

3 , tA
4 , tB

1 , tC
0 , tC

2 , tC
4 }]

with a communication cost of 4460. Starting from the optimal mapping for ABC, we
can compute all transitions if one application completes its execution and shuts down,
i.e., transitions from ABC to AB, to AC and to BC. Again, starting from each config-
uration with two task graphs, we can compute the transitions when one task graph is
deactivated, i.e., transitions to use-cases A, B and C. At each transition, we compute
the optimal mapping for the new system configuration while bounding the switching
(migration) cost with respect to the old configuration. The migration cost is obtained by
summing the amount of data (the state of each task) to be migrated between the two
configurations.

It is worth noting for allocating and scheduling task graph A we have to consider
two transitions: one from AB and one from AC. It is often the case that we obtain
two different mappings for A, but in order to save memory for the storage of off-line
computed mappings, we would like to obtain the same mapping for A by switching
from both AB and AC. To achieve this, in the problem formulation for computing the
optimal mapping for A we have two migration cost bounds: one bounding the cost for
switching from A to AB and the second bounding the cost from A to AC.

We therefore obtain a lattice. The lattice we build has a structure of 7 nodes cor-
responding to all possible use cases (configuration of task graphs running on the

Fig. 2. Lattice for a migration cost bound of 400kB. For each node, the optimal mapping is re-
ported. Migration costs are reported on each transition edge.

Resource Management Policy Handling Multiple Use-Cases in MPSoC Platforms 477

Table 4. Communication costs in lattice nodes when varying the migration cost bound

MB ABC AB AC BC A B C
0 4460 2660 3160 3100 1360 1300 1800

50 4460 1760 2080 940 1040 100 240
100 4460 1760 1720 100 1040 100 120
200 4460 1460 1830 100 880 100 0
300 4460 1300 1830 100 800 100 0
400 4460 1140 1520 100 320 100 0

Table 5. Migration costs for use-case switchings (lattice arcs) for different migration cost bounds

MB ABC → AB ABC→ AC ABC→ BC AB→ A AB→ B BC→ B BC→ C AC →A AC →C
0 0 0 0 0 0 0 0 0 0

50 30 50 40 10 10 0 20 10 40
100 30 80 75 10 10 0 50 10 65
200 180 145 75 80 70 0 0 70 45
300 230 145 75 220 80 0 0 300 45
400 340 375 75 70 50 0 0 80 45

architecture). In Fig. 2 we show the lattice obtained when the migration cost bound
on all arcs is 400 kB. In this case, the cost bound is large enough to obtain, for each
node, the optimal mapping that allows the system to best execute that use-case. Even
augmenting the cost bound to 500 or 1000 KB, the lattice would not change.

The opposite holds when we have a zero migration cost bound. We basically have
a lattice where transitions among nodes leave the background tasks (common to the
new use-case) unchanged, i.e., no migration events are triggered. Clearly, we have so-
lutions for intermediate migration cost bounds. For lack of space we do not report them
in pictures with the corresponding mappings, but we only report communication and
migration costs in the tables 4 and 5. We show in table 4 different communication costs
we obtain for lattice nodes when decreasing the bound on the migration cost, referred
in the table as MB. In table 5 we report the migration cost for nodes transitions in the
above mentioned lattice.

The total number of optimization problems, and consequently the total number of
nodes in the lattice, is bound to

∑n
i=1

(
n
i

)
= 2n where n is the overall number of

task graphs. It is indeed a large number, but for large n we could decide to reach only
a limited subset of possible configurations (e.g., the mission-critical use-cases, those
needing prompt activations, the most frequent ones, etc.). Moreover, the higher com-
putation efficiency of our basic optimization engine with respect to traditional Integer
Linear Programming formulations (see section 6.2) extends the range of applicability
of our methodology to all reasonable low- to medium-end MPSoC platforms.

5 CP Logic Based Benders Decomposition

In this section, we present the basic block of our framework, namely, the optimization
problem arising at use-case switchings. Clearly, to build the lattice we have to take into

478 L. Benini, D. Bertozzi, and M. Milano

account when a new application starts or stops its execution on top of a platform where
other applications are running. For instance, we have the configuration where task graphs
A and B are concurrently running and task graph C starts its execution. We have to accom-
modate task graph C on the platform, possibly migrating tasks belonging to task graphs
A and B (subject to a migration cost bound) and optimize the new run-time scenario.
Since we have to solve the allocation of tasks to resources and their scheduling, we use
Logic based Benders Decomposition [17] that has been proven very effective in simi-
lar problems [19]. We divide the problem into two parts: mapping (i.e., allocation) and
scheduling. The two solvers are interleaved so as to exchange solutions and no-goods
(Benders cuts) and converge to an optimal solution for the problem overall.

Activation of a New Application. We have a set STG of task graphs already running on
the platform, and a new task graph Gnew starting its execution. For sake of brevity we
call Snew = STG∪{Gnew}. Each task graph g has a number of tasks NTg. As stated in
section 4, each task t has memory requirement memt, a state statet, a communication
requirement comt and a duration durt. In this paper we consider pipelined task graphs,
but the model can be easily extended to generic task graphs. In pipelined task graphs
communicating tasks are those with consecutive indexes.

We divide the problem into two parts: mapping for the master problem and schedul-
ing for the subproblem.

Master Problem Model. In the mapping model, we have variables T g
tp (for each task

graph g ∈ Snew, for each task t = 1..NTg, and for each processor p = 1..NP) that
take value 1 if task t of the task graph g runs on processor p; in addition, we have
variables Xg

tp that take value 1 if task t of the task graph g runs on processor p while
t− 1 of the same task graph g (communicating with t) does not. Basically, variables X
are used to model communication.

Since we start from a platform configuration where some applications are already
running, we have some additional instantiated variables T g

tp̄ (for each t = 1..NTg,
p = 1..NP , g ∈ STG) stating which processor runs each background task before
the new task graph Gnew is admitted into the system. These background tasks should
possibly be migrated.

Let us now focus on the model constraints: each task should run on one and only one
processor.

P∑
p=1

T g
tp = 1 ∀g ∈ Snew ∀t = 1..NTg

Variables T and X should be linked. Therefore we should add to the model the
following constraints

Xg
tp = |T g

tp − T g
t−1p|∀g ∈ Snew ∀t = 1..NTg ∀p = 1..NP

We then have constraints on the memory capacity. Private memories should be able
to store task data and code, as well as queues for communicating tasks running on the
same processor:

∑
g∈Snew

NTg∑
t=1

memt ∗ T g
tp + comt ∗ (1−Xg

tp) ≤MemCapp ∀p = 1..NP

Resource Management Policy Handling Multiple Use-Cases in MPSoC Platforms 479

We also have mailbox capacity constraints in shared memory. Each processor has a
fixed size mailbox for incoming communications to tasks running onto it:

∑
g∈Snew

NTg∑
t=1

comt ∗Xg
tp ≤MboxCapp ∀p = 1..NP

In this model we have to minimize the communication cost, i.e., the traffic on the
bus due to data transfers between communicating tasks allocated on different proces-
sors, while bounding the migration cost, i.e., the traffic generated in case an already
running task (i.e., belonging to STG) is migrated to more efficiently accommodate the
new scenario Snew. The objective function is therefore

min

NP∑
p=1

∑
g∈Snew

NTg∑
t=1

2 ∗ rep ∗ comt ∗Xg
tp

The repetition number rep we consider is equal to the number of tasks of the con-
sidered task graph NTg. The motivation is that we need to have the pipeline at working
rate. The parameter 2 is due to the fact that for each communication, we have a task
writing data in the mailbox and one task reading the same data from the mailbox.

The migration cost bound constraint on the overall migration cost BoundMigr at
use-case switching is:

∑
g∈Snew

NTg∑
t=1

statet(1 − T g
tp̄) ≤ BoundMigr ∀p = 1..NP

Note that, among all solutions with the minimum communication cost, with a
bounded migration cost, we can choose the one that minimizes also the migration cost,
as a secondary objective function.

Subproblem Relaxation. In the mapping model we need to take into account a relax-
ation of the scheduling problem to avoid the generation of trivially infeasible mappings.
A simple but effective relaxation takes into account the sum of task durations for all
tasks allocated on each processor, which should be bounded by the real time constraint
of the specific processor.

∑
g∈Snew

NTg∑
t=1

durt ∗ T g
tp ≤ RealT imep ∀p = 1..NP

In addition we have added symmetry breaking constraints that avoid the useless and
time consuming search for symmetric solutions.

Subproblem model. Once the optimal allocation is decided, we start solving the
scheduling problem with fixed allocations of tasks to processors and of memory re-
quirements to storage devices. Each task t is associated to three variables StartINt,
Startt, StartOUTt representing respectively the starting time of the reading activity

480 L. Benini, D. Bertozzi, and M. Milano

of the task, the starting time of its execution and the starting time of the writing ac-
tivity of the task t. Each activity has a duration dINt, dT and dOUTt, respectively.
The durations of the input and output activities depend on the mapping of the previ-
ous and the next task in the pipeline. If they are all allocated on the same processor,
then their sum is equal to the duration used for the relaxation in the mapping model
dINt + dT + dOUTt = durt, otherwise their sum is strictly greater than durt.

We have to express the precedence constraints among activities of the same task and
of different tasks in the pipeline.

In particular, for all tasks t belonging to g ∈ Snew we impose:
StartINt + dINt = Startt
Startt + dt = StartOUTt

StartOUTt−1 + dOUTt−1 ≤ StartINt

Also, for all tasks running on the same processor we have to respect the real time
constraint.

StartOUTlastp + dOUTlastp − StartINfirstp ≤ RealT imep ∀p = 1..P

where the lastp and firstp index represent the last and the first task running on the
processor p. All these constraints should hold for each repetition of the pipeline. In
addition, we have to express the constraint that tasks on each processor should never
overlap. We use the well known global constraint cumulative available in most commer-
cial Constraint Programming solvers that enables the representation of limited resource
capacity constraints. Its parameters are: a list of variables [S1, . . . , Sn] representing the
starting time of all activities sharing the resource, their duration [D1, . . . , Dn], the re-
source consumption for each activity [R1, . . . , Rn] and the available resource capacity
C. Clearly this constraint holds if in any time step where at least one activity is running
the sum of the required resource is less than or equal to the available capacity. We use
this constraint on a list of start time variables Startp of all the reading, writing and
executing activities allocated on processor p, on a list of their durations Durp, on a list
of the same length of ones [1] and on the capacity of each processor, 1. We impose:

cumulative(Startp, Durp, [1], 1)

Finally we model the bus with an additive model already presented and validated
in [19]. Again we use the cumulative constraint working on the starting times of the
reading and writing activities that use the bus, i.e., those communication between tasks
allocated on different processors, Startcom, their durations Durcom, their resource re-
quirement Band and the maximum bus bandwidth MaxBand

cumulative(Startcom, Durcom, Band,MaxBand)

Benders Cuts. If the scheduling part is feasible, we have an optimal solution since
the objective function depends only on allocation problem variables. If, instead, the
scheduling is infeasible given the mapping proposed by the first model, we have to
generate a no-good, i.e., a constraint, that removes a set of solutions that are provably
infeasible. In particular, we select all the resources that provoke a failure, e.g., either
resources whose capacity is violated, or resources that lead to a violation of the real

Resource Management Policy Handling Multiple Use-Cases in MPSoC Platforms 481

time constraints. We call them conflicting resources, CR. Then, we impose that for
each resource in R ∈ CR the set of tasks STR allocated to R should not be reassigned
to the same resource in the next iteration. For example if a conflicting resource R is a
processor and STR the set of tasks previously allocated to it, the resulting no-good is:∑

g∈Snew

∑
i∈STR

T g
iR ≤ |STR| − 1 ∀R ∈ CR

Shut Down of an Application. We have a set Snew of Task Graphs already running
on the platform, and a task graph Gnew completing its execution. We should therefore
find the optimal mapping and scheduling on the remaining task graphs in the set STG =
Snew \ {Gnew}. The model for this optimization problem is identical to the model used
when a new task graph is activated. The only difference is that we have to replace Snew

with STG in all constraints and in the objective function. In fact, the only tasks we want
to allocate, schedule and possibly migrate are those belonging to STG.

6 Advantages of the Approach

6.1 Flexibility

The developed framework provides the needed flexibility to system designers. In the
example described in section 4 we made two assumptions: the first one is that the mi-
gration cost bound is the same on each transition arc in the lattice. Indeed, we could
use different cost bounds for different transitions. Suppose, in fact, that the transition
between use-case A and AB is more frequent or must be faster than the transition be-
tween B and AB. We can then allow a higher cost bound for the transition between B
and AB and a tighter bound for the transition A, AB.

The second assumption concerned our choice to optimize the maximum load use-
case and to build the lattice around it. In this case, it is always possible to complete
the lattice, i.e., to find optimal mappings for all configurations of task graphs subject
to migration cost bounds. In fact, it is always possible to complete a lattice with zero
migration cost transitions by simply removing tasks from the optimal maximum load
allocation.

This is not always the case. For instance, let us build the lattice around the interme-
diate nodes in Fig. 2, namely use-cases AB, AC and BC. This might be desirable in
order to have the system optimally running not just one use-case (e.g., the maximum
load one), but many of them, such as the most frequent or mission-critical use-cases. In
this case, it is not always possible to complete the lattice satisfying the migration cost
bound.

Let us go through an example. In the task set considered in section 4, suppose the
designer wants to optimize use-cases AB (with minimum communication cost of 1140
kB with optimal mapping),AC (min. communication cost: 1520 kB) andBC (100 kB).
In addition, the designer imposes a migration cost constraint of 100 kB at each use-case
switching. The problem overall ends up being over-constrained, and some constraints
have to be relaxed with designer assistance.

482 L. Benini, D. Bertozzi, and M. Milano

If we relax the migration cost bound, we obtain a lattice where all transition costs
fulfil the constraint except one, i.e., the transition between AC and ABC whose cost is
115. An alternative is to relax the constraint of having three system configurations that
must optimally run their use-cases, while still keeping the migration bound unaltered.
If optimal execution is required only for AB, there is no chance to complete the lattice
anyway. Therefore, system configuration in AB should be sub-optimal. It turns out that
we have two possibilities to complete the lattice: make the system optimally run BC or
AC. The two approaches to constraint relaxation can be interleaved.

These choices are in charge of the designer and depend on the specific perfor-
mance activation/deactivation-cost requirements for the applications at hand. This de-
sign methodology can also be easily automated by means of an interactive tool.

6.2 Scalability

In Fig. 3 we show the scalability of our approach on a single optimization problem. The
tests are run on ILOG Solver and Scheduler 6.3. The number of tasks on the X axis
represents the sum of the number of tasks in the task graphs we consider in the problem
at hand, including reading, computation and writing activities. On the Y axis we report
the computational time in seconds. Each result is the mean on 20 instances.

From this graph, we can see that in each lattice (counting as a worst case 2n prob-
lems) we start from small problems (those containing one or few task graphs) to larger
problems (corresponding to the maximum load for the system).

In addition, being this an off-line approach, we can spend quite a large amount of
time in generating the complete lattice and then be able, at run time, to switch between
pre-computed mappings and scheduling with minimum reconfiguration overhead.

It is worth noting that having organized the solver in a Logic Based Benders De-
composition framework speeds up the solution process of some orders of magnitudes.
Neither a Constraint Programming approach nor an Integer Programming approach
working on the problem overall (i.e., without decomposition) could even solve the
smallest instances (50 tasks) within the timeout set to 15 minutes, while the decom-
position approach takes few seconds.

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300 350 400

tim
e

(s
ec

.)

n tasks

Fig. 3. Scalability analysis

Resource Management Policy Handling Multiple Use-Cases in MPSoC Platforms 483

7 Related Work

With the advent of MPSoC technology, a lot of effort is being devoted to mapping a single
application with exposed task level parallelism onto a parallel hardware platform. Ap-
proaches range from Integer Programming modeling and solving frameworks [14,18] to
heuristic search techniques [15], which are less computation demanding but also unable
to provide optimality guarantees. The extension of such guarantees to a broader range of
problem instances was achieved in [19,8], by leveraging an optimization engine based
on Logic-based Benders Decomposition. Even though its worst case run-time is obvi-
ously exponential, it is computationally efficient in practice, dealing with instance sizes
that are much larger than those that could be handled in the past by complete search al-
gorithms. The optimization problems tackled by the above works prove not capable of
capturing the complexity of resource management decisions in state-of-the-art MPSoC
devices, where a number of applications could have to be executed in parallel, giving
rise to execution scenarios or use-cases. The research on resource management strate-
gies handling multiple use-cases is still in the early stage. The multi-use case mapping
problem is addressed in [6] with reference to a Network on Chip (NoC) communication
infrastructure. The approach is based on building a synthetic worst case use-case that in-
cludes the constraints of all the use-cases and to design and optimize the NoC based on
this. Unfortunately, the worst case use-case has highly over-specified constraints leading
to NoC overdesign. The work in [5] improves upon this methodology. Instead of using
a synthetic worst case use-case, separate data structures are maintained for the differ-
ent use-cases. Although more scalable, this approach limits only to NoC reconfiguration
(core mapping across use-cases is fixed) and simply prevents such a reconfiguration dur-
ing mode switching as the only way to achieve smooth switching.

When the number of use-cases becomes enormous (for instance in digital TV plat-
forms), then composability has been proposed as a way of analysing applications in
isolation while still reasoning about their overall behaviour [7]. Then, a composition
function is used to compute total requirements of the system. However, this approach
heavily suffers from the lack of performance predictability and requires the resource
manager to impose specified utilizations or time-budgets.

8 Conclusion

In this paper we target MPSoC systems with task migration support and running multi-
ple use-cases. We propose a semi-static approach to the dynamic resource management
problem, where the allocation and scheduling solutions for the tasks in each use-case
are computed off-line and stored for use in run-time mapping decisions. The solutions
are logically organized in a lattice, so that the transition costs between any two consec-
utive use-cases can be bound.

Acknowledgement

The work described in this publication was partially supported by the PREDATOR
Project funded by the European Community’s 7th Framework Programme, Contract
FP7-ICT-216008.

484 L. Benini, D. Bertozzi, and M. Milano

References

1. Mathys, Y., Chatelain, A.: Verification Strategy for Integration 3G Baseband SoC. In: Design
and Automation Conference, pp. 7–10. ACM, New York (2003)

2. Horowitz, H., Alon, E., Patil, D., Naffziger, S., Kumar, R., Bernstein, K.: Scaling, Power,
and the Future of CMOS. In: IEEE International Electron Devices Meeting, IEDM, pp. 9–
15. IEEE Press, Los Alamitos (2005)

3. Philips, Nexperia PNX8550 Home Entertainment Engine (December 2003)
4. Dutta, S., Jensen, R., Rieckmann, A.: Viper: A Multiprocessor SoC for Advanced Set-Top-

Box and Digital TV Systems. In: IEEE Design and Test of Computers, pp. 21–31 (2001)
5. Murali, S., Coenen, M., Radulescu, A., Goossens, K.: A Methodology for Mapping Multiple

Use-Cases onto Networks on Chips. In: Design Automation and Test in Europe Conference,
pp. 118–123. IEEE Press, Los Alamitos (2006)

6. Murali, S., Coenen, M., Radulescu, A., Goossens, K.: Mapping and Configuration Methods
for Multi-Use-Case Networks on Chips. In: Asia and South Pacific Conference on Design
Automation, pp. 146–151 (2006)

7. Kumar, A., Mesman, B., Corporaal, H., van Meerbergen, J., Yajun, H.: Global Analysis of
Resource Arbitration for MPSoC. In: 9th Euromicro Conference on Digital System Design
(2006)

8. Ruggiero, M., Pari, G., Guerri, A., Bertozzi, D., Milano, M., Benini, L., Andrei, A.: A Co-
operative, Accurate Solving Framework for Optimal Allocation, Scheduling and Frequency
Selection on Energy- Efficient MPSoCS. In: IEEE International SOC Conference (2006)

9. Moreira, O., Mol, J.D., Bekooij, M., van Meerbergen, J.: Multiprocessor Resource Allocation
for Hard-Real Time Streaming with a Dynamic Job-Mix. In: IEEE Real Time on Embedded
Technology and Applications Symposium, pp. 332–341 (2005)

10. Wolf, W.: The Future of Multiprocessor Systems-on-Chip. In: Design and Automation Con-
ference, pp. 681–685. ACM Press, New York (2004)

11. Kaasinen, E., Tuomisto, T., Vaelkkynen, P.: Ambient Functionality - Use Cases. In: Joint
sOc-EUSAI Conference, pp. 51–56 (2005)

12. ARM11 MPCore, http://www.arm.com/products/CPUs/ARM11MPCoreMulti
processor.html

13. Bertozzi, S., Acquaviva, A., Poggiali, A., Bertozzi, D.: Supporting Task Migration in MP-
SoCs: A Feasibility Study. In: Design Automation and Test in Europe Conference, pp. 15–20
(2006)

14. Prakash, S., Parker, A.: SOS: Synthesis of Application-Specific Heterogeneous Multiproces-
sor Systems. Journal of Parallel and Distributed Computing, 338–351 (1992)

15. Axelsson, J.: Architecture Synthesis and Partitioning of Real-Time Synthesis: a Compari-
son of 3 Heuristic Search Strategies. In: 5th International Workshop on Hardware/Software
Codesign (CODES/CASHE 1997), pp. 161–166 (1997)

16. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 238–252 (1962)

17. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical Program-
ming, 33–60 (2003)

18. Bender, A.: MILP based Task Mapping for Heterogeneous Multiprocessor Systems. In:
EURO-DAC96/EURO-VHDL 1996: Conference on European Design Automation, pp. 190–
197 (1996)

19. Ruggiero, M., Guerri, A., Bertozzi, D., Poletti, F., Milano, M.: Communication-Aware Al-
location and Scheduling Framework for Stream-Oriented Multi-Processor Systems-on-Chip.
In: Design Automation and Test in Europe Conference, pp. 3–8 (2006)

http://www.arm.com/products/CPUs/ARM11MPCoreMulti
processor.html

Optimization of CHR Propagation Rules

Peter Van Weert�

Department of Computer Science, K.U.Leuven, Belgium
Peter.VanWeert@cs.kuleuven.be

Abstract. Constraint Handling Rules (CHR) is an elegant, high-level
programming language based on multi-headed, forward chaining rules.
To ensure CHR propagation rules are applied at most once with the
same combination of constraints, CHR implementations maintain a so-
called propagation history. The performance impact of this history can be
significant. We introduce several optimizations that, for the majority of
CHR rules, eliminate this overhead. We formally prove their correctness,
and evaluate their implementation in two state-of-the-art CHR systems.

1 Introduction

Constraint Handling Rules (CHR) [1,2] is a high-level committed-choice CLP
language, based on multi-headed, guarded multiset rewrite rules. Originally de-
signed for the declarative specification of constraint solvers, it is increasingly used
for general purposes, in a wide range of applications. Efficient implementations
exist for several host languages, including Prolog [3], Haskell, and Java [4].

An important, distinguishing feature of CHR are propagation rules. Unlike
most rewrite rules, propagation rules do not remove the constraints matched by
their head. To avoid trivial non-termination, each CHR rule is therefore applied
at most once with the same combination of constraints. This requirement stems
from the formal study of properties such as termination and confluence [1], and
is reflected in most current CHR implementations.

To prevent reapplication, a CHR runtime system maintains a so-called prop-
agation history, containing a tuple for each constraint combination that fired a
rule. Efficiently implementing a propagation history is challenging. Even with
the implementation techniques proposed in e.g. [5,6,7], maintaining a propa-
gation history remains expensive. Our empirical observations reveal that the
history often has a significant impact on both space and time performance. Ex-
isting literature on CHR compilation nevertheless pays only scant attention to
history-related optimizations. This paper resolves this discrepancy by introduc-
ing several novel approaches to resolve history-related performance issues. We
show that, for almost all CHR rules, the propagation history can be eliminated
completely. We either use innovative, alternate techniques to prevent rule reap-
plication, or prove that reapplication has no observable effect. Experimental
results confirm the relevance and effectiveness of our optimizations.

� Research Assistant of the Research Foundation– Flanders (FWO-Vlaanderen).

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 485–500, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

486 P. Van Weert

Overview. Section 3 discusses non-reactive CHR rules—rules that are not re-
considered when built-in constraints are added—and shows that their history
can always be eliminated without affecting the program’s operational seman-
tics. More precisely, we prove that reapplication of non-reactive rules is either
impossible, or that it can be prevented using a novel, more efficient technique.

Section 4 introduces the notion of idempotence. We prove that reapplying
idempotent rules has no observable effect, and thus that their history can be
eliminated as well, even if the rule is reactive. Together, the optimizations of
Sections 3 and 4 cover the majority of the rules found in existing CHR programs.

We implemented the proposed optimizations in two state-of-the-art CHR im-
plementations. Section 5 reports on the significant performance gains obtained.
Section 6, finally, reviews some related work and concludes.

For self-containedness, we first briefly review CHR’s syntax and operational
semantics in Section 2. Gentler introductions are found for instance in [1,5,6].

2 Preliminaries

2.1 CHR Syntax

CHR is embedded in a host language H. A constraint type c/n is denoted by
a functor/arity pair; constraints c(x1, . . . , xn) are atoms constructed from these
symbols. Their arguments xi are instances of data types offered by H. Many
CHR systems support type and mode declarations for constraint arguments.

There are two classes of constraints: built-in constraints, solved by an under-
lying constraint solver of the host language H, and CHR constraints, handled by
a CHR program. A CHR program P , also called a CHR handler, is a sequence
of CHR rules. The generic syntactic form of a CHR rule is:

ρ @ Hk \ Hr ⇔ G | B

The rule’s unique name ρ is optional; if omitted a name is assigned implicitly.
The head consists of two conjunctions of CHR constraints, Hk and Hr. Their
conjuncts are called occurrences (kept and removed occurrences resp.). If Hk is
empty, the rule is a simplification rule. If Hr is empty, it is a propagation rule, and
‘⇒’ is used instead of ‘⇔’. If both are non-empty, the rule is a simpagation rule.
The guard G is a conjunction of built-in constraints, the body B a conjunction
of CHR and built-in constraints. A trivial guard ‘true | ’ may be omitted.

Example 1. Fig. 1 shows a classic CHR handler, called leq. It defines a sin-
gle CHR constraint, a less-than-or-equal constraint, using four CHR rules. All
three kinds of rules are present. All constraint arguments are logical variables.
The handler uses a built-in equality constraint =/2 (e.g. Prolog’s built-in uni-
fication). The first two rules remove redundant constraints. The antisymmetry
rule replaces the CHR constraints matched by its head with a built-in equality
constraint. The transitivity propagation rule adds implied CHR constraints.

Optimization of CHR Propagation Rules 487

reflexivity @ leq(X, X) ⇔ true.
idempotence @ leq(X, Y) \ leq(X, Y) ⇔ true.
antisymmetry @ leq(X, Y), leq(Y, X) ⇔ X = Y.
transitivity @ leq(X, Y), leq(Y, Z) ⇒ leq(X, Z).

Fig. 1. leq, a CHR program for the less-than-or-equal constraint

Head Normal Form In the Head Normal Form of a CHR program P , de-
noted HNF(P), variables occur at most once in a rule’s head. For instance in
HNF(leq), the normalized form of the transitivity rule from Fig. 1 is:

transitivity @ leq(X, Y), leq(Y1, Z) ⇒ Y = Y1 | leq(X, Z).

2.2 CHR’s Refined Operational Semantics

The behavior of most current CHR implementations is captured formally by the
refined operational semantics [8], commonly denoted as ωr. The ωr semantics
is formulated as a state transition system, in which transition rules define the
relation between subsequent execution states. The version presented here follows
[5,6], which is a slight refinement of the original specification [8].

Notation. Sets, multisets and sequences (ordered multisets) are defined as usual.
We use S[i] to denote the i’th element of a sequence S, ++ for sequence con-
catenation, and [e|S] to denote [e]++S. The disjoint union of sets is defined as:
∀X,Y, Z : X = Y Z ↔ X = Y ∪Z∧Y ∩Z = ∅. For a logical expression X and a
set V of variables, vars(X) denotes the set of free variables, and constraint pro-
jection is defined as πV (X) ↔ ∃v1, . . . , vn : X with {v1, . . . , vn} = vars(X) \ V .

Execution States. An execution state of ωr is a tuple 〈A, S,B,T〉n. The role of
the execution stack A is explained below. The ωr semantics is multiset-based. To
distinguish between otherwise identical constraints, the CHR constraint store S

is a set of identified CHR constraints, denoted c#i, where each CHR constraint
c is associated with a unique integer number i, called a constraint identifier. The
projection operators chr(c#i) = c and id(c#i) = i are extended to sequences
and sets in the obvious manner. The integer n represents the next available
constraint identifier. The built-in constraint store B is a conjunction containing
all built-in constraints passed to the built-in solver. Their meaning is determined
by the built-in constraint theory DH (see e.g. [6] for a rigorous definition of DH).
The propagation history T, finally, is a set of tuples, each recording a sequence
of identifiers of CHR constraints that fired a rule, and the name of that rule.

Transition Rules. Fig. 2 lists the transition rules of ωr. Execution proceeds by
exhaustively applying these transitions, starting from an initial execution state
〈Q, ∅, true, ∅〉1. The constraint sequence Q is called the initial query Q.

CHR constraints are assigned unique identifiers and added to S in Activate
transitions. The execution stack A is a sequence used to treat constraints as
procedure calls. The top-most element of A is called the active constraint. When

488 P. Van Weert

1. Solve 〈[b|A], S,B, T〉n �P 〈S ++A, S, b ∧ B, T〉n if b is a built-in constraint. For
the set of reactivated constraints S ⊆ S, the following bounds hold: lower bound:
∀H ⊆ S : (∃K,R : H = K ++ R ∧ ∃ρ ∈ P : ¬appl(ρ,K, R, B) ∧ appl(ρ,K, R, b ∧
B)) → (S ∩H = ∅) and upper bound: ∀c ∈ S : vars(c) ⊂ fixed(B).

2. Activate 〈[c|A], S,B, T〉n �P 〈[c#n : 1|A], {c#n} S,B, T〉n+1 if c is a CHR
constraint (which has not yet been active or stored in S).

3. Reactivate 〈[c#i|A], S, B, T〉n �P 〈[c#i :1|A], S,B, T〉n if c is a CHR constraint
(re-added to A by a Solve transition but not yet active).

4. Simplify 〈[c#i :j|A], S,B, T〉n �P 〈B++A,K S, θ ∧B, T′〉n with S = {c#i}
K R1 R2 S, if the j-th occurrence of c in P occurs in rule ρ, and θ is a
matching substitution such that apply(ρ,K, R1 ++[c#i]++R2, B, θ) = B.
Let t = (ρ, id(K ++R1)++[i]++ id(R2)), then t /∈ T and T′ = T ∪ {t}.
5. Propagate 〈[c#i : j|A], S, B, T〉n �P 〈B ++ [c#i : j|A], S \ R, θ ∧ B, T′〉n with
S = {c#i} K1 K2 R S, if the j-th occurrence of c in P occurs in rule ρ, and
θ is a matching substitution such that apply(ρ,K1 ++[c#i]++K2, R, B, θ) = B.
Let t = (ρ, id(K1)++[i]++ id(K2 ++R)), then t /∈ T and T′ = T ∪ {t}.
6. Drop 〈[c#i :j|A], S,B, T〉n �P 〈A, S, B, T〉n if c has no j-th occurrence in P.

7. Default 〈[c#i : j|A], S,B, T〉n �P 〈[c#i : j + 1|A], S, B, T〉n if the current state
cannot fire any other transition.

Fig. 2. The transition rules of the refined operational semantics ωr

active, a CHR constraint performs a search for applicable rules. The ωr seman-
tics specifies that occurrences in a handler are tried in a top-down, right-to-left
order. To realize this order in ωr, identified constraints on the execution stack
are occurrenced. If an occurrenced identified CHR constraint c#i : j is active,
only matches with the j’th occurrence of c’s constraint type are considered. In-
terleaving a sequence of Default transitions, all applicable rules are thus fired in
Propagate and Simplify transitions. A rule is applicable if the store contains
matching partner constraints for all remaining occurrences in its head. Formally:

Definition 1. Given a conjunction of built-in constraints B, a rule ρ is applica-
ble with sequences of identified CHR constraints K and R, denoted appl(ρ,K,
R,B), iff a matching substitution θ exists for which apply(ρ,K,R,B, θ) is defined.
The latter partial function is defined as apply(ρ,K,R,B, θ) = B iff K ∩ R = ∅
and, renamed apart, ρ is of form “ρ @ Hk \ Hr ⇔ G | B” (Hk or Hr may be
empty) with chr(K) = θ(Hk), chr(R) = θ(Hr), and DH |= B → πvars(B)(θ∧G).

If the top-most element of A is a built-in constraint, this constraint is passed
to the built-in solver in a Solve transition. As this may affect the entailment
of guards, all CHR constraints for which additional rules might have become
applicable have to be put back on the execution stack. These then cause Re-
activate transitions to reinitiate searches for applicable rules. Constraints with
fixed arguments are not reactivated, as no additional guards can become entailed.

Optimization of CHR Propagation Rules 489

Definition 2. A variable v is fixed by constraint conjunction B, or v ∈
fixed(B), iff DH |= ∀θ((π{v}(B) ∧ π{θ(v)}(θ(B))) → v = θ(v)) for any vari-
able renaming θ.

When a rule fires, its body is executed. By putting the body on the activation
stack, the different conjuncts of the body are activated (for CHR constraints) or
solved (for built-in constraints) in a left-to-right order. Control only returns to
the original active constraint after the body is completely executed.

Derivations. For a CHR operational semantics ω, an ω-derivation D is a (possi-
bly infinite) sequence of ωr states, with D[1] an initial execution state for some
query Q, and D[i]�PD[i+ 1] valid ω transitions. We use the notational abbre-
viation σ1 ��

P σn to denote a finite derivation [σ1, . . . , σn].

3 Non-reactive Propagation Rules

Section 3.1 introduces non-reactive CHR rules, rules that are never matched by
a reactivated constraint, and illustrates that a substantial portion of CHR rules
is non-reactive. In Section 3.2, we prove that the history of certain non-reactive
propagation rules can be eliminated, as CHR’s operational semantics ensures
these rules are never matched by the same constraint combination. For the re-
maining non-reactive rules, we introduce an innovative, more efficient technique
to prevent rule reapplication in Section 3.3, and prove its soundness.

3.1 Introduction: From Fixed to Non-reactive CHR

Non-reactive CHR constraints are never reactivated when built-in constraints
are added. Formally:

Definition 3. A CHR constraint type c/n is non-reactive in a program P under
a refined operational semantics ω�

r (ωr or any of its refinements: see further) iff
for any Solve transitions of the form 〈[b|A], S,B,T〉n �P 〈S++ A, S, b ∧ B,T〉n
in any ω�

r -derivation D the set of reactivated constraints S ⊆ S does not contain
constraints of type c/n. A rule ρ ∈ P is non-reactive iff all constraint types that
occur in its head are non-reactive in P.

The simplest instances are so-called fixed constraints. A CHR constraint type
c/n is fixed iff vars(c) ⊆ fixed(∅) (see Definition 2) for all constraints c of this
type. Clearly, if all constraint arguments are fixed, no additional rule becomes
applicable when adding built-in constraints. Which CHR constraints are fixed is
derived from their mode declarations, or using static groundness analysis [9].

Example 2. The fibbo handler depicted in Fig. 3, performs a bottom-up com-
putation of all Fibonacci numbers up to a given number. The constraint decla-
rations1 specify that all arguments are fixed instances of the host language’s int
type (the ‘+’ mode declaration indicates a constraint’s argument is fixed).
1 The syntax is inspired by that of the K.U.Leuven CHR system [3,6].

490 P. Van Weert

:- chr constraint up to(+int), fib(+int,+int).

up to(U) ⇒ fib(0,1), fib(1,1).
up to(U), fib(N - 1,M1), fib(N,M2) ⇒ N < U | fib(N + 1,M1 + M2).

Fig. 3. This handler, referred to as fibbo, performs a bottom-up computation of all
Fibonacci numbers up to a given number. All constraint arguments are fixed integers.

:- chr constraint fib(+int,?int).

memoization @ fib(N,M1) \ fib(N,M2) ⇔ M1 = M2.
base_case @ fib(N,M) ⇒ N ≤ 1 | M = 1.
recursion @ fib(N,M) ⇒ N > 1 | fib(N-1,M1), fib(N-2,M2), M = M1 + M2.

Fig. 4. A CHR handler that computes Fibonacci numbers using a top-down computa-
tion strategy with memoization

Under ωr, a CHR constraint type is non-reactive iff it is fixed. The following
example though shows why the class of non-reactive constraints should be larger:

Example 3. Fig. 4 contains an alternative Fibonacci handler, this time using a
top-down computation strategy with memoization. The fib/2 constraint is not
fixed, and is typically called with a free (logical) variable as second argument—
hence also the ‘?’ mode declaration. Reactivating fib/2 constraints is neverthe-
less pointless, as there are no guards constraining its second argument. Addi-
tional built-in constraints therefore never result in additional applicable rules.

All theoretical results in this section apply to non-reactive rules only. Under
ωr, however, constraints such as fib/2 are not non-reactive. As using unbound,
unguarded arguments to retrieve results is very common in CHR, a minor re-
finement ωr is required to increase the practical relevance of our results.

In general, CHR constraints should only be reactivated if extra built-in con-
straints may cause more guards to become entailed. We therefore reintroduce
the concept of anti-monotonicity [7,10]:

Definition 4. A conjunction of built-in constraints B is anti-monotone in a set
of variables V iff ∀B1, B2((πvars(B)\V (B1 ∧B2) ↔ πvars(B)\V (B1))

→ ((DH �|= B1 → B) → (DH �|= B1 ∧B2 → B)))

Definition 5. A CHR program P is anti-monotone in the i’th argument of a
CHR constraint type c/n, if and only if for every occurrence c(x1, . . . , xi, . . . , xn)
in HNF(P), the guard of the corresponding rule is anti-monotone in {xi}.
Any CHR program is anti-monotone in both fixed and unguarded constraint
arguments. Moreover, several typical built-ins are anti-monotone in their ar-
guments. In Prolog, for instance, var(X) is anti-monotone in {X}. Using anti-
monotonicity, we now define ω′

r, a slight refinement of ωr
2:

2 We refer to [7, Appendix A] for a formal proof that ω′
r is indeed an instance of ωr.

Optimization of CHR Propagation Rules 491

:- chr constraint account(+client id, +float), sum(+client id, ?float).
:- chr constraint gen(+client id), sum(+float), get(?float).

sum balances @ sum(C, Sum) ⇔ gen(C), get(Sum).
generate @ gen(C), account(C,B) ⇒ sum(B).
simplify @ sum(B1), sum(B2) ⇔ sum(B1 + B2).
retrieve @ get(Q), gen(), sum(Sum) ⇔ Q = Sum.

Fig. 5. CHR rules computing the sum of the account balances of a given client. These
rules may be part of some larger CHR handler modeling a banking application.

Definition 6. Let delay varsP (c) denote the set of variables in which P is not
anti-monotone that occur in an (identified) CHR constraint c. Then ω′

r is ob-
tained from ωr by replacing the upper bound on the set of reactivated constraints
S in its Solve transition with “ ∀c ∈ S : delay varsP (c) �⊂ fixed(B)”.

Most rules in general-purpose CHR programs are non-reactive under ω′
r. Several

CHR systems, including the K.U.Leuven CHR and JCHR systems [3,4], imple-
ment ω′

r. Doing so, may already improve performance considerably (see [10]).
In the following two subsections, we prove that for non-reactive CHR rules the
expensive maintenance of a propagation history can always be avoided.

3.2 Propagation History Elimination

Because non-reactive CHR constraints are only active once, non-reactive propa-
gation rules often do not require a history:

Example 4. The sum/2 constraint in Fig. 5 computes the sum of a client’s ac-
count balances using a common CHR programming idiom to compute aggregates :
a (typically non-reactive) propagation rule generates a number of constraints,
from which, after simplification to a single constraint, the result can be retrieved.

When the active gen/1 constraint considers the generate rule, it iterates
over candidate account/2 partner constraints. Assuming this iteration does not
contain duplicates (a property formalized shortly in Definition 8), the generate
rule never fires with the same constraint combination under ωr, even if no prop-
agation history is maintained. Indeed, the generate rule only adds sum/1 con-
straints, which, as there is no get/1 constraint yet in the store (the body of the
sum balances rule is executed from left to right), only fire the simplify rule.

The history, however, is not superfluous for all non-reactive CHR rules, as shown
by the following example:

Example 5. Reconsider the fibbo handler of Fig. 3. If an up to(U) constraint is
told, the first rule propagates two fib/2 constraints. After this, the second rule
propagates all required fib/2 constraints, each time with a fib/2 constraint
as the active constraint. Next, control returns to the up to(U) constraint, and
advances to its second occurrence. Some mechanism is then required to prevent
the second (non-reactive) propagation rule to add erroneous fib/2 constraints.

492 P. Van Weert

So, non-reactive propagation rules can match the same constraint combination
more than once. This occurs if one or more partner constraints for an active
constraint in rule ρ were added by firing ρ or some earlier rule, whilst the same
constraint was already active. We say these partner constraints observe the cor-
responding occurrence of the active constraint in ρ (cf. also [9]). Formally:

Definition 7. Let the k’th occurrence of a rule ρ’s head be the j’th occurrence
of constraint type c/n. Then this occurrence is unobserved under a refined oper-
ational semantics ω�

r iff for all Activate or Default transitions of the form3:

〈A0, S,B,T〉 �P 〈[c#i :j|A], S,B,T〉

(A0[1] = c#i or A0[1] = c#i : j − 1) the following holds: ∀(ρ, I) ∈ T : I[k] �= i,
and similarly for all transition sequences starting with a Propagate transition

〈A, S,B,T〉 �P 〈B++A, S′,B′,T′〉 ��
P 〈A, S′′,B′′,T′′〉

with A[1] = c#i :j, ∀(ρ, I) ∈ T′′\T′ : I[k] �= i.

Let ω†
r denote the semantics obtained from ω′

r by adding the following condi-
tion to its Propagate and Simplification transitions: “ If the j’th occurrence
of c is unobserved under ω′

r, then T′ = T ”. Also, to prevent trivial reapplica-
tion in a consecutive sequence of Propagate transitions (see e.g. Example 4),
propagation in ω†

r is defined to be duplicate-free:

Definition 8 (Duplicate-free Propagation). Propagation in a refined op-
erational semantics ω�

r is duplicate-free iff for all ω�
r -derivations D of a CHR

program P where the j’th occurrence of c is kept, the following holds:

if

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ1 �P σ2 ��
P σ

′
1 �P σ

′
2 is part of D

σ1 = 〈[c#i :j|A], S, . . .〉 and σ′
1 = 〈[c#i :j|A], S′, . . .〉

σ1 �P σ2 is a Propagate transition applied with constraints H ⊆ S

σ′
1 �P σ

′
2 is a Propagate transition applied with constraints H ′ ⊆ S′

between σ2 and σ′
1 no Default transition occurs of the form

σ2 ��
P 〈[c#i :j|A], . . .〉 �P 〈[c#i :j + 1|A], . . .〉 ��

P σ
′
1

then H �= H ′.

The following theorem establishes the equivalence of ω†
r and ω′

r, thus proving
the soundness of eliminating the history of unobserved CHR rules:

Theorem 1. Define the mapping function α† as follows:

α†(〈A, S,B,T〉n) = 〈A, S,B, {(ρ, I) ∈ T | ρ is not unobserved}〉n
If D is an ω′

r derivation, then α†(D) is an ω†
r derivation. Conversely, if D is an

ω†
r derivation, then there exists an ω′

r derivation D′ such that α†(D) = D′.

Proof. See [11]. �
3 We use ‘ ’ to denote that we are not interested in the identifier counter.

Optimization of CHR Propagation Rules 493

Implementation. The main difficulty in the implementation of this optimiza-
tion is deriving that a rule is unobserved (enforcing duplicate-free propagation is
typically straightforward, as shown in Section 3.3). The abstract interpretation-
based late storage analysis of [9], which derives a similar observation property,
can be adapted for this purpose. The details are beyond the scope of this paper.

3.3 Optimized Reapplication Avoidance

Non-reactive CHR rules that are not unobserved, such as the second rule in the
fibbo handler of Example 5, do require some mechanism to prevent reapplica-
tion. Moreover, even if a rule is unobserved, this does not mean the compiler’s
analysis is capable of deriving it. In this section we therefore present a novel,
very efficient technique that prevents the reapplication of any non-reactive prop-
agation rule without maintaining a costly propagation history.

The central observation is that, when a non-reactive rule is applied, the active
constraint is always more recent than its partner constraints:

Lemma 1. Let P be an arbitrary CHR program, with ρ ∈ P a non-reactive rule,
and D an arbitrary ω′

r derivation with this program. Then for each Simplify or
Propagate transition in D of the form

〈[c#i :j|A], S,B,T〉n �P 〈A′, S′,B′,T {(ρ, I1 ++[i]++I2)}〉n (1)

the following holds: ∀i′ ∈ I1 ∪ I2 : i′ < i.
Proof. Assume i′ = max(I1 I2) with i′ ≥ i. By Definition 1 of rule applicability,
i′ �= i, and ∃c′#i′ ∈ S. This c′#i′ partner constraint must have been stored in an
Activate transition. Since i′ = max(I1 {i} I2), in D, this transition came after
the Activate transitions of all other partners, including c#i. In other words, all
constraints in the matching combination of transition (1) were stored prior to
the activation of c′#i′. Also, in (1), c#i is back on top of the activation stack.
Because c is non-reactive, and thus never put back on top by a Reactivate
transition, the later activated c′#i′ must have been removed from the stack
in a Drop transition. This implies that all applicable rules matching c′ must
have fired. As all required constraints were stored (see earlier), this includes the
application of ρ in (1). By contradiction, our assumption is false, and i′ < i. �

Let ω‡
r denote the semantics obtained from ω′

r by replacing the propagation
history condition in its Simplify and Propagate transitions with the following:

If ρ is non-reactive, then ∀i′ ∈ id(H1∪H2) : i′ < i and T′ = T. Otherwise,
let t = (ρ, id(H1)++[i]++ id(H2)), then t /∈ T and T′ = T ∪ {t}.

Propagation in ω‡
r is again duplicate-free, as defined by Definition 8. Similarly

to Theorem 1, the following theorem proves that ω′
r and ω‡

r are equivalent:

Theorem 2. Define the mapping function α‡ as follows:
α‡(〈A, S,B,T〉n) = 〈A, S,B, {(ρ, I) ∈ T | ρ is a reactive CHR rule}〉n

If D is an ω′
r derivation, then α‡(D) is an ω‡

r derivation. Conversely, if D is an
ω‡

r derivation, then there exists an ω′
r derivation D′ such that α‡(D) = D′.

Proof. See [7] or [11]. �

494 P. Van Weert

procedure up to(U)#id : 2
foreach fib(N,M2)#id2 in ...

foreach fib(N-1,M1)#id1 in ...
if N < U

if id < id1 and id < id2
. . .

(a) Efficient reapplication avoidance
using identifier comparisons

procedure up to(U)#id : 2
foreach fib(N,M2)#id2 in ...

if id < id2 and N < U
foreach fib(N-1,M1)#id1 in ...

if id < id1
. . .

(b) After Loop-invariant Code Motion

Fig. 6. Pseudocode for the second occurrence of the up to/1 constraint of Fig. 3

Implementation. The standard CHR compilation scheme (see e.g. [5,6]) gen-
erates for each occurrence a nested iteration that looks for matching partner
constraints for the active constraint. If a matching combination is found, and
the active constraint is not removed, the constraint iterators are suspended and
the rule’s body is executed. Afterwards, the nested iteration is simply resumed.

Example 6. Fig. 6(a) shows the generated code for the second occurrence of the
up to/1 constraint in Fig. 3. For the query up to(U), the propagation history
for the corresponding rule would require O(U) space. Because all constraints
are non-reactive, however, no propagation history has to be maintained. Simply
comparing constraint identifiers suffices.

If all iterators return candidate partner constraints at most once, propagation is
guaranteed to be duplicate-free (see Definition 8). Most iterators used by CHR
implementations have this property. If not, a temporary history can for instance
be maintained whilst the active constraint is considering an occurrence.

Loop-Invariant Code Motion. Most CHR compilers perform so-called Loop-
invariant Code Motion optimization to check guard entailment as soon as possi-
ble (e.g. ‘N < U ’ in Fig. 6(b)). Contrary to a propagation history check, identifier
comparisons enable additional code motion, as illustrated in Fig. 6(b). This may
prune the search space of candidate partner constraints considerably.

Note furthermore that Lemma 1 does not only apply to propagation rules,
but also to simplification and simpagation rules. Whilst maintaining a history
for non-propagation rules is pointless, comparing partner constraint identifiers
in outer loops is not, as they may avoid redundant iterations of nested loops.

4 Idempotence

Constraints in CHR handlers that specify traditional constraint solvers, such as
the leq/2 constraint of Example 1, typically range over unbound variables, and
are thus highly reactive. Without a history, constraint reactivations may cause
reactive propagation rules to fire multiple times with the same combination. For
constraint solvers, however, such additional rule applications typically have no
effect, as they only add redundant constraints that are immediately removed.
For such rules, the propagation history may be eliminated as well.

Optimization of CHR Propagation Rules 495

Example 7. Suppose the reactive transitivity propagation rule of Fig. 1 is
allowed to fire a second time with the same constraint combination matching its
head, thus adding a leq(X,Z) constraint for the second time. If the earlier told
duplicate is still in the store, this redundant leq(X,Z) constraint is immediately
removed by the idempotence rule. Otherwise, the former duplicate must have
been removed by either the reflexivity or the antisymmetry rule. It is easy
to see that in this case X = Z, and thus that the new, redundant leq(X,Z)
constraint is again removed immediately by the reflexivity rule.

We say the leq/2 constraint of the above example is idempotent. With live(T, S)
= {(ρ, I) ∈ T | I ⊆ id(S)}, idempotence is defined formally as:

Definition 9. A CHR constraint type c/n is idempotent in a CHR program P
under a refined semantics ω�

r iff for any state σ = 〈[c|A], S,B,T〉n in a ω�
r deriva-

tion D with c a CHR constraint, the following holds: if earlier in D a state
〈[c′|A′], S′,B′,T′〉n′ occurs with DH |= B → c = c′, then σ��

P 〈A, S′′,B′′,T′′〉n′′

with S′′ = S, live(T′′, S) = live(T, S), and DH |= πvars(B)∪vars(D[1])(B′′) ↔ B.

In other words, an idempotent constraint c for which a syntactically equal con-
straint c′ was told earlier in the same derivation, is removed without making any
observable state change. Since ‘��

P’ denotes a finite derivation, telling duplicate
idempotent CHR constraints also does not affect termination.

We do not consider arbitrary, extra-logical host language statements here, and
assume all built-in constraints b are idempotent, that is: ∀b : DH |= b∧b↔ b. By
adding “ If DH |= (B∧b) ↔ B, then S = ∅ ” to the Solve transition of ωr (or any
of its refinements from Section 3), we avoid redundant constraint reactivations
when idempotent built-in constraints are told. This is correct, as Solve’s upper
bound on S already specifies that any matching already possible prior to b’s
addition may be omitted from S. Most CHR systems already implement this
optimization. Denote the resulting semantics ωidem

r .

Definition 10. A CHR rule ρ ∈ P is idempotent under ωidem
r iff all CHR

constraint types that occur in its body are idempotent in P under ωidem
r .

We now prove that an idempotent propagation rule may be fired more than
once with the same combination of constraints, without affecting a program’s
operational semantics. Let ωidem′

r denote the semantics obtained by adding the
following phrase to the Simplify and Propagate transitions of ωidem

r :

If the rule ρ is idempotent, then T’ = T; otherwise, . . . (as before)

Assuming furthermore that propagation for ωidem′

r is duplicate-free4 in the sense
of Definition 8, the ωidem′

r semantics is equivalent to ωidem
r . More precisely:

Theorem 3. If D′ is an ωidem′

r derivation, then there exists an ωidem
r derivation

D with D[1] = D′[1] such that a monotonic function α can be defined from the
states in D to states in D′ for which
4 In this case a finite number of duplicate propagations would also not be a problem.

496 P. Van Weert

- α(D[1]) = D′[1]
- if α(D[i]) = D′[k] and α(D[j]) = D′[l] with i < j, then k < l
- if α(〈A, S,B,T〉n) = 〈A′, S′,B′,T′〉n′ , then DH |= πvars(B)∪vars(D[1])(B′) ↔ B,

A′ = A, S′ = S, and live(T′, S) = live(T, S) \ {(ρ, I) ∈ T | ρ is idempotent}.

Conversely, if D is an ωidem
r derivation, then an ωidem′

r derivation D′ exists with
D′[1] = D[1] for which a function with these same properties can be defined.
Proof Sketch. An ωidem′

r derivation D′ only differs from the corresponding ωidem
r

derivation D when a Propagate transition fires an idempotent propagation rule
ρ using a combination of constraints that fired ρ before. This ωidem′

r transition
has form σ0 = 〈A, S,B,T〉n �P 〈B ++ A, S,B,T〉n = σ1. Because ρ’s body
B is idempotent, it follows from Definition 9 that the remainder of D′ begins
with σ1 ��

P σ′
0 = 〈A, S,B′,T′〉n, with DH |= πvars(B)∪vars(D[1])(B′) ↔ B, and

live(T′, S) = live(T, S). Because σ′
0 is thus essentially equivalent to σ0, we simply

omit states σ1 to σ′
0 in the corresponding ωidem

r derivation D.
Given above observations it is straightforward to construct the mapping func-

tion α and the required derivations for both directions of the proof. �

For multi-headed propagation rules, reapplication is often cheaper than main-
taining and checking a history. The experimental results of Section 5 confirm
this. Of course, reapplying a body can be arbitrarily expensive. To estimate the
cost of reapplication versus the cost of maintaining a history, heuristics can be
used.

4.1 Deriving Idempotence

The main challenge lies in automatically deriving that a CHR constraint is idem-
potent. A wide class of idempotent CHR constraints should be covered:

Example 8. Many constraint solvers contain a rule such as:

in(X,L1,U1) \ in(X,L2,U2) ⇔ L2 ≤ L1, U2 ≥ U1 | true.

Here, ‘in(X,L,U)’ denotes that the variable X lies in the interval [L, U]. The in/3
constraint is probably idempotent (it depends on the preceding rules). There
is an important difference though with the leq/2 constraint in Example 7: by
the time the constraint is told for the second time, the earlier told duplicate
may now be replaced with a syntactically different constraint—in this case: a
constraint representing a smaller interval domain.

Theorem 4 provides a sufficiently strong syntactic condition for determining the
idempotence of a CHR constraint. It uses arbitrary preorders on the constraint’s
arguments. For the three arguments of the in/3 constraint in Example 8 for
instance, the preorders =, ≤ and ≥ can be used respectively.

Let bi(B) and chr(B) denote the conjunction of built-in respectively CHR
constraints that occur in a constraint conjunction B. Then:

Theorem 4. A CHR constraint type c/n is idempotent in P under ωidem
r if for

preorders �1, . . . ,�n:

Optimization of CHR Propagation Rules 497

1. There exists a rule of the form “c(y1, . . . , yn) \ c(x1, . . . , xn) ⇔ G | true.”
in HNF(P) with DH |= (x1 �1 y1 ∧ . . . ∧ xn �n yn) → G.
Let ρ be the first such rule occurring in the HNF(P) sequence.

2. All rules in HNF(P) prior to ρ that contain an occurrence of c/n have a
trivial body ‘true’, and do not contain any removed occurrences apart from
possibly that c/n occurrence.

Consider a set of n mutually distinct variables V = {x1, . . . , xn}. For all removed
occurrences of c/n in HNF(P) that can be renamed to the form

Hk \ Hr1 , c(x1, . . . , xn), Hr2 ⇔ G | B
(Hk, Hr1 , and Hr2 may be empty), such that ¬∃c(y1, . . . , yn) ∈ Hk ∪ chr (B) :
DH |= G ∧ bi(B) → (x1 �1 y1 ∧ . . . ∧ xn �n yn), define Φ = πV (G ∧ bi(B)). For
each of these occurrences, either DH |= Φ ↔ false, or conditions 3 and 4 hold:

3. There exists a rule in HNF(P) that can be renamed such that it has form
“c(x1, . . . , xn) ⇔ G |B”, with bi(B) = B and DH |= Φ→ (G ∧B).
Let ρ′ be the first such rule occurring in the HNF(P) sequence.

4. All rules in HNF(P) prior to ρ′ that contain an occurrence of c/n can be
renamed to “Hk \Hr⇔G |B” with Hk ++Hr = H1 ++[c(x1, . . . , xn)]++H2,
such that either

- DH |= Φ→ ¬G; or
- Hr ⊆ [c(x1, . . . , xn)] ∧ (bi(B) = B) ∧ DH |= (Φ ∧G) → B; or
- ∃c(y1, . . . , yn) ∈ H1 ∪H2 : DH |= (Φ ∧G) → (x1 �1 y1 ∧ . . . ∧ xn �n yn).

Proof Sketch. By Definition 9, we have to show that adding a c/n constraint
makes no essential changes to the execution state if a duplicate constraint was
added earlier in the same derivation. The proof considers two cases: either the
duplicate constraint, or a constraint derived from it, is still in the store, or it
has been removed. We show that, if the theorem’s conditions hold, in both these
cases the newly told duplicate is removed, and that it only makes idempotent
state changes before that. The complete, formal proof can be found in [11]. �

5 Evaluation

We implemented the optimizations introduced in this paper in the K.U.Leuven
CHR system [3,6] for SWI-Prolog, and in the K.U.Leuven JCHR system [4]
for Java, and evaluated them using typical CHR benchmarks and constraint
solvers5. Benchmark timings are given in Tables 1 and 2. The history columns
give the reference timings (in milliseconds) when using a propagation history.

The non-react columns in Table 1 contain the results when the optimiza-
tions of Section 3 are used. For the non-react+ measurements, loop-invariant
code motion was applied to the identifier comparisons (see Section 3.3; currently

5 Information on the benchmarks and the platform used is found in [11, Appendix B].

498 P. Van Weert

Table 1. Benchmark results (in average milliseconds) for non-reactive CHR rules

SWI JCHR total # n-headed propagation rules
history non-react history non-react non-react+ rules n = 1 n = 2 n = 3 n > 3

fibbo(1000) 15,929 4,454 (28%) 70 67 (95%) 21 (30%) 3 1 - 1 -
fibbo(3000) timeout timeout 542 464 (85%) 153 (28%) 3 1 - 1 -
floyd-warsh(30) 11,631 9,706 (83%) 368 188 (51%) 186 (51%) 21 3 2 1 -
interpol(8) 5,110 1,527 (30%) 43 41 (95%) 37 (86%) 5 - 2 - -
manners(128) 849 561 (66%) 328 322 (98%) 317 (97%) 8 - - 1 -
nsp grnd(12) 547 169 (31%) 10 6 (60%) 5 (50%) 3 1 1 - -
nsp grnd(36) 81,835 10,683 (13%) 1,434 502 (35%) 494 (34%) 3 1 1 - -
sum(1000,100) 6,773 3,488 (51%) 215 135 (63%) N/A 4 - 1 - -
turing(20) 10,372 7,387 (71%) 761 280 (37%) 276 (36%) 11 1 4 1 5
wfs(200) 2,489 2,143 (86%) 71 67 (94%) 67 (94%) 44 - 4 - -

Table 2. Benchmark results (in average milliseconds) for idempotent propagation rules.
The ‘#’ columns give the number of propagation rules over the total number of rules.

SWI JCHR
#

SWI JCHR
#

history idempotence hist. idempot. history idempotence hist. idempot.
interval(21) 22,622 17,611 (78%) 8 5 (62%) 15/27 eq(35) 3,465 1,931 (56%) 47 19 (40%) 1/4
interval(42) timeout timeout 54 28 (52%) 15/27 leq(70) 3,806 1,236 (32%) 85 35 (41%) 1/4
nsp grnd(12) 547 164 (30%) 10 6 (60%) 2/3 nsp(12) 1,454 1,036 (71%) 12 8 (67%) 2/3
nsp grnd(36) 81,835 10,485 (13%) 1,365 496 (36%) 2/3 nsp(36) timeout timeout 1,434 621 (43%) 2/3
timepoint(16) 1,684 1,312 (78%) 404 317 (78%) 2/7 minmax(15) 4,826 3,631 (75%) 133 82 (61%) 6/54

only implemented in JCHR6). Only for the sum benchmark the the history was
eliminated using the optimization of Section 3.2 (code motion is of course not ap-
plicable (N/A) in this case). Table 2 shows the results for the idempotence-based
history elimination of Section 4.

Significant performance gains are measured all optimizations. The selected
benchmarks run about two times faster on average, and scale better as well. Even
though no numbers are shown, it is moreover clear that the space complexity of
the propagation histories has become optimal. Unoptimized, the worst-case space
consumption of a propagation history is linear in the number of rule applications
(cf. Example 6). Using our optimizations, histories consume no space at all. In
extreme cases, this even improves the space complexity of the entire handler.

6 Conclusions

Related Work. A preliminary version of this paper covering only Section 3.3
of the present paper appeared in [7]. The present paper completes this earlier
work by introducing propagation history elimination based on unobservedness
and idempotence, and by providing a more extensive experimental evaluation.

Section 3.2 can be seen as an extension and formalization of an optimization
briefly presented in [5]. This ad-hoc optimization was restricted to fixed CHR
constraints, and lacked a formal correctness proof.
6 In JCHR, after code motion, identifier comparisons are integrated in the constraint

iterators themselves. These iterators moreover exploit the fact that the stored con-
straints are often sorted on their identifiers. This can further improve performance.

Optimization of CHR Propagation Rules 499

Since the propagation history contributes to significant performance issues
when implementing CHR in a tabling environment (see e.g. [12]), [13] proposes
an alternative set-based CHR semantics, and argues that it does not need a
propagation history. Our results, however, show that abandoning CHR’s familiar
multiset-based semantics is not necessary: indeed, our optimizations eliminate
the history-related performance issues whilst preserving the ωr-semantics.

Conclusions. Whilst there is a vast research literature on CHR compilation and
optimization, propagation histories never received much attention. Maintaining
a propagation history, however, comes at a considerable runtime cost, both in
time and in space. In this work, we resolved this discrepancy by introducing
several innovative optimization techniques that circumvent the maintenance of
a history for the majority of CHR propagation rules:
• For non-reactive CHR propagation rules, we showed that very cheap con-

straint identifier comparisons can be used. These comparisons can moreover
be moved early in the generated nested iterations, thus pruning the search
space of possible partner constraints. We also formally identified the class of
non-reactive rules for which the history can simply be eliminated.

• Whilst rules in general-purpose CHR programs are mostly non-reactive,
CHR handlers that specify a constraint solver are typically highly reactive.
We therefore introduced the concept of idempotence, and found that most
rules in the latter handlers are idempotent. We showed that if a propagation
rule is idempotent, the rule may safely be applied more than once matching
the same combination of constraints. Interestingly, reapplication is mostly
cheaper than maintaining and checking a history. We also presented a suffi-
cient syntactic condition for the idempotence of a CHR constraint.

We proved the correctness of all our optimizations and analyses in the formal
framework of CHR’s refined operational semantics [8], and implemented them in
two state-of-the-art CHR systems [3,4]. Our experimental results show significant
performance gains for all benchmarks containing propagation rules.

Acknowledgments. The author thanks Tom Schrijvers for his invaluable aid
in the implementation of the optimizations in the K.U.Leuven CHR system.
Thanks also to Bart Demoen and the anonymous referees of CHR 2008 and
ICLP 2008 for their useful comments on earlier versions of this paper.

References

1. Frühwirth, T.: Theory and practice of Constraint Handling Rules. J. Logic Pro-
gramming, Special Issue on Constraint Logic Programming 37(1–3), 95–138 (1998)

2. Sneyers, J., Van Weert, P., Schrijvers, T., De Koninck, L.: As time goes by: Con-
straint Handling Rules – A survey of CHR research between 1998 and 2007. Journal
of Theory and Practice of Logic Programming (submitted, 2008)

3. Schrijvers, T., Demoen, B.: The K.U.Leuven CHR system: Implementation and
application. In: CHR 2004: Selected Contributions, Ulm, Germany, pp. 8–12 (2004)

500 P. Van Weert

4. Van Weert, P., Schrijvers, T., Demoen, B.: K.U.Leuven JCHR: a user-friendly,
flexible and efficient CHR system for Java. In: CHR 2005: Proc. 2nd Workshop on
Constraint Handling Rules, Sitges, Spain, pp. 47–62 (2005)

5. Duck, G.J.: Compilation of Constraint Handling Rules. Ph.D thesis, University of
Melbourne, Australia (December 2005)

6. Schrijvers, T.: Analyses, optimizations and extensions of Constraint Handling
Rules. Ph.D thesis, K.U.Leuven, Belgium (June 2005)

7. Van Weert, P.: A tale of histories. In: CHR 2008: Proc. 5th Workshop on Constraint
Handling Rules, Hagenberg, Austria, pp. 79–94 (2008)

8. Duck, G.J., Stuckey, P.J., Garćıa de la Banda, M., Holzbaur, C.: The refined op-
erational semantics of Constraint Handling Rules. In: [14], pp. 90–104

9. Schrijvers, T., Stuckey, P.J., Duck, G.J.: Abstract interpretation for Constraint
Handling Rules. In: Barahona, P., Felty, A. (eds.) PPDP 2005: Proc. 7th Intl. Conf.
Princ. Pract. Declarative Programming, Lisbon, Portugal, pp. 218–229. ACM, New
York (2005)

10. Schrijvers, T., Demoen, B.: Antimonotony-based delay avoidance for CHR. Tech-
nical Report CW 385, K.U.Leuven, Dept. Computer Science (July 2004)

11. Van Weert, P.: Optimization of CHR propagation rules: Extended report. Technical
Report CW 519, K.U.Leuven, Dept. Computer Science (August 2008)

12. Schrijvers, T., Warren, D.S.: Constraint Handling Rules and tabled execution. In:
[14], pp. 120–136

13. Sarna-Starosta, B., Ramakrishnan, C.: Compiling Constraint Handling Rules for
efficient tabled evaluation. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354, pp.
170–184. Springer, Heidelberg (2006)

14. Demoen, B., Lifschitz, V. (eds.): ICLP 2004. LNCS, vol. 3132. Springer, Heidelberg
(2004)

Termination Analysis of CHR Revisited

Paolo Pilozzi� and Danny De Schreye

Dept. of Computer Science, K.U.Leuven, Belgium
paolo.pilozzi@cs.kuleuven.be, danny.deschreye@cs.kuleuven.be

Abstract. Today, two distinct direct approaches to prove termination
of CHR programs exist. The first approach, by T. Frühwirth, proves
termination of CHR programs without propagation. The second, by Voets
et al., deals with programs that contain propagation. It is however less
powerful on programs without propagation. In this paper, we present
new termination conditions that are strictly more powerful than those
from previous approaches and that are also applicable to a new class
of programs. Furthermore, we present a new representation for CHR
states for which size-decreases between consecutive states correspond to
termination. Both contributions are linked: our termination conditions
correspond to the existence of a well-founded order on the new state
representation, which decreases for consecutive computation states.

Keywords: Constraint Handling Rules, Termination Analysis.

1 Introduction

Constraint Handling Rules [1] is a declarative programming language. It was
designed and proved successful for efficiently implementing various kinds of con-
straint solvers (see e.g. [2,3]). The language is closely related to Logic Program-
ming (LP) and to lesser extent to Term-Rewrite Systems (TRS). Relating it to
LP, its most distinguishing features are that:

- its rules do not act on goals of sequentially ordered atoms, but on multi-sets
of constraints (constraint stores),

- the rules are multi-headed and introduce new constraints depending on the
presence of a multi-set of constraints in the store that match the head.

- in addition to multi-headed variants of LP-clauses (simplification rules), it
also supports propagation rules, which do not remove any constraints from
the store, but only add new constraints conditional on the presence of others.

It is mostly the latter feature of the language that makes termination analysis
of CHR an interesting and difficult problem. Consider a propagation rule:

a(s(N)) ⇒ a(N).

Here, a/1 is a constraint, s/1 a functor and N a variable. Given a constraint, say
a(s(s(0))), in the store, the rule adds a constraint a(s(0)). Because propagation
� Supported by I.W.T. Flanders - Belgium.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 501–515, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

502 P. Pilozzi and D. De Schreye

rules do not remove constraints, to avoid trivial non-termination, they must
respect a fire-once policy: they can only be activated once on any matching
multi-set of constraints. Under this restriction and taking into account that CHR
uses matching instead of unification, a program consisting only of the above rule
is terminating for any given constraint store.

Now consider a slight variant:

a(s(N)), a(N) ⇒ a(N).

Here, the comma denotes conjunction. Based on LP-termination intuition, one
would be inclined to think that this rule is terminating as well. We have only
strengthened the precondition of the rule and there is still a decrease in the over-
all ”size” between the heads and the body of the rule. The latter rule, however,
is non-terminating for any constraint store on which it can be activated at least
once. The reason is that each time the rule is activated, say on a constraint store
a(s(s(0))), a(s(0)), it adds a new constraint a(s(0)). This ”fresh” copy of a(s(0))
recombines with a(s(s(0))) to fire the rule again. Thus, we get non-termination.

Formally modelling and analyzing these aspects ofCHR-termination has proven
to be difficult. The first approach, by T. Frühwirth in [4], adapts LP termination
analysis to the CHR context. The work succeeded in showing that such an adap-
tion can elegantly and effectively be done. However, its focus is on CHR without
propagation, as such avoiding the problems illustrated above.

Recently, in [5], new termination criteria have been proposed, which are ap-
plicable to CHR programs with propagation. The conditions proposed in this
approach are of a very different nature than those of LP termination analysis or
of [4]. In particular, the approach does not reason in terms of decreases in size
of consecutive computation states, as it is most often the case in termination
analysis. In fact, in the presence of propagation rules, it is a non-trivial problem
to come up with a representation of a computation state which can easily be
seen to decrease in size for terminating computations. For instance, it is clear
that the constraint store itself is insufficient for this purpose. By any application
of a propagation rule, information is added to the store, while none is removed.

Voets et al. [5] addresses the general setting of the full CHR-language, but
is less precise on programs without propagation. We introduce examples of and
discuss causes for this in the remainder of the paper. So, we currently have two
approaches to prove termination, successful on different classes of programs.

One of the goals of the current paper is to present a new termination condition
which is more powerful than both [4] and [5]. So, if any of the techniques in [4]
or [5] is able to prove a program terminating, then our approach will succeed as
well. Moreover, we will show that there is a class of programs that is not in the
scope of [4] nor [5], and for which our technique succeeds also. So, we provide
strictly more powerful conditions than both existing approaches.

A second goal of our work is to address the problem of finding a representation
for CHR computation states, for which decreases in size of consecutive states
correspond to termination of the computation. For this purpose, we complement
the constraint store with two additional structures:

Termination Analysis of CHR Revisited 503

- the token store, which keeps track of which propagation rules are still allowed
to fire on which multi-subsets of the constraint store,

- the propagation store, which collects all constraints that can be added to
the current constraint store by exhaustively applying all propagation rules.

Finally, the two contributions of the paper are linked: our new termination con-
ditions constructively imply the existence of a well-founded order on the state
representation that decreases for consecutive states.

The paper is organized as follows. In the next section, we discuss CHR syn-
tax and adapt concepts from LP termination analysis to CHR. Then, a brief
explanation on the existing approaches to termination analysis of CHR is given.
Section 3 covers CHR semantics, where we introduce the token store to model a
fire-once policy for propagation rules. Section 4 discusses termination of propa-
gation rules. There, we define the notion of propagation safeness and introduce
the propagation store. In Section 5, we come to the heart of our approach: we
present our new representation for CHR states that can be shown to decrease in
size for terminating programs containing also propagation rules. Then, we for-
mulate verifiable conditions, which imply such decreases. In Section 6, we discuss
our approach and conclude.

2 Preliminaries

CHR [1,6] manipulates a conjunction of constraints c(t1, . . . , tn) of arity n ≥ 0,
that are collected in a constraint store S. As CHR is built on top of a host-
language, there are pre-defined built-in constraints that are solved by an under-
lying solver CT and there are user-defined CHR constraints that are solved by
the rules of a CHR program P . A CHR program consists of a finite set of rules,
syntactically named by ”rulename @”. There are essentially two kinds of rules
in a CHR program. The next example program illustrates their use.

Example 1 (Primes [7]).

test @ primes(M) \ primes(N) ⇔ N > M,N mod M is 0 | true.
generate @ primes(N) ⇒ N > 2 | Np is N − 1, primes(Np).

The test rule is a simplification rule. In general, a simplification rule takes the
form Hk \Hr ⇔ G | B,C, where Hk, Hr and C are conjunctions of CHR con-
straints and G and B conjunctions of built-in constraints. However, when no kept
heads are present, we write it as Hr ⇔ G | B,C. The test rule verifies, using a
guard N > M,N mod M is 0, whether the removed head constraint primes(N)
can be divided by the kept head constraint primes(M). If so, primes(N) is re-
placed by a built-in true. The generate rule is a propagation rule. In general a
propagation rule takes the form Hk ⇒ G | B,C, where Hk and C are conjunc-
tions of CHR constraints and G and B conjunctions of built-in constraints. The
generate rule adds decreasing numbers. Given the guard N > 2 of the propaga-
tion rule, only numbers greater than 2 can fire the rule. Therefore, no number
lower than 2 is added, given the added built-in Np is N − 1. �

504 P. Pilozzi and D. De Schreye

In CHR, we denote by TermP and ConP the sets of respectively all terms and
all constraints that can be constructed from the alphabet underlying a CHR
program P . These constraints are interpreted by a level mapping to natural
numbers, which is a function defined in terms of norms [8, 9].

Definition 1 (Norm, level mapping). Let P be a CHR program. Then, a
norm is a function ‖.‖ : TermP → N and a level mapping |.| : ConP → N. �

There are several examples of norms and level mappings in literature on LP
termination analysis [8]. Two well-known norms are list-length and term-size.
The value that a level mapping assigns to a constraint is refered to as a level
value. It was demonstrated by Frühwirth in [4], that for CHR programs without
propagation, the sizes of consecutive computation states can be compared using
a multi-set order on the level values of the constraints in the constraint store.

In multi-sets, multiple instances of a same element are allowed. When joining
two multi-sets, denoted by ,, the elements of both multi-sets are added together.
An order can be defined on multi-sets, corresponding to an order on its elements.

Definition 2 (Multi-set order adapted from [10]). Assume a partial order
> for the elements of two multi-sets X and Y and let nX

r be the number of
elements in X of level value r. Then X is strictly larger than Y , denoted by
X .m Y , if there exists a level value r, such that nX

r > nY
r and ∀q > r : nX

q =
nY

q . �

Multi-set order has been shown to be well-founded if the order of its elements is
well-founded [10]. Therefore, if a decrease can be shown for successive compu-
tation states, and thus on changes in the state caused by rules, we prove that a
program must terminate. We illustrate this in the next example.

Example 2 (Termination of CHR programs without propagation [4]).

R1 @ a(s(N)), a(N), a(N) ⇔ a(s(N)), a(N). R2 @ a(s(N)) ⇔ a(N).

Termination is shown by proving multi-set size decreases for the constraint store,
using a level mapping |a(N)| = ‖N‖ts, where ‖.‖ts is term-size. �

For CHR programs with propagation, the above approach cannot be used due
to explicit increases in the constraint store caused by propagation. For such
programs, termination is currently proved using a different approach [5].

The conditions for CHR programs with propagation from [5], compare the
sizes of individual constraints, rather than multi-sets of constraints. Propagation
rules may only add constraints with strictly lower level values than any of the
heads used in the rule. A simplification rule must remove more constraints of
the maximally occurring level value, than it adds constraints of that value.

Example 3 (Termination of CHR programs with propagation [5]).

R1 @ a(s(s(N))) ⇒ a(s(N)), a(N). R2 @ a(s(N)) ⇔ a(N).

Termination Analysis of CHR Revisited 505

Termination of the program is shown for ground queries, using a level mapping
|a(N)| = ‖N‖ts. The first rule only adds constraints with a level value which is
strictly lower than that of the constraint that fired the rule. In the second rule,
the constraint with the maximal level value is in the head. Thus the number of
constraints with maximal level value decreases. �

Notice that the condition on simplification is a strengthened variant of multi-set
order. Therefore, in the case of a program with only simplification rules, the
condition for CHR without propagation covers more programs.

Example 4 (Revisiting Example 2).

R1 @ a(s(N)), a(N), a(N) ⇔ a(s(N)). R2 @ a(s(N)) ⇔ a(N).

Termination cannot be shown using [5] since its condition on simplification rules
requires that |a(s(N))| > |a(N)| for R2. As such, no decrease in the number
of constraints with maximal level value can be shown for R1. One reason for
the stronger condition from [5] is that in the case of a propagation rule, e.g.
R2 @ a(s(N)) ⇒ a(N), we obtain a non-terminating program. �

3 CHR Semantics

Declaratively, simplification corresponds to a logical equivalence between re-
moved constraints Hr and added constraints B ∧ C, provided presence of the
kept constraints Hk and satisfiability of the guard G: G→ (Hk → Hr ↔ B∧C).
Propagation on the other hand completes state information. Given the presence
of constraints, new constraints are added: G→ (H → B ∧ C).

Operationally, rules are applied exhaustively on the CHR constraints in the
constraint store. Rule application is non-deterministic. Any applicable rule can
be fired. This is however a committed choice, it cannot be undone [1, 11, 12, 6].
We will study termination for all possible non-deterministic choices.

Definition 3 (Constraint store). The constraint store is a set S of uniquely
labeled CHR constraints c#i and built-in constraints b. We define chr(c#i) = c to
obtain the constraint and id(c#i) = i to obtain the label. �

Labeling constraints is required to prevent trivial non-termination, caused by
propagation. We label CHR constraints to keep track of combinations of con-
straints that can still fire propagation rules. As such, a fire-once policy is intro-
duced on combinations of constraints. To this end, we consider a token store.

Definition 4 (Token store). Let P be a CHR program and S a constraint
store. Then the token store T given S, is the set of tokens (Ri, id1, . . . , idn),
where (Ri @ h1, . . . , hn ⇒ G | B,C) is a propagation rule in P and where cj#idj

are constraints in S, such that CT |= ∃σθ : c1 = h1σ ∧ · · · ∧ cn = hnσ ∧ Gσθ.
Here, σ is a match substitution and θ an answer substitution for the guard. �

506 P. Pilozzi and D. De Schreye

The elements of a token store are tokens which represent the possibility to
apply a propagation rule on constraints in the constraint store. Once the prop-
agation rule has been applied to these constraints, the corresponding token is
removed, so that the rule is no longer applicable on the same combination of
constraints. Whenever the application of a rule causes CHR constraints to be
added to the constraint store, new tokens TA

(D,S) enter the token store.

Definition 5 (Addition of tokens). Let P be a CHR program, S a constraint
store and D a labeled CHR constraint, added to the constraint store S, then

TA
(D,S) = { (R, i1, . . . , in) | (R @ h1, . . . , hn ⇒ G | B,C) ∈ P, where

{c1#i1, . . . , cn#in} ⊆ {D} ∪ S such that D ∈ {c1#i1, . . . , cn#in} and
CT |= ∃σθ : (c1 = h1σ) ∧ · · · ∧ (cn = hnσ) ∧Gσθ }

If multiple labeled constraints D = {D1, . . . , Dn} are added, then

TA
(D,S) = TA

(D1,S) ∪ TA
(D2,{D1}∪S) ∪ · · · ∪ TA

(Dn,{D1,...,Dn−1}∪S)

Where σ is a match substitution and θ an answer substitution. �

Tokens TE
(D,S) in the token store T may become invalid as a consequence of

removing constraints D from the constraint store S.

Definition 6 (Elimination of tokens). Let T be a token store and D =
{D1, . . . , Dn} labeled CHR constraints removed from the constraint store S, then

TE
(D,S) = {(R, i1, . . . , in) ∈ T | ∃Dj ∈ D : id(Dj) ∈ {i1, . . . , in}} �

The rules in a CHR program define a state transition system [1, 11, 12, 6]. We
define states and transitions.

Definition 7 (CHR state). A CHR state is a tuple 〈S, T 〉ν , where S is the
constraint store and T the token store. Every state is annotated with a fresh
integer ν, not yet assigned to a constraint. An initial state or query is a tuple
〈S, TA

(S,∅)〉v, with v a fresh integer value. �

The transition relation T between CHR states, given CT for built-ins and P for
CHR constraints, is defined as follows [1, 11, 12, 6].

Definition 8 (Transition relation). Let Hk = h1, . . . , hj, Hr = hj+1, . . . , hn

and C = c1, . . . , cm denote conjunctions of CHR constraints, let G and B denote
conjunctions of built-in constraints, let σ be a match substitution for the heads
of the rule R and let θ be an answer substitution for the guard. Then, T is:

[SOLVE] Solving built-in constraints
IF S = b ∪ Sρ, where b is a built-in constraint such that CT |= ∃β : bβ
THEN there exists a transition T : 〈S, T 〉ν −→ 〈Sρβ, T 〉ν

Termination Analysis of CHR Revisited 507

[SIMPLIFY] Simplification of CHR constraints
IF (Rs @ Hk \Hr ⇔ G | B,C) is a fresh variant of a rule in P and S =
H ′

k ∪H ′
r ∪ Sρ, with H ′

k = {d1#i1, . . . , dj#ij} and H ′
r = {dj+1#ij+1, . . . , dn#in}

such that CT |= ∃σθ : (d1 = h1σ) ∧ · · · ∧ (dn = hnσ) ∧Gσθ
THEN there exists a transition T : 〈S, T 〉ν −→ 〈S′, T ′〉ν+m

where S′ = (H ′
k ∪ Sρ ∪B ∪ {c1#ν, . . . , cm#(ν +m− 1)})σθ and

where T ′ = (T \ TE
(H′

r,S)) ∪ TA
({c1�ν,...,cm�(ν+m−1)},H′

k∪Sρ)

[PROPAGATE] Propagation of CHR constraints
IF (Rp @ Hk ⇒ G | B,C) is a fresh variant of a rule in P and S = H ′

k ∪ Sρ,
with H ′

k = {d1#i1, . . . , dj#ij} and T = {(Rp, i1, . . . , ij)} ∪ Tρ such that
CT |= ∃σθ : (d1 = h1σ) ∧ · · · ∧ (dj = hjσ) ∧Gσθ
THEN there exists a transition T : 〈S, T 〉ν −→ 〈S′, T ′〉ν+m

where S′ = (S ∪B ∪ {c1#ν, . . . , cm#(ν +m− 1)})σθ and
where T ′ = Tρ ∪ TA

({c1�ν,...,cm�(ν+m−1)},S) �

The next example computation for Primes (Example 1), illustrates the transition
relation.
Example 5 (Executing Primes). For a query 〈{primes(7)#1}, {(R2, 1)}〉2, we get
as a possible computation:

I0 = 〈{primes(7)�1}, {(R2, 1)}〉2 R2−−→
I1 = 〈{primes(7)�1, primes(6)�2}, {(R2, 2)}〉3 R2−−→
I2 = 〈{primes(7)�1, primes(6)�2, primes(5)�3}, {(R2, 3)}〉4 R2−−→
I3 = 〈{primes(7)�1, primes(6)�2, primes(5)�3, primes(4)�4}, {(R2, 4)}〉5 R2−−→
I4 = 〈{primes(7)�1, primes(6)�2, primes(5)�3, primes(4)�4, primes(3)�5}, {(R2, 5)}〉6 R1−−→
I5 = 〈{primes(7)�1, primes(5)�3, primes(4)�4, primes(3)�5}, {(R2, 5)}〉6 R2−−→
I6 = 〈{primes(7)�1, primes(5)�3, primes(4)�4, primes(3)�5, primes(2)�6}, ∅〉7 R1−−→
I7 = 〈{primes(7)�1, primes(5)�3, primes(3)�5, primes(2)�6}, ∅〉7
Note that we have omitted discussion of the solve transition. �

A final state or answer is a state in which no more transitions are possible. It
is therefore necessarily of the form 〈S, ∅〉v. A transition in CHR is called a com-
putation step and a sequence of transitions, a computation. If all computations
are finite, a CHR program terminates.

Definition 9 (Termination of a CHR program). We say that a CHR pro-
gram P terminates for a query I iff all computations of P for I are finite. �
Termination of CHR programs, executed under an operational semantics as de-
scribed above, corresponds to the notion of universal termination.

As in LP [8], we wish to describe by a call set, the constraints that participate
in computations of a CHR program P , given a query I. As such, we can establish
interpretations that are rigid w.r.t. the constraints represented by the call set:
the interpretation of constraints cannot alter under substitution.

Definition 10 (Call set). Let I ⊆ ConP . Then by Call(P, I), we denote the
subset of ConP , where C ∈ Call(P, I) if C is a constraint used in the application
of a rule in some computation of P for I. �

508 P. Pilozzi and D. De Schreye

4 Propagation in CHR

4.1 Motivation

Example 5 confirms our earlier observation that the constraint store is insufficient
to monitor the size-decreases in CHR-computations. In the example, with each
propagation step, the constraint store grows. The example also suggests that the
full state representation 〈S, T 〉ν , is appropriate to observe decreases. To illustrate
this, we first introduce an ordering on tokens.

Definition 11 (Token mapping). Given a level mapping |.|, the associated
token mapping is a function |.|τ from tokens to N, such that for every state
〈S, T 〉ν and token t = (Rp, i1, . . . , in) in T : |t|τ = min({|ci1 |, . . . , |cij |}), where
cij = chr(id−1(ij)). �
Returning to Example 5, we can now easily define a decreasing well-founded
order on states 〈S, T 〉ν , by taking a lexicographic order, based on ordered pairs
(T, S). The lexicographic order uses multi-set order of token values on T and
multi-set order of level values on S. In the example, in propagation steps, the
size of T decreases (while that of S increases); in simplification steps the size of
T is constant, while that of S decreases.

Unfortunately, such behavior is not always the case.

Example 6 (Counter example).

R1 @ a, a, a⇔ b, b. R2 @ b⇒ a.

We execute the program with a query 〈{a#1, a#2, a#3}, {}〉4:
〈{a�1, a�2, a�3}, {}〉4 R1−−→ 〈{b�4, b�5}, {(R2, 4), (R2, 5)}〉6 R2−−→

〈{a�6, b�4, b�5}, {(R2, 5)}〉7 R2−−→ 〈{a�7, a�6, b�4, b�5}, {}〉8
Note that here, contrary to Example 5, in simplification steps, T does not

remain constant during decreases of S. So, a lexicographic order as suggested
above does not decrease. �
To solve this, we will introduce a third component in our state representation:
the propagation store. This component is redundant: it is computable from S
and T . However, it simplifies defining a decreasing lexicographic order.

4.2 Propagation Safe CHR Programs

We introduce some more compact notations. We will denote a state < S, T >ν

by S , possibly with sub- or superscripts. Given S =< S, T >ν, we introduce
argument selectors: cs(S) = S and ts(S) = T . Given a state S , a propagation
rule Rp, a token t and substitutions σ and θ, we write TRp,t,σ,θ(S) to denote
the state T (S), where the transition has applied Rp using token t and match
and answer substitution σ and θ. Likewise, given a state S , a simplification rule
Rs and substitutions σ and θ, we write TRs,σ,θ(S) to denote the resulting state
T (S) after simplification. Without loss of generality, we will regard computa-
tions as subsequences of simplification steps, interleaved with sequences of zero
or more propagation steps:

Termination Analysis of CHR Revisited 509

S(1,1)

TRp(1,1) ,t(1,1),σ(1,1),θ(1,1)−−−−−−−−−−−−−−−−−→ S(1,2)

TRp(1,2) ,t(1,2),σ(1,2),θ(1,2)−−−−−−−−−−−−−−−−−→ . . .
TRs1 ,σ1,θ1−−−−−−−→

S(2,1)

TRp(2,1) ,t(2,1),σ(2,1),θ(2,1)−−−−−−−−−−−−−−−−−→ S(2,2)

TRp(2,2) ,t(2,2),σ(2,2),θ(2,2)−−−−−−−−−−−−−−−−−→ . . .
TRs2 ,σ2,θ2−−−−−−−→ . . .

Within this setting, we distinguish two different kinds of CHR states in compu-
tations. A fully propagated state is a state with an empty token store. Therefore,
no propagation rule is applicable on a fully propagated state. A partially propa-
gated state is a state which does contain tokens. By the action of full propagation
and partial propagation, we refer to sequences of propagation steps, originating
from a CHR state and ending in a fully or partially propagated state, respec-
tively. Notice that full propagation may correspond to an infinite sequence.

To guarantee termination of CHR programs, we will first guarantee finiteness
of full propagation sequences. To this end, we consider the token store. We mea-
sure the token store as the multi-set of token values of its tokens. Therefore, if
we guarantee that all applications of propagation rules decrease the size of the
token store, then we prove that all sequences of propagation steps in computa-
tions of the program must be finite. This is the case if none of the tokens added
can be of higher token value than the token removed by propagation.

Definition 12 (Propagation safe). A CHR program P is propagation safe
for a query I iff there exists a level mapping |.| with associated token mapping
|.|τ , such that for every application of a propagation rule TRp,t,σ,θ on a state
S = 〈S, T 〉ν in some computation of P for I: ∀t′ ∈ TA

(Cσθ,S) : |t|τ > |t′|τ .
Recall that, in our notation for propagation rules, the C above denotes the

added constraints of Rp. �
If a CHR program is propagation safe, then all propagation sequences are finite,
because the size of the token store cannot infinitely decrease.

Proposition 1. If a CHR program P is propagation safe for a query I, then
there are no infinite sequences of propagation steps in computations of P for I.

As a consequence, for CHR programs without simplification rules, propagation
safeness implies program termination.

Corrolary 1. If a CHR program P without simplification is propagation safe
for a query I, then the program is terminating for I.

We demonstrate this on a program for calculating Fibonacci numbers [7].

Example 7 (Fibonacci). The first rules resolve base cases, while the third rule
adds Fibonacci constraints.

R1 @ fib(N,M) ⇒ N = 0 |M = 0.
R2 @ fib(N,M) ⇒ N = s(0) |M = 1.
R3 @ fib(s(s(N)),M1), f ib(s(N),M2) ⇒ fib(N,M),M1 is M2 +M.

We query the program with constraints fib(N,M), where N is ground. We use
the level mapping |fib(N,M)| = ‖N‖ts. R1 and R2 are trivially propagation
safe as these do not introduce tokens. For R3, the token removed is of a strictly
higher token value than any of the tokens added. So the program terminates. �

510 P. Pilozzi and D. De Schreye

4.3 Full Propagation

We now define the notion of full propagation more formally.

Definition 13 (One-layer propagation). Let P be a program, I a query and
S = 〈S, T 〉ν a state in a computation of P for I, where T = {t1, t2, . . . , tn} with
n �= 0. Let (t1, t2, . . . , tn) be any fixed ordering on the elements of T , then the
one-layer propagation on S is:

P(S) = TRpn ,tn,σn,θn(. . .TRp2 ,t2,σ2,θ2(TRp1 ,t1,σ1,θ1(S)))

where Rpi , σi and θi are the propagation rule, match and answer substitutions
corresponding to ti, with i = 1, . . . , n. �
The result of one-layer propagation is not independent of the selected ordering
(t1, t2, . . . , tn) on T . However, taking two different orders, the resulting states
only differ in the labels they assign to the constraints.

Definition 14 (Label-equivalent state). Two CHR states S1 and S2 are
label-equivalent, denoted by S1 ≈ S2, iff there exists a one-to-one mapping Ψ
from labels to labels, such that Ψ(S1) = S2. �
Proposition 2. Let S = 〈S, T 〉ν be a state in a computation of P for I and
let (t1, t2, . . . , tn) and (t′1, t

′
2, . . . , t

′
n), n > 0, be two orderings on T . Let P(S)

denote the result of one-layer propagation with (t1, t2, . . . , tn) and P ′(S) that
with (t′1, t

′
2, . . . , t

′
n), then P(S) ≈ P ′(S). �

In what follows, we will omit to make an explicit distinction between label-
equivalent states and abuse the notation P(S) to denote some representant,
using some order, of the equivalence class of the result of one-layer propagation.

We have the following properties.

Proposition 3. Let S = 〈S, T 〉ν be a state in a computation of P for I and
T �= ∅. Then, S ⊆ cs(P(S)) and T ∩ ts(P(S)) = ∅ �
One-layer propagation removes all tokens of T from the token store, but it may
add new ones. As a result, there can be further propagation after the application
of P. We therefore define powers of P.

Definition 15 (Powers of P). Let S be a state in a computation of P for I:

If ts(S) �= ∅, then P1(S) = P(S)
If ts(Pn−1(S)) �= ∅, then Pn(S) = P(Pn−1(S)), n > 1. �

In principal, one could try to define an order on the set of all states, such that
it becomes a complete lattice and such that P is monotonic and continuous
on it. Full propagation would then correspond to the least fixpoint. However,
since we are interested in termination analysis, we are only interested in finitely
terminating propagation. By requiring propagation safeness, we can characterize
full propagation on the basis of finite powers of P.

Proposition 4. Let S be a state in a computation of P for I. If P is propaga-
tion safe for I, then there exists n0 ∈ N such that: ts(Pn0(S)) = ∅. �

Termination Analysis of CHR Revisited 511

The proposition follows immediately from Proposition 1. So, assuming propaga-
tion safeness, we characterize full propagation on a state S as Pn0(S).

4.4 The Propagation Store

From now on, we assume propagation safeness of P for I. We are ready to
define the third component in our state representation: the propagation store.
Intuitively, it is the multi-set of all constraints that are added by full propagation.

Definition 16 (Propagation store). Let S = 〈S, T 〉ν be a state in some
computation of a propagation safe CHR program P for a query I. Then, the
propagation store of S is U = chr(cs(Pn0(S)) \ S). �
Example 8 (Executing Primes). We revisit the computation of Primes from Ex-
ample 5 and represent for it the propagation store:

〈{primes(7)�1}, {primes(6), primes(5), primes(4), primes(3), primes(2)}, {(R2, 1)}〉2
〈{primes(7)�1, primes(6)�2}, {primes(5), primes(4), primes(3), primes(2)}, {(R2, 2)}〉3

〈{primes(7)�1, primes(6)�2, primes(5)�3}, {primes(4), primes(3), primes(2)}, {(R2, 3)}〉4
〈{primes(7)�1, primes(6)�2, primes(5)�3, primes(4)�4}, {primes(3), primes(2)}, {(R2, 4)}〉5

〈{primes(7)�1, primes(6)�2, primes(5)�3, primes(4)�4, primes(3)�5}, {primes(2)}, {(R2, 5)}〉6
〈{primes(7)�1, primes(5)�3, primes(4)�4, primes(3)�5}, {primes(2)}, {(R2, 5)}〉6

〈{primes(7)�1, primes(5)�3, primes(4)�4, primes(3)�5, primes(2)�6}, {}, {}〉7
〈{primes(7)�1, primes(5)�3, primes(3)�5, primes(2)�6}, {}, {}〉7

Note that we have left out state names as well as transitions due to space
restrictions. The propagation store together with the constraint store remains
constant when propagation occurs. When simplifying, their combined size de-
creases. It turns out that this is typical for terminating programs. �

By proposition 2 we know that the result of one-layer propagation is unique up
to label-equivalence. Therefore, the propagation store, as the result of a finite
sequence of one-layer propagations, is also unique up to label-equivalence.

Corrolary 2. For any state S in a computation of P for I, the propagation
store U is well-defined up to label-equivalence. �

To avoid misunderstanding, note that our introduction of the propagation store
does not mean that we restrict our attention to computation rules in which simpli-
fication is interleaved with full propagation. We will still allow that propagation is
interrupted by simplification. So, there is no restriction on the computation rule.
However, if we do interrupt full propagation by applying a simplification rule, this
affects thepropagation store.That is, if constraints are removed fromthe constraint
store, some tokens may become invalid and as a consequence also constraints in the
propagation store become invalid.Whenadding constraints to the constraint store,
new tokens are added to the token store and as a result, new constraints are also
added to the propagation store.

We will not explicitly define the added and eliminated elements of the prop-
agation store due to a simplification step, because they are not needed in the
termination conditions that we will propose. Moreover, the propagation store is
redundant anyway. So the new propagation store can always be determined by
computing full propagation on a newly obtained state.

512 P. Pilozzi and D. De Schreye

5 Termination of CHR

5.1 CHR State Ordering

We now come to the heart of our approach. As we have already illustrated in
Example 8, the combined size of constraint and propagation store chr(S) , U
remains equal when propagating, while the size of the token store T decreases. We
furthermore have illustrated that chr(S) , U decreases in size when simplifying
the program. We can therefore define a lexicographical order on states that can
be shown to decrease for every application of a rule.

Definition 17 (CHR state ordering). To any state S = 〈S, T 〉ν we asso-
ciate a tuple 〈S , U, T 〉, where U is the propagation store of S . We order the
tuples using lexicographical order, based on multi-set order of level values on
chr(S) , U and multi-set order on token values on T . �

Obviously, since level and token values are well-founded, the CHR state ordering
is a well-founded order. We will introduce sufficient conditions on CHR rules that
imply decreases of all consecutive computation states under this order.

5.2 The Ranking Condition on Propagation Rules

First, we observe that propagation steps do not affect the order of the chr(S),U
component in our lexicographical order. It is the essence of the meaning of a
propagation store that it collects all the constraints that can be added to the
constraint store by upcoming propagation steps. Therefore, applying a propaga-
tion rule moves constraints from U to S. More precisely, we have the following.

Proposition 5. Let TRp,t,σθ : 〈S, T 〉ν −→ 〈S′, T ′〉ν′ be a propagation transition
with associated propagation stores U and U ′, then chr(S) ,U = chr(S′) ,U ′ �

Next, note that propagation safeness is a condition that explicitly requires a
decrease of the multi-set order of the token values in T with any application of a
propagation rule. We therefore introduce a ranking condition (RC) on propaga-
tion rules that implies propagation safeness. As a result, the CHR state ordering
decreases with propagation transitions if this ranking condition holds.

Definition 18 (RC on propagation rules). Let Rp @ h1, . . . , hn ⇒ G |
B, c1, . . . , cm be a propagation rule in a CHR program P , I a query and σ a
match substitution for the heads of Rp and θ an answer substitution for Gσ such
that CT |= Gσθ holds. Then, the RC on propagation rules is satisfied w.r.t. a
rigid level mapping |.| for Call(P, I) iff ∀hi, cj : |hiσ| > |cjσθ|. �

Proposition 6. If a CHR program P satisfies the RC on propagation rules
w.r.t. a rigid level mapping |.| for Call(P, I), then P is propagation safe for I.

Example 9 (Fibonacci revisited). We recall the third rule from Example 7:

R3 @ fib(s(s(N)),M1), f ib(s(N),M2) ⇒ fib(N,M),M1 is M2 +M.

Termination Analysis of CHR Revisited 513

R3 satisfies the RC on propagation rules if |fib(s(s(N)),M1)| > |fib(N,M)| and
|fib(s(N),M)| > |fib(N,M)|. Using the level mapping |fib(N,M)| = ‖N‖ts, it
can be verified that this is indeed the case for all instances of the rule, using
ground first arguments for fib/2. For the other rules in Example 7, the RC is
trivially satisfied. The program is therefore propagation safe. �

5.3 The Ranking Condition on Simplification Rules

We now want to introduce a condition on simplification rules, such that for
every application of a simplification rule, the multi-set order of level values of
consecutive chr(S),U multi-sets decreases. However, we do not want to reason
explicitly of the propagation store. Full propagation may require many iterations
of the P operator and we do not want to compute them all.

It turns out that, assuming propagation safeness for the propagation rules, if
there is a multi-set order decrease on chr(S) , chr(cs(P1(〈S, T 〉ν) \ S)), then
there is also a decrease on chr(S),U . As a result, we only need to consider the
first-layer propagation. We need the following notation.

Definition 19 (Propagation layers). Let S = 〈S, T 〉ν be a computation state
of P for I, we denote: U0 = chr(S) and U i = chr(cs(Pi(S))) \ U i−1, i > 0. �

With this notation, U = U1 , · · · , Un0 is the disjoint union of consecutive
propagation layers. We formulate the following lemma.

Lemma 1. Let P be propagation safe for I given a level mapping |.|. Let S be
a computation state in a computation of P for I. Then, there exists a constraint
D ∈ U1, such that ∀1 < i ≤ n0, ∀D′ ∈ U i : |D′| < |D| . �

Intuitively, if all constraints in U1 are smaller than some given value, then all
constraints in U are smaller than that value. The reason being that propagation
safeness imposes further decreases on following layers U i, i > 1.

Our ranking condition is a refinement of the ranking condition for simplifica-
tion rules defined in [4]. We first recall that condition.

Definition 20 (RC on simplification rules from [4]). Let Rs @ Hk \Hr ⇔
G | B,C be a simplification rule in a CHR program P . Let σ be a match sub-
stitution for the head constraints and θ an answer substitution for Gσ such that
CT |= Gσθ holds and let |.| be a rigid level mapping w.r.t. a CHR program P and
a query I, such that the added constraints Cσθ and removed constraints Hrσ in
Rs have ranks r1 > r2 > ... > rk and such that na

i and ne
i represent respectively

the number of constraints of rank ri in Cσθ and in Hrσ. Then, Rs satisfies the
RC on simplification rules w.r.t. |.| iff ∃rj : ne

j > na
j and ∀ri > rj : ne

j = na
j . �

We refine this condition by additionally imposing that all first-layer propagations
that can follow the application of the simplification rule and consume an added
constraint of the simplification rule also only introduce constraints with a level
value smaller than rj .

514 P. Pilozzi and D. De Schreye

Definition 21 (RC on simplification rules). Let Rs @ Hk \ Hr ⇔ Gs |
B, c(s,1), . . . , c(s,ms) be a simplification rule in a CHR program P and let |.| be a
rigid level mapping w.r.t. Call(P, I), where I is a query. Assume that Rs satisfies
the RC on simplification rules of [4] and let σ and θ be a matching and answer
substitution as in Definition 20 and rj the level value of Definition 20. Then P
satisfies the ranking condition on simplification rules for I iff for all propagation
rules Rp @ h(p,1), . . . , h(p,n) ⇔ Gs | B, c(p,1), . . . , c(p,mp) and ∀i, 1 ≤ i ≤ n:

If ∃k, 1 ≤ k ≤ ms and µ, σ′, θ′ are such that
CT |= Gsσθ ∧ (b(s,i)σθ = h(p,k)µ) ∧Gpµσ

′θ′,
then ∀l, 1 ≤ l ≤ mp : |b(p,l)µσ

′θ′| < rj . �

What is expressed in the condition is that each time that a head constraint in a
propagation rule matches an added constraint of the simplification rule, it can
only add constraints of lower level value than rj . Therefore, we are considering
every possible activation of a propagation rule following the simplification rule
and consuming some of its added constraints. We illustrate the condition with
an example which is outside the scope of both [4] and [5].

Example 10 (Problem case for [4] and [5]).

R1 @ a(s(N)), a(N) ⇔ a(s(N)). R2 @ a(s(s(M))), a(s(s(M))) ⇒ a(M).

We consider any finite query consisting of ground instances of a(N), using terms
constructed from s/1 and 0. Call(P, I) is the set of all such atoms. The level
mapping |a(N)| = ‖N‖ts is rigid on Call(P, I).

The rule R2 satisfies the RC on propagation rules: |a(s(s(M)))| > |a(M)| for
all considered instances. Note that R1 does not satisfy the RC of [5]: the number
of atoms with maximal level value (which is |a(s(N))|) does not decrease.

To verify our RC on simplification rules, first note that the RC of [4] (Defi-
nition 20 above) is satisfied: the number of constraints of level value |s(s(N))|
remains equal in head and body, but the number of constraints of level value
|a(N)| decreases. The rj in Definition 20 and 21 has the value |a(N)|.

Verifying the second part of Definition 21, we need to consider every possible
match of a head constraint of R2 with a body constraint of R1, given that we
start off from an activated (thus ground) instance of R1. There are two possible
matches, treated identically: a(s(s(M))) = a(s(N)), so s(M) is instantiated to
N . For the body constraint inR2, we then get |a(M)| < |a(s(M))| = |a(N)| = rj .
Thus, the condition holds and we prove termination. �

By imposing both the RC on propagation rules and the RC on simplification
rules, we now obtain a decreasing lexicographical ordering on the structure
〈chr(S) , U, T 〉. Therefore, our main result follows.

Theorem 1. If a CHR program P satisfies the RC on propagation rules and
the RC on simplification rules for a query I, then P terminates for I. �

Termination Analysis of CHR Revisited 515

6 Discussion and Conclusions

We have introduced a new termination condition for CHR programs. Our condi-
tion is strictly more powerful than both of the existing approaches. We are more
powerful than [4], because on programs with simplification only, our conditions
coincide, while programs including propagation are outside the scope of [4].

In the case of [5], for programs with propagation only, our approach is identical
to [5]. For programs with simplification, if they are in the scope of [5], then
the number of constraints of maximal level value decreases from head to body.
As a result, 1) the multi-set order decreases as well (first part of our RC on
simplification rules), 2) due to the RC on propagation rules, the extra condition
of one-layer propagation trivially holds. Thus, these programs are also in the
scope of our approach. Furthermore,Our condition can deal with programs that
are outside the scope of both [4] and [5], as was explained in Example 10.

We have also introduced a new representation for CHR states and a class
of orderings on this representation which facilitate reasoning about termination
of CHR computations. Our termination conditions are strongly based on this
new representation and its orderings. Our termination conditions correspond
to imposing decreases of the ordering over these representations of consecutive
computation states.

References

1. Frühwirth, T.: Theory and practice of constraint handling rules. J. Logic Program-
ming 37(1–3), 95–138 (1998)

2. Abdennadher, S., Marte, M.: University course timetabling using constraint han-
dling rules. Applied Artificial Intelligence 14(4), 311–325 (2000)

3. Frühwirth, T., Brisset, P.: Optimal placement of base stations in wireless indoor
telecommunication. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 476–480. Springer, Heidelberg (1998)

4. Frühwirth, T.: Proving termination of constraint solver programs. In: New Trends
in Constraints, pp. 298–317 (2000)

5. Voets, D., Pilozzi, P., De Schreye, D.: A new approach to termination analysis of
constraint handling rules. In: Pre-proceedings of LOPSTR 2008, pp. 28–42 (2008)

6. Schrijvers, T.: Analyses, optimizations and extensions of constraint handling rules:
Ph.D summary. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668,
pp. 435–436. Springer, Heidelberg (2005)

7. WebCHR, http://www.cs.kuleuven.be/∼dtai/projects/chr/
8. De Schreye, D., Decorte, S.: Termination of logic programs: the never-ending story.

J. of Logic Programming 19–20, 199–260 (1994)
9. Dershowitz, N.: Termination of rewriting. J. of Symbolic Computation 3(1–2), 69–

116 (1987)
10. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.

ACM 22(8), 465–476 (1979)
11. Abdennadher, S.: Operational semantics and confluence of constraint propagation

rules. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 252–266. Springer, Hei-
delberg (1997)

12. Duck, G., Stuckey, P., Garćıa de la Banda, M., Holzbaur, C.: The refined opera-
tional semantics of constraint handling rules. In: Demoen, B., Lifschitz, V. (eds.)
ICLP 2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)

http://www.cs.kuleuven.be/~dtai/projects/chr/

Transactions in Constraint Handling Rules

Tom Schrijvers1,� and Martin Sulzmann2

1 Department of Computer Science, K.U.Leuven, Belgium
tom.schrijvers@cs.kuleuven.be

2 ITU, Copenhagen, Denmark
martin.sulzmann@gmail.com

Abstract. CHR is a highly concurrent language, and yet it is by no
means a trivial task to write correct concurrent CHR programs. We pro-
pose a new semantics for CHR, which allows specifying and reasoning
about transactions. Transactions alleviate the complexity of writing con-
current programs by offering entire derivations to run atomically and in
isolation.

We derive several program transformations based on our semantics
that transform particular classes of transitional CHR programs to non-
transactional ones. These transformations are useful because they ob-
viate a general purpose transaction manager, and may lift unnecessary
sequentialization present in the transactional semantics.

1 Introduction

Constraint Handling Rules (CHR) [1] is a concurrent committed-choice con-
straint logic programming language. Each CHR rewrite rule specifies an atomic
and isolated transformation step (rewriting) among a multi-set of constraints.
Although this greatly facilitates writing concurrent programs, often we wish for
entire derivations of CHR rewrite steps to be executed atomically and in isola-
tion. For this purpose we propose CHRj, an extension of CHR where the user can
group together sets of goals (constraints) in a transaction. Like database trans-
actions, atomically executed transactions provide an “all-or-nothing” guarantee.
The effects of the transaction are visible either in their entirety or the trans-
action has no effect. Further, transaction are executed in isolation from other
transactions. That is, no intermediate state is observable by another transaction.

The efficient implementation of transactions is quite challenging: the amount
of concurrency should be maximized with a minimum of synchronization over-
head. For this purpose, non-interfering transactions should be identified for con-
current scheduling on different processors or processor cores. The current state of
the art for dealing with concurrent transactions is optimistic concurrency control.
In essence, each transaction is executed under the optimistic assumption that
concurrent transactions do not interfere with each other. Each transaction’s up-
dates are logged and only committed once the transaction is fully executed, and

� Post-doctoral researcher of the Fund for Scientific Research - Flanders.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 516–530, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Transactions in Constraint Handling Rules 517

only no update conflicts with other transactions. In theory, this method supports
a high-level of concurrency. Unfortunately, in practice many “false” conflicts may
arise in case the objects protected by transactions are subject to a high-level of
contention. The consequence is a significantly lower level of concurrency. This is a
serious problem for the practical acceptance of transactions in the programming
language setting.

Our novel idea is that instead of being concerned with a generic and efficient
execution scheme for CHRj which enables a high level of concurrency, we inves-
tigate meaning-preserving transformation methods of CHRj to plain CHR pro-
grams. The advantages of this approach are that there is no overhead caused by a
concurrency control scheme for transactions and ”false” conflicts are completely
avoided. Furthermore, resulting plain CHR programs enjoy a high-level of concur-
rency. In some cases, we can apply domain-specific optimizations to even further
boost the level of concurrency. The correctness of our transformation methods is
based on well-defined criteria and formal reasoning techniques. Our criteria and
techniques cover a certain, we claim significant, class of CHRj programs.

In summary, we make the following contributions:

– We introduce CHRj (pronounce: Atom CHR) an extension of CHR with
atomic transactions and develop the meta-theory for such a calculus (Sec-
tion 4). We demonstrate the usefulness of CHRj via a number of examples.

– We devise an execution scheme for CHRj where transactions must be ex-
ecuted sequentially to guarantee atomicity and isolation but plain CHR
derivations can be executed concurrently whenever possible (Section 5).

– Our approach to unlock concurrency in CHRj works by means of trans-
formation to plain CHR. Specifically, we consider transformation methods
(Section 6) which cover
• bounded transactions,
• (partially) confluent transactions, and
• domain-specific transaction synchronization and recovery.

Section 2 provides an overview of our work. Section 3 gives background ma-
terial on the CHR language. CHR follows Prolog syntax conventions, where
identifiers starting with a lower case letter indicate predicates and function sym-
bols, and identifiers starting with upper case are variables. We will stick to this
convention throughout the paper. Discussion of related work is deferred until
Section 7. Section 8 concludes.

Additional material such as examples are given in an accompanying technical
report [2].

2 Overview

In this section, we present two examples to motivate CHRj and our transfor-
mation methods. In the first example, we see a bounded transaction, i.e. whose
number of derivation steps is bounded. In the second example, transactions are
unbounded.

518 T. Schrijvers and M. Sulzmann

Table 1. Non-atomic transfer

balance(acc1,2000) ∧ balance(acc2,0) ∧ balance(acc3,1000)
∧ transfer(acc1,acc2,1000)
∧ transfer(acc1,acc3,1500)

� (unfold transfer x2)
balance(acc1,2000) ∧ balance(acc2,0) ∧ balance(acc3,1000)

∧ withdraw(acc1,1000) ∧ deposit(acc2,1000)
∧ withdraw(acc1,1500) ∧ deposit(acc3,1500)

� (deposit(acc2,1000))
balance(acc1,2000) ∧ balance(acc2,1000) ∧ balance(acc3,1000)

∧ withdraw(acc1,1000)
∧ withdraw(acc1,1500) ∧ deposit(acc3,1500)

� (deposit(acc3,1500))
balance(acc1,500) ∧ balance(acc2,1000) ∧ balance(acc3,1000)

∧ withdraw(acc1,1000)
∧ deposit(acc3,1500)

� (deposit(acc3,1500))
balance(acc1,500) ∧ balance(acc2,1000) ∧ balance(acc3,2500)

∧ withdraw(acc1,1000)

2.1 Bounded Transaction: Bank Transfer

Consider these (plain) CHR rules for updating a bank account:

balance(Acc,Bal), deposit(Acc,Amount) <=>
balance(Acc,Bal+Amount).

balance(Acc,Bal), withdraw(Acc,Amount) <=>
Bal > Amount | balance(Acc,Bal-Amount).

Thebalance/2 constraint is a data constraint, and thedeposit/2andwithdraw/2
constraints are operation constraints. The guard ensures that a withdraw is only
possible if the amount in the account is sufficient. In the concurrent CHR seman-
tics, rules canbeapplied simultaneously, as long as theyoperate onnon-overlapping
parts of the constraint store. Simultaneous deposit or withdrawal from distinct ac-
counts is therefore possible.

The transfer constraint/rule combines deposit and withdraw among two
accounts.

transfer(Acc1,Acc2,Amount) <=>
withdraw(Acc1,Amount) ∧ deposit(Acc2,Amount).

Suppose, we wish to perform two transfers where three accounts are involved.

balance(acc1,2000) ∧ balance(acc2,0) ∧ balance(acc3,1000)
∧ transfer(acc1,acc2,1000)
∧ transfer(acc1,acc3,1500)

Table 1 shows a possible derivation. We simulate concurrency using an interleaving
semantics. The point to note is that we cannot execute withdraw(acc1,1000)be-
cause of insufficient funds. The result is a ”non-atomic” execution of the first trans-
fer operations. We only manage to deposit but fail to withdraw. This is clearly not
the desired behavior of a transfer.

Transactions in Constraint Handling Rules 519

In CHRj, such problems can be avoided by guarding each transfer constraint
with an atomic() wrapper. In general, atomic() can be wrapped around any
constraint C (possibly consisting of a conjunction of constraints). We refer to
atomic(C) as a transaction. The CHRj semantics guarantees that transactions
are executed atomically and in isolation from other transactions. Informally, this
means that all constraints (and also those occurring in subderivations) are either
executed exhaustively or not at all. Any store updates are only visible once the
transaction is completed.

Next, we consider transformation of the above CHRj program to plain CHR.
In this example, derivation steps within a transaction are bounded. By perform-
ing a simple unfolding of CHR, we can replace the atomic transfer rule by the
following single rule.

balance(Acc1,Amt1),balance(Acc2,Amt2),transfer(Acc1,Acc2,Amt)
<=> Amt1 > Amt | balance(Acc1,Amt1-Amt) ∧ balance(Acc2,Amt2+Amt)

Immediately, this multi-headed rule expresses the fact that an atomic transfer
requires exclusive access to both accounts involved. Section 6.1 contains the
details of the transformation method for bounded transactions.

2.2 Unbounded Transaction: Shared Linked List

In this example, we consider linked lists of distinct elements (numbers) in in-
creasing order. A list is made up of four kinds of data constraints:

– We write node(X,P,Q) to represent a node with value X at location (cfr.
pointer address) P whose tail is at location Q.

– We write nil(P) to represent an empty list at location P.
– We write found(X) and notfound(X) to indicate that either a value X is

part of the list or not.

Two operation constraints inspect and modify a list:

– The find(X,P) operation searches for the element X starting from the loca-
tion P.

– Operation insert(X,P) adds the element X to the linked list at the proper
position (if not already present).

The program is:

f1 @ node(X,P,Next) \ find(X,P) <=> found(X).
f2 @ nil(P) \ find(Y,P) <=> notfound(Y).
f3 @ node(X,P,Next) \ find(Y,P) <=> X < Y | find(Y,Next).
f4 @ node(X,P,Next) \ find(Y,P) <=> X > Y | notfound(Y).

i1 @ node(X,P,Next) \ insert(X,P) <=> true.
i2 @ node(X,P,Next) \ insert(Y,P) <=> X < Y | insert(Y,Next).
i3 @ node(X,P,Next), insert(Y,P) <=> X > Y |

fresh(NewP) ∧ node(Y,P,NewP) ∧ node(X,NewP,Next).
i4 @ nil(P), insert(X,P) <=>

fresh(NewP) ∧ node(X,P,NewP) ∧ nil(NewP).

520 T. Schrijvers and M. Sulzmann

For brevity’s sake, we assume the existence of the primitive fresh for the
generation of fresh locations. This could be encoded via additional CHR rules.

In CHRj, we can then specify the atomic and isolated execution of operations,
for example (we omit the data store holding the linked list for simplicity)

atomic(find(50,root)) ∧ atomic(insert(2,root)) (***)

Transactions are unbounded because operations traverse a dynamic data struc-
ture. It is a well-known fact that in case the linked list is subject to a high-level
of contention, an optimistic concurrency control scheme for transactions does
not exhibit a high-level of concurrency due to many ”false” conflicts. Details are
in Section 5.1.

To safely remove atomic() wrappers (and thus avoiding ”false” conflicts) we
establish criteria which guarantee that the resulting program still behaves atom-
ically and does not violate isolation. One of the key criteria is partial confluence
of the primitive operations (i.e. plain CHR rules) out of which transactions are
composed of. Partial confluence means that non-joinable critical pairs are either
ruled out because they disobey an invariant (i.e. they are observably confluent [3]),
or non-joinability can be explained as a specific serial (in essence indeterministic)
execution of the (atomic) operations. The above linked list rules are partially con-
fluent which therefore guarantees that isolation is not violated once we remove the
atomic() wrappers in (***). Details are in Section 6 where we also discuss more
complex transactions and the impact of additional operations such as delete.

3 Preliminaries: Concurrent CHR

We assume that the reader is already familiar with CHR ([1]), and restrict our-
selves here to the conventions used in this paper.

The Concurrent CHR language. For the purpose of this paper, we consider only
a subset the CHR language, with the following two restrictions.

Firstly, programs do not involve Prolog-style logical variables and built-in
constraint solvers over these logical variables. In other words, all CHR constraints
range over ground terms.

Secondly, CHR constraint symbols C are partitioned into two classes CD and
CO. The former are data constraints and the latter operation constraints, accord-
ing to the terminology of [4]. The head of each CHR rule must consist of exactly
one operation constraint and zero or more data constraints, i.e. it is of the form
O,D1, . . . , Dn with n ≥ 0. Thus, each rule can be viewed as an operation. See
Fig. 1 for the notational conventions used in this paper.

Neither of these restrictions is verydemanding. In fact, Sneyers et al [5] showthat
this fragment of the CHR language is Turing-complete: their RAM machine simu-
lator works on ground constraints and the program counter constraint can be con-
sidered the operation constraint while the other constraints are data constraints.

Operational Semantics. Frühwirth [6] proposes a (non-transactional) concurrent
operational semantics for CHR (bottom of Fig. 1) on top of the basic rule ap-
plication (middle of Fig. 1). Rule Monotonicity encodes the monotonicity
property of CHR, which is also part of the sequential CHR semantics. Rule

Transactions in Constraint Handling Rules 521

Syntactic Categories
A, B, C zero or more constraints O one operation constraint
D one data constraint E, F zero or more operation constraints
S, T zero or more data constraints G (Boolean) guard constraint

Basic Rule Application

(Simplify)

(C ⇔ G|B) is a fresh rule variant
Cθ ≡ C′ CT |= Gθ

C′ � Bθ

(Propagate)

(C ⇒ G|B) is a fresh rule variant
Cθ ≡ C′ CT |= Gθ

C′ � C′ ∧Bθ

Concurrent CHR

(Monotonicity)

A � B

A ∧ C � B ∧ C
(WeakPar)

A1 � A2 B1 � B2

A1 ∧B1 � A2 ∧B2

(StrongPar)

A1 ∧ C � A2 ∧ C B1 ∧ C � B2 ∧ C

A1 ∧B1 ∧ C � A2 ∧B2 ∧ C

Fig. 1. Concurrent CHR

WeakPar is the traditional compositionality property, which allows for deriva-
tions to run fully isolated and their results to be merged. The rule StrongPar

is proposed by Fruehwirth in [6]. It allows for a stronger form of concurrency, as
both subderivations may share the same unmodified context E.

A CHR derivation starting from constraints C0 yields after exhaustive appli-
cation of the rules of Fig. 1 the constraints Cn. Such a derivation is denoted
as C0 �∗ Cn. As the CHR semantics is nondeterministic there may be many
derivations, with different final constraints Cn, starting from the same C0. We
denote S[[P]](C0) the set {Cn | C0 �∗ Cn} wrt. CHR program P , i.e. the set of
different possible final constraints.

4 The CHRj Language

We propose CHRj (pronounce: Atom CHR), a new extension of CHR with
atomic transactions. An atomic transaction is denoted as atomic(C) where C
is a conjunction of CHR constraints. Atomic transactions may appear in queries
and rule bodies, in addition to ordinary (non-transactional) constraints.

The semantics of CHRj is an extension of the ordinary CHR semantics of
Figure 1. It requires only one more rule:

(Atomic)

T ∧ Si ∧ Ci �∗ T ∧ S′
i for i = 1, ..., n

T ∧
n∧

i=1

Si ∧
n∧

i=1

atomic(Ci) � T ∧
n∧

i=1

S′
i

The Atomic rule is quite general in nature. It defines a derivation step that
runs any number of atomic transactions atomic(Ci) in parallel.

522 T. Schrijvers and M. Sulzmann

Each transaction is isolated from the others: the parallel step considers the
separate evaluation of each Ci in isolation from the other Cj . The different
transactions only share the common data, in our case constraints, T ∧

∧
i Si.

However, note that none of the transactions should observe updates S′
i from the

other transactions to these common constraints.
Moreover, each transaction should run its full course, and not get stuck, i.e.

no operation constraints should be left. This ensures that the context T ∧
∧
Si

provides sufficient data for the atomic derivation to have its intended effect.
Without this condition, we could assume the context T ∧

∧
Si to be empty, and

thus lift the atomic wrapper and subsequently run the atomic derivation in a
non-atomic manner.

The notation Sj[[P]](C) for CHRj has the same meaning as S[[P]](C) for plain
CHR.

In Section 2, we have seen several examples showing the usefulness of CHRj.
We refer to [2] for a more extensive collection of examples.

4.1 Properties of CHRj

An important property of transactions in general is serializability: for each par-
allel execution of transactions there is a sequential execution with the same
outcome [7]. This serializability property also holds for CHRj.

Theorem 1 (Serializability). For each Atomic derivation step C1 � C2
with n concurrent transactions, there is a corresponding derivation C1 �n C2
of n consecutive Atomic steps each with only one transaction.

The proof is straightforward, and the n transactions can be serialized in any or-
der. A corollary of serializability is that in the worst case of any CHRj derivation
involves no concurrency at all.

While CHRj is a syntactic and semantic extension of CHR, the atomic key-
word in fact restricts the possible derivations for a query with respect to con-
current CHR. For this purpose we define the notion of erasure, which drops the
atomic keyword from a syntactic object:

Definition 1 (Erasure). The erasure from a syntactic CHR object o is denoted
as:

ε(C) = C(where C atomic− free) ε(C1 ∧ C2) = ε(C1) ∧ ε(C2)
ε(atomic(C)) = C ε(C1 <=> C2) = C1 <=> ε(C2)
ε(C1 ==> C2) = C1 ==> ε(C2) ε(C1 � C2) = ε(C1) � ε(C2)

We say that C is fully erased iff ε(C) ≡ C.

Theorem 2 (Soundness under Erasure). If C0 �∗ Cn is an CHRj deriva-
tion wrt. program P , then ε(C0 �∗ Cn) is a plain CHR derivation wrt. ε(P).

Corollary 1. The set of resulting constraints of an CHRj program P is a subset
of its erased form: ∀P, ∀C.Sj[[P]](C) ⊆ S[[ε(P)]](ε(C)).

Note that vice versa, i.e. by adding the atomic keyword to a concurrent CHR
derivation, we do not necessarily obtain a valid CHRj derivation. In Section 6
we will see cases where it is valid to do so. Of course, for fully erased programs
both CHRj and CHR yield the same result:

Transactions in Constraint Handling Rules 523

Theorem 3 (Completeness of Fully Erased Programs). If CHRj program
P and constraints C0 are fully erased, then Sj[[P]](C0) = S[[P]](C0).

5 CHRj Execution Schemes

We first sketch a possible optimistic concurrency control scheme for CHRj. The
common problem of all optimistic concurrency methods is that the read logs of
long running transactions may cause “false” conflicts with the write logs of other
transactions. These conflicts lead to a roll back and therefore decreases the level
of concurrency significantly as we will explain shortly. We therefore argue for a
simple CHRj execution scheme where transactions are executed sequentially but
which allows for concurrent execution of CHR derivation steps whenever possible.
To unlock concurrency in CHRj programs, we investigate several transformation
schemes from CHRj to CHR programs in the upcoming Section 6.

5.1 Optimistic Concurrency in CHRj and Its Problem

Optimistic Concurrency in CHRj We apply the principle of optimistic concur-
rency control to CHRj as follows. Each transaction is executed optimistically,
keeping a log of all reads and writes to the shared store. At the end of a trans-
action, we check for conflicts with the read/write logs of other transactions. For
example, a conflict arises if the read log of a transaction overlaps with the write
log of another transaction. In this case, it is the transaction manager’s duty to
resolve the conflict by for example rolling back one transaction, i.e. we restart
the transaction with an empty log, and letting the other transaction commit its
write log.

The Problem In case shared data objects are subject to a high level of contention,
optimistic concurrency control of atomic transactions degenerates to a sequential
execution scheme.

Example 1. Let’s consider the earlier shared linked list example from Section 2.2.
Suppose, we execute the two transactions atomic(find(50,n1)) ∧
atomic(insert(2,n1)) on the shared store

node(1,n1,n3) ∧ node(3,n3,n4) ∧ ... node(50,n50,n51) ∧ nil(n51)

The first transaction will search through the entire list whereas the second trans-
action will insert a new node containing 2 in between the first and second node.
Both transactions “overlap”. That is, the read log of the first transaction con-
flicts with the write log of the second transaction. When searching for (the last)
element 50, we will read the entire list, among others node(1,n1,n3). However,
the second transaction will re-write this constraint to node(1,n1,n2), and adds
node(2,n2,n3). This is a conflict between the read of the first transaction and
the write of the second. Assuming that the second transaction commits first, we
are forced to roll back the first transaction. In other words, the sequential execu-
tion of both transactions is enforced. This is unfortunate because the read/write
conflict is a “false” conflict. The result of the find transaction is independent of
the insertion of node 2. Hence, we would expect that both transactions can be
executed concurrently.

524 T. Schrijvers and M. Sulzmann

5.2 A Simple CHRj Execution Scheme

We consider a simple, sequential execution scheme for CHRj programs but which
allows for concurrent execution of CHR derivation steps whenever possible. The
idea is to collect atomic transactions and process them sequentially. Thus, we
trivially guarantee the atomic and isolated execution of transactions. The seman-
tics of such a restricted CHRj calculus is given in Fig. 2. We define a rewrite
relation �SeqACHR among configurations C,AT where C is as before and AT
refers to a conjunction of transactions. Rule SequentialAtomic schedules a
single transaction for (sequential) execution. Like in the case of rule Atomic, we
need to ensure that operations within transactions are fully executed and do not
get stuck. Rule CollectAtomic collects all newly derived transactions. Rule
ConcurrentCHR switches to the concurrent CHR system. The intial, starting
configuration is C,True.

In a concrete implementation, we could for example use a stack to systemat-
ically execute transactions. However, we wish to obtain a calculus in which we
can represent all possible serializations of atomic transactions.
Theorem 4 (Equivalence). We have that C � C′ is derivable in the CHRj
calculus from Section 4 iff C,True �SeqACHR C′′, S is derivable where C′ =
C′′ ∧ S.

Transactions AT ::= atomic(C) ∧AT | True

ConcurrentCHR

C �CHR C′

C,AT �SeqACHR C′,AT

SequentialAtomic

∀C.C ∧ C1 ∧ C2 �∗
SeqACHR C ∧ C3

C1, atomic(C2) ∧AT �SeqACHR C3, AT

CollectAtomic C1 ∧ atomic(C2),AT �SeqACHR C1, atomic(C2) ∧AT

Fig. 2. Sequential CHRj and Concurrent CHR Calculus

6 From CHRj to CHR by Transformation

Our goal is to erase all (or as many as possible) atomic() wrappers from CHRj
programs such that we can execute them in the concurrent CHR fragment. Of
course, simply erasing the atomic() wrappers is not sound: the atomicity and
isolation properties are easily lost.

Hence, in order to preserve atomicity and isolation of transactions under era-
sure, we not only erase the atomic() wrappers, but also perform other trans-
formation steps on the program. These proposed transformations are detailed in
the following subsections.

Some of our proposed transformations are applicable statically (off-line), others
are only valid if the execution environment satisfies certain conditions. We could
either check for these conditions dynamically, that is, we apply transformations on-
line, or the programmergurantees that under all execution paths the conditions are

Transactions in Constraint Handling Rules 525

met. The techniques employed to carry out and verify the transformations range
from simple unfolding methods to more sophisticated confluence analyses.

As a guideline for the correctness of transformations, we have the following
generic criterion.

Definition 2 (Erasure Correctness Criterion). A plain CHR program P ′
is correct erased form of an CHRj program P , iff ∀C.Sj[[P]](C) = S[[P ′]](ε(C)).

As we observed earlier in Theorem 2, usually ε(P) (erasing the atomic() wrap-
per) does not satisfy the Erasure Correctness Criterion (ECC) as we only have
that Sj[[P]](C) ⊆ S[[ε(P)]](ε(C)). Hence, we consider more sophisticated trans-
formations and conditions below.

Some transformations do not directly establish the ECC: they only eliminate
particular atomic transaction wrappers. In such cases a more compositional ap-
proach is interesting: several transformations are combined to eliminate all trans-
actions. Hence, we will usually prove a weaker criterion.

Definition 3 (Partial Erasure Correctness Criterion). An CHRj program
P ′ is correct partially erased form of an CHRj program P , iff

∀C.Sj[[P]](C) = Sj[[P ′]](ε(C))

By combining multiple transformations, we may end up with a fully erased
program. Hence, from Theorem 3 and the Partial Erasure Correctness of each
individual transformation, it then follows that the ECC holds.

For instance, a rather trivial form of erasure is erasure of operation-free
atomic transactions. In other words, let ε′(o) be defined as ε(o), except that
only ε′(atomic(S)) = S and not the more general ε′(atomic(C)) = C. For this
operation-free erasure we get trivially:

Theorem 5 (Correctness of Operation-Free Erasure).

∀P.∀C.Sj[[P]](C) = Sj[[ε′(P)]](ε′(C))

While the transformation is trivial, it nevertheless is a useful buildingblock for com-
posite transformations. The more interesting transformations are discussed below.

6.1 Bounded Transactions as Multi-headed CHR Rules

We formalize the observations from the earlier Section 2.1 which observed that
bounded transactions can be replaced by multi-headed CHR rules.

Definition 4 (Bounded Transaction Elimination). A bounded transaction
is one that performs a finite, statically known number of derivation steps.

Let β(P) be the elimination of bounded transactions from P obtained by ap-
plying the following steps to each bounded transaction in P .

1. Replace a bounded atomic transaction atomic(G) by a new operation con-
straint C, where C has the same formal parameters as G.

2. Add a rule r to the program of the form C<=> G.
3. Unfold the rule r, until no more operation constraints appear in its body. We

refer to [8] for a formal treatment of unfolding in CHR.

526 T. Schrijvers and M. Sulzmann

In summary, we can make the following general claim.

Theorem 6. The bounded transaction elimination β(P) of an CHRj program P
satisfies the Partial Erasure Correctness Criterion, i.e. ∀C.Sj[[P]](C) =
Sj[[β(P)]](C).

Numerous examples satisfy this criterion. We refer to [2] for details.

6.2 From CHRj to CHR Via Confluence Analysis

We only consider atomic transactions that are well-behaved, i.e. do not get stuck:

Definition 5 (Well-Behaved Constraints). We say that C is well-behaved
wrt. program P iff Sj[[P]](C) only contains data constraints, and no operation
constraints or atomic transactions.

The motivation for this is that, in general (e.g. for unbounded transactions), we
cannot model stuck atomic transactions by dropping the atomic() wrapper.

An example of a stuck transaction is a bank transfer (Section 2.1) that at-
tempts to overdraw an account. This transaction can be made into a well-behaved
transaction, if we drop the guard in the withdraw rule and hence allow negative
balances:

balance(Acc,Bal), withdraw(Acc,Amount) <=> balance(Acc,Bal-Amount).

In the remainder of this paper, we assume that the programmer ensures well-
behavedness, and focus on ensuring isolation for well-behaved constraints.

With the new semantics of withdrawal, the atomic() seems superfluous: any
two consecutive transfers commute. Regardless of the order they are performed
in, they yield the same final result. Hence, we can safely erase the wrapper which
then leads to

transfer(a1,a2, 100) ∧ transfer(a3,a4,150)
∧ transfer(a5,a2, 200) ∧ transfer(a6,a1, 50)

We can now concurrently execute transfer(a3,a4,150) and transfer(a6,
a1,50) and then sequentially execute the remaining transfers.

The generalized notion of the above commutativity is confluence [9]. A CHR
program is confluent if any derivation from the same initial goal yields the same
final result, i.e. ∀C∃C′.S[[P]](C) = {C′}.

Hence, we get the following result if an erased program is confluent:

Theorem 7 (Erasure for Confluent Transactions). If the erasure ε(P) of
an CHRj program P is confluent, then the ECC is satisfied for all well-behaved
constraints, i.e. ∀C.Sj[[P]](C) = S[[ε(P)]](ε(C)), where C is well-behaved.

6.3 Relaxing Confluence

Confluence is a very strong assumption and guarantees that isolation is not
violated once atomic() wrappers are removed. In practice, confluence is not
satisfied by many programs where the non-determinism is acceptable. In case
(non)confluence can be explained as a non-deterministic, serial execution of crit-
ical pairs among atomic operations, it is still safe to drop the atomic() wrapper.

Transactions in Constraint Handling Rules 527

Example 2. ecall the earlier shared-linked list example from Section 2.2. Most
of the critical pairs among find and insert operations are observably joinable as-
suming that the data structure is a sorted linked list. The only non-joinable crit-
ical pair arises in case the insertion takes place on a “found” node: nil(P) ∧
insert(X,P) ∧ find(X,P) and node(Y,P,Next) ∧ insert(X,P) ∧ find(X,P)
where Y < X. Depending on the order of execution we obtain different results. For
example, for the first case the find fails if the insert is performed last. For the sec-
ond case, it is the other way around. Yet each execution path corresponds to a valid
serial execution of an atomic execution of find and an atomic execution of insert
on a shared linked list. Hence, we argue that we can safely drop the atomic()
wrapper around single find and insert operations.

We can restate Theorem 7 for partially confluent programs under two additional
conditions.

Definition 6. A CHR program P is partially confluent iff all critical pairs are
either observably joinable [3] wrt. an invariant (sortedness in the above case), or
non-joinability can be explained as a non-deterministic, serial execution of the
operations involved.

Definition 7. A constraint C satisfies the single atomic operation property
(SAOP) iff each atomic() wrapper contains at most one operation constraint
and zero or more data constraints.

An CHRj program P satisfies the single atomic operation property iff for each
initial constraint satisfying SAOP, all constraints in intermediate derivations
satisfy SAOP as well.
Theorem 8 (Erasure for Partially Confluent SAOP Transactions). If
the erasure ε(P) of an CHRj program P is partially confluent and P satis-
fies SAOP, then ECC is satisfied for all well-behaved, SAOP constraints, i.e.
∀C.Sj[[P]](C) = S[[ε(P)]](ε(C)), where C is well-behaved and satisfies SAOP.

Example 3. The restriction to SAOP, only single atomic operations in all deriva-
tion steps, is essential. Execution of

node(1,p,q) ∧ nil(q) ∧ atomic(insert(2,p) ∧ insert(4,p))
∧ atomic(find(2,p) ∧ find(4,p))

has two possible outcomes. We either find 2 and 4 or we find none of the two
values. If we naively drop the atomic() wrappers it would however be possible
to observe an intermediate of the first transaction where we find 2 but not 4.
We conclude that partial confluence is only a sufficient criteria to guarantee
isolation for SAOP transactions (of course also in subsequent derivation steps).
More complex transactions require a more involved confluence analysis.

6.4 Completion for Stuck Transactions

Confluence analysis is also useful to recover from stuck operations.

Example 4. Consider the extension of the linked list program with the opera-
tion delete(X,P), which deletes X from the list (if present). This operation is
implemented by the rules:

528 T. Schrijvers and M. Sulzmann

d1 @ node(X,P,Q), node(Y,Q,Next), delete(X,P) <=> node(Y,P,Next).
d2 @ node(X,P,Q), nil(Q), delete(X,P) <=> nil(P).
d3 @ node(X,P,Q) \ delete(Y,P) <=> X < Y | delete(Y,Q).
d4 @ node(X,P,Q) \ delete(Y,P) <=> X > Y | true.
d5 @ nil(P) \ delete(X,P) <=> true.

Adding these rules, leads to additional critical pairs. Several are of the kind
discussed in the previous section, e.g. a find before or after a delete yields a
different result, but both are acceptable.

However, we get a new kind of critical pair, where an operation gets stuck. For
instance, consider the goal where for simplicity, we don’t show nodes beyond Q.

node(X,P,Q) ∧ node(Z,Q,R) ∧ find(Y,Q) ∧ delete(Y,Q)

where X < Y < Z. If the find makes step first and then the delete removes
the node, we get node(X,P,R) ∧ find(Z,R) and the find can continue look-
ing at the nodes not shown. However, if the delete goes first, the find is stuck:
node(X,P,R) ∧ find(Z,Q). The problem is that there is no more node Q to
look at, and so the find does not know how to proceed.

Such a critical pair is undesirable and has to be eliminated. We do so by a
form of domain-specific completion, i.e. we add rules to the program that identify
the stuck state and get out of it. Firstly, to facilitate recognizing (potentially)
stuck states, the delete operation should leave a trace of its operation: the
delnode(Q,P) data constraint denotes that there previously was a node at lo-
cation P with predecessor at Q.

d1 @ node(X,P,Q), node(Y,Q,Next), delete(X,P) <=>
node(Y,P,Next) ∧ delNode(Q,P).

d2 @ node(X,P,Q), nil(Q), delete(X,P) <=>
nil(P) ∧ delNode(Q,P).

Now the stuck operation can be detected by matching against the appropriate
delnode constraint, and the operation can continue properly.

f5 @ nodeDel(P,Q) \ find(X,P) <=> find(X,Q).
i5 @ nodeDel(P,Q) \ insert(X,P) <=> insert(X,Q).
d6 @ nodeDel(P,Q) \ delete(X,P) <=> delete(X,Q).

The above rules perform a smart retry. Instead of restarting (failing) the entire
transaction from scratch, only a small number of steps are required to recover
and continue the transaction. A similar form of domain-specific completion has
been performed by Frühwirth for the “union transaction” of a parallel union-
find algorithm [6]. In essence, Frühwirth’s starting point is a correct, parallel
union-find implementation in CHRj, although this is implicit in his work. He
then performs sophisticated transformations to obtain a version in plain CHR.

7 Related Work

The idea of using semantic analysis to achieve greater concurrency and better
failure recovery for transactions can already be found in the database litera-
ture [10,11]. Our contributions is to transfer these ideas to the programming
language, specifically, Constraint Handling Rules setting.

Transactions in Constraint Handling Rules 529

Several other works enrich an existing programming language calculus with tra-
nsactions, e.g. the work in [12] considers a process calculus extended with atomic
transactions whereas the work on transaction logic [13] adds transactional state
updates to a Horn logic calculus. None of these works consider meaning-preserving
transformation methods from the transactional calculus to the plain calculus. Yet
many of the examples found in the above works belong to the class of bounded
transactions and can therefore be transformed to plain multi-headed CHR rules.

Support for transactions is now generally available in many programming lan-
guages. The issue of “false” conflicts (see Section 5.1) is well-recognized but we are
only aware of a few works [14,15,16] which address this important problem. They
appear to be complementary to our work, i.e. the methods proposed could be inte-
grated with our transformational approach. We discuss them in turn below.

One possible approach to avoid “false” conflicts is to release read logs early,
e.g. see [14]. The problem with this method is that it requires great care by the
programmer to preserve atomicity and isolation.

A more principled approach proposed in [15] is to re-run only those parts of a
transaction which have been actually affected by “real” conflicts. This approach
is well-suited for side-effect free, declarative languages such as CHR but still
requires to keep track of read/write logs to infer the (un)affected parts.

Fairly close in spirit is the work in [16] which establishes formal criteria to
boost the level of concurrency of transactional code. The starting point is a
language with support for highly concurrent linearizable operations to which
then transactions are added such that the transactional code exhibits the same
level of concurrency as the underlying operations. In the context of our work, a
highly concurrent linearizable operation can be viewed as a multi-headed CHR
rule. If the operations commute, i.e. are confluent, they can be scheduled for
concurrent execution. The main differences are that the work in [16] still requires
a transaction manager to detect conflicts between non-commutative operations
(and there is the potential of deadlocks as pointed out in [16]). Our goal is to
avoid as much as possible the need for a transaction manager by performing
the opposite transformation, from transactional to non-transactional code. In
general, our approach cannot deal with non-commutative operations, we require
the stronger condition of partial confluence. On the other hand, we can easily
perform domain-specific optimizations by providing specialized synchronization
and recovery rules (see Section 6.4).

8 Conclusion and Future Work

We have presented the CHRj calculus for CHR with atomic and isolated trans-
actions. To execute CHRj efficiently, we propose a simple execution scheme, that
sequentializes atomic transactions. In order to improve concurrency, we propose
several transformation methods that replace transactions by plain CHR goals.
The methods are based on well-established concepts: unfolding and confluence
analysis of CHR.

In future work, we plan to investigate further transformations and to what
extent they can be automated. The addition of transaction combinators such
as orelse() [17] should be straightforward by extending CHRj with a choice
operator along the lines of [18].

530 T. Schrijvers and M. Sulzmann

Acknowledgments. We thank the reviewers for their helpful comments.

References

1. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37(1-3), 95–138
(1998)

2. Schrijvers, T., Sulzmann, M.: Transactions in Constraint Handling Rules. Technical
Report (2008), http://www.cs.kuleuven.be/∼toms/transactions.pdf

3. Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable confluence for Constraint
Handling Rules. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp.
224–239. Springer, Heidelberg (2007)

4. Schrijvers, T., Frühwirth, T.: Optimal union-find in Constraint Handling Rules.
TPLP 6(1-2), 213–224 (2006)

5. Sneyers, J., Schrijvers, T., Demoen, B.: The computational power and complexity
of Constraint Handling Rules. ACM TOPLAS (accepted, 2008)

6. Frühwirth, T.: Parallelizing union-find in Constraint Handling Rules using conflu-
ence. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 113–127.
Springer, Heidelberg (2005)

7. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. Morgan Kaufmann, San
Francisco (2002)

8. Tacchella, P., Gabbrielli, M., Meo, M.C.: Unfolding in CHR. In: Leuschel, M.,
Podelski, A. (eds.) PPDP 2007, pp. 179–186. ACM Press, New York (2007)

9. Abdennadher, S., Frühwirth, T., Meuss, H.: Confluence and semantics of constraint
simplification rules. Constraints 4(2), 133–165 (1999)

10. Weihl, W.E.: Data-dependent concurrency control and recovery. SIGOPS Oper.
Syst. Rev. 19(1), 19–31 (1985)

11. Korth, H.F., Levy, E., Silberschatz, A.: A formal approach to recovery by compen-
sating transactions. Technical report (1990)

12. Acciai, L., Boreale, M., Dal-Zilio, S.: A concurrent calculus with atomic transac-
tions. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 48–63. Springer,
Heidelberg (2007)

13. Bonner, A.J., Kifer, M.: Transaction logic programming. In: Proc. of ICLP 1993,
pp. 257–279 (1993)

14. Ni, Y., Menon, V.S., Adl-Tabatabai, A.R., Hosking, A.L., Hudson, R.L., Moss,
J.E.B., Saha, B., Shpeisman, T.: Open nesting in software transactional memory.
In: Proc. of PPoPP 2007, pp. 68–78. ACM Press, New York (2007)

15. Harris, T., Stipic, S.: Abstract nested transactions. In: TRANSACT 2007: The
Second ACM SIGPLAN Workshop on Transactional Computing (2007)

16. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-
concurrent transactional objects. In: Proc. of PPoPP 2008, pp. 207–216. ACM
Press, New York (2008)

17. Harris, T., Marlow, S., Peyton Jones, S., Herlihy, M.: Composable memory trans-
actions. In: Proc. of PPoPP 2005, pp. 48–60. ACM Press, New York (2005)

18. Abdennadher, S., Schütz, H.: CHRv: A flexible query language. In: Andreasen,
T., Christiansen, H., Larsen, H.L. (eds.) FQAS 1998. LNCS, vol. 1495, pp. 1–14.
Springer, Heidelberg (1998)

http://www.cs.kuleuven.be/~toms/transactions.pdf

Cadmium: An Implementation of ACD Term
Rewriting

Gregory J. Duck1, Leslie De Koninck2,�, and Peter J. Stuckey1

1 National ICT Australia (NICTA)��

Department of Computer Science and Software Engineering
University of Melbourne
{gjd,pjs}@cs.mu.oz.au

2 Department of Computer Science, K.U.Leuven, Belgium
Leslie.DeKoninck@cs.kuleuven.be

Abstract. Cadmium is a rule based programming language for com-
piling solver independent constraint models to various solver dependent
back-ends. Cadmium is based on a hybrid between Constraint Handling
Rules (CHR) and term rewriting modulo Associativity, Commutativity
and a restricted form of Distributivity (ACD) called Conjunctive Con-
text (CC). Experience with using Cadmium in the G12 project shows
that CC is a powerful language feature, as local model mapping can de-
pend on some non-local context, such as variable declarations or other
constraints. However, CC significantly complicates the Cadmium nor-
malisation algorithm, since the normal form of a term may depend on
what context it appears in. In this paper we present an implementa-
tion of Cadmium based on classic bottom-up evaluation, but modified to
handle CC matching. We evaluate the performance of the new implemen-
tation compared to earlier prototype normalisation algorithms. We show
that the resulting system is fast enough to run “real-world” Cadmium
applications.

1 Introduction

Cadmium is high-level rule based programming language based on ACD Term
Rewriting (ACDTR) [4] – a generalisation of Constraint Handling Rules (CHR)
[5] and Associative Commutative (AC) term rewriting systems [1]. Cadmium’s
main application is the G12 project [10], where it is used to map high-level models
of satisfaction and optimisation problems to low-level executable models. The
flexibility and expressiveness of Cadmium allows us to map the same high-level
model to different low-level models with very succinct programs (see e.g. [6,2]).

� Research funded by a Ph.D. grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen).

�� NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 531–545, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

532 G.J. Duck, L. De Koninck, and P.J. Stuckey

Associative Commutative (AC) term rewriting allows implicit reordering of
AC operators before applying rules. An AC operator ⊕ satisfies the axioms:

(associativity) (X ⊕ Y)⊕ Z = X ⊕ (Y ⊕ Z)
(commutativity) X ⊕ Y = Y ⊕X

For example, the rewrite rule r = (X ∧ ¬X → false) will not match the term
T = ¬a∧a under non-AC term rewriting because the order of the conjunction is
different. However, since ∧ is commutative, T is equivalent to T ′ = a∧¬a. Since
T ≡AC T ′ and T ′ matches r (i.e. AC matching), T can be rewritten to false
under AC term rewriting.

ACD term rewriting [4] extends AC term rewriting with ∧-Distributivity using
the following axiom for all functors f :

(distribution) P ∧ f(Q1, . . . , Qi, . . .Qn) = P ∧ f(Q1, . . . , P ∧Qi, . . . , Qn)

It represents the fact that if some property P holds in the context of a term
f(Q1, . . . , Qi, . . . Qn) it also holds in the context of all the subterms. We can
then define the conjunctive context (CC)1 of a term T as the conjunction of all
terms that appear conjoined with a parent of that term, i.e. all terms that can
∧-distribute to T .

Example 1. The CC of the boxed occurrence of x in the term

(x = 3) ∧ (x2 > y ∨ (x = 4) ∧ U ∨ V) ∧W

is (x = 3) ∧ U ∧W . �

We introduce CC matching rules of the form (C \ H ⇐⇒ B) which say we
can rewrite the term H to B if H appears in a position where its conjunctive
context is C ∧D for some D. Thus we can match on any term appearing in the
conjunctive context of H .

Example 2. For example, CC matching can be used to specialise constraints
based on variable types.

int(X) ∧ int(Y) \ X ≤ Y ⇐⇒ intleq(X,Y)
real(X) ∧ real(Y) \ X ≤ Y ⇐⇒ realleq(X,Y)

pair (X,A,B) ∧ pair (Y,C,D) \ X ≤ Y ⇐⇒ (A ≤ C ∨ (A = C ∧B ≤ D))

Given the term x ≤ y ∧ int(b) ∧ int(d) ∧ pair (x, a, b) ∧ pair (y, c, d) the conjunc-
tive context of x ≤ y is the remainder of the conjunction. Therefore the term
pair (x, a, b)∧pair (y, c, d) appears in the conjunctive context of x ≤ y so the last
rule is applicable. In the resulting term, x ≤ y is replaced by the right hand side
of the rule obtaining:

int(b) ∧ int(d) ∧ pair (x, a, b) ∧ pair (y, c, d) ∧ (a ≤ c ∨ (a = c ∧ intleq(b, d))

1 We will use CC as shorthand for “conjunctive context” in the rest of the paper.

Cadmium: An Implementation of ACD Term Rewriting 533

Now int(b) ∧ int(d) appears in the CC of b ≤ d and hence the first rule applies
to that term:

int(b) ∧ int(d) ∧ pair (x, a, b) ∧ pair (y, c, d) ∧ (a ≤ c ∨ (a = c ∧ intleq(b, d))

This term is now in normal form, i.e. no more rules are applicable. �

One simple normalisation algorithm is strict evaluation, i.e. to normalise a term
f(T1, ..., Tn), we first normalise each T1, ..., Tn to U1, ..., Un, and then test rules
against f(U1, ..., Un). If a rule (f(H1, ..., Hn) ⇐⇒ B) matches f(U1, ..., Un), then
any variable V in H1, ..., Hn must be bound to a normalised term. This is an
important property, since it means V ’s value can be copied to the rule body
without the need for further work.

Example 3. Consider the rule (f(X) ⇐⇒ g(X)). To ensure the body g(X) is
normalised it is sufficient to only check the rules for g/1, rather than normalise
X first. Under strict evaluation X must already be in normal form. �

A normalisation algorithm for Cadmium is more complex because of CC match-
ing. It is possible that terms matched in the CC are not in normal form.

Example 4. Consider the following Cadmium program consisting of three rules:

X = Y \ X <=> var(X) | Y. pass <=> true. eq(X,Y) <=> X = Y.

This is an example of actual Cadmium code. Cadmium term syntax follows
Prolog term syntax: any name starting with a capital letter represents a variable.
The first rule implements substitution using CC matching – i.e. given an X where
X=Y holds, then substitute X with Y. Like Prolog, Cadmium allows variables to
appear in the goal. We will examine distinct problems with two different goals.

Early Application : Consider the goal G1 = (A ∧ A=pass). Under left-to-right
strict evaluation, conjunct A with A=pass in its CC will be normalised first. Since
A=pass can be rewritten to A=true, the CC is not in normal form. If we apply
the first rule to A, and copy variables from the matching to the body as per
Example 3, then the result is the unnormalised term pass. This is called early
application since the result is unnormalised because a rule was applied with an
unnormalised CC.

Early Failure : Consider the goal G2 = (A ∧ eq(A,true)). Conjunct A with
eq(A,true) in its CC is normalised first. Again, the CC is unnormalised, since
eq(A,true) can be rewritten to A=true. In this case the first rule does not match,
since the substitution rule expects a =-term, not an eq-term. If eq(A,true) was
normalised first, then the rule would match. This is called early failure since a
rule failed to match because the CC was unnormalised. �

So why not simply normalise the CC before it is used? In general it is impossible
to force the CC to be normalised before it is used.

Example 5. Consider the program from Example 4 and the goal X=Y ∧ Y=X.
Under the ACDTR semantics, only two rule applications are possible:

534 G.J. Duck, L. De Koninck, and P.J. Stuckey

1. variable Y (inside conjunct X=Y) with CC Y=X rewrites to X; or
2. variable X (inside conjunct Y=X) with CC X=Y rewrites to Y.

The CC for (1) is unnormalised, because by (2) we have that Y=X can be rewritten
to Y=Y. Likewise the CC for (2) is unnormalised because of (1). Either way a
rule is applied with unnormalised CC. Therefore, in general it is impossible to
guarantee a normalised CC. �

A prototype basic normalisation algorithm that accounts for unnormalised
CC first appeared in [4]. The main contributions of this paper are:

– we show that the basic normalisation algorithm, whilst simple to implement,
is too inefficient to be practical on some “real-world” applications;

– we analyse the causes for incomplete normalisation (e.g. Example 4) and
show how the basic algorithm handles these cases;

– we use this information to derive a more efficient normalisation algorithm
used in the G12 Cadmium implementation of ACDTR;

– we also show how the information can be used to compile the bodies of rules
into more efficient executable code.

2 Preliminaries

The syntax of Cadmium closely resembles that of Constraint Handling Rules [5].
There are two2 types of rules; they have the following form:

(simplification) H ⇐⇒ g | B
(simpagation) C \ H ⇐⇒ g | B

where head H , conjunctive context C, guard g, and body B are arbitrary terms.
A program P is a set of rules. Essentially a rule works as follows: given a term
t[h] and matching substitution θ where h = Hθ such that gθ is true, and Cθ
appears in the conjunctive context of h, then we obtain the term t[Bθ]. ACDTR
rules can be applied to any subterm of the goal, unlike in CHR.

For space reasons, we refer the reader to [4] for details about the declarative
and operational semantics of Cadmium. A general understanding of term rewrit-
ing is sufficient to follow the paper, all important differences w.r.t. standard term
rewriting are illustrated by examples.

2.1 Basic Normalisation with Conjunctive Context

In this section we present a version of the basic normalisation algorithm for
ACDTR that first appeared in [4]. The basic algorithm is shown in Figure 1.
The function normalise acdtr(T ,CC) normalises some term T with respect to
the current CC and some compiled version of the program. For the initial goal
CC = ∧, i.e. an empty conjunction. Normalisation works in two parts: the first
part handles conjunction and the second part handles all other terms.
2 The original ACDTR [4] semantics also included a generalisation of propagation

rules. However, these are not implemented in Cadmium.

Cadmium: An Implementation of ACD Term Rewriting 535

normalise acdtr(T ,CC)
if T = ∧(. . .) /* Conjunction */

Acc := T
repeat

let Acc = ∧(T1, . . . , Tn)
Acc := ∧
rulefired := false
forall 1 ≤ i ≤ n

CC′ := flatten(∧(Acc, Ti+1, . . . , Tn, CC))
Ui := normalise acdtr(Ti,CC′)
if (Ui = Ti) rulefired := true
Acc := flatten(Acc ∧ Ui)

until not rulefired
return call ∧(Acc, CC)

if T = f(T1, . . . , Tn) /* Other terms */
forall 1 ≤ i ≤ n

Ui := normalise acdtr(Ti,CC)
if isAC(f)

U := flatten(f(U1, . . . , Un))
return call f(U, CC)

else return call f(U1, . . . , Un, CC)
else

return T

Fig. 1. Basic ACDTR normalisation algorithm

To begin with, let us consider the second part, which implements basic nor-
malisation for AC term rewriting using a strict evaluation strategy. To normalise
a (non-conjunction) term T = f(T1, . . . , Tn), we first normalise each argument
T1, . . . , Tn to U1, . . . , Un respectively, and then normalise U = f(U1, . . . , Un) by
calling a compiled procedure call f that applies any rule that matches f/n terms,
or returns U if no such rule exists. Details about the compiled procedures can
be found in Section 4.

The calling conventions for AC and non-AC operators are different. For the
AC case, the term U = f(U1, . . . , Un) must be created and flattened before the
procedure call f is called. The idea behind flattening is to represent a nested
binary AC expression as a “flat” n-ary term. For example, the equivalent AC
terms (1+2)+3 and 1+(2+3) are represented as +(1, 2, 3) in flattened form. As
with the binary-+, the n-ary + is also commutative, i.e. +(. . . , Ui, . . . , Uj, . . .) ≡
+(. . . , Uj , . . . , Ui, . . .). The motivation for flattening is to simplify the AC match-
ing implementation (see [8] for a more detailed discussion). For the rest of the
paper, we may switch between binary and flattened notation for AC terms when-
ever convenient.

Conjunction is normalised differently from other (AC) terms. A conjunction
T = ∧(T1, ..., Tn) is normalised over several passes by the repeat loop, which
works as follows. The let matching is assumed to return all conjuncts T1,. . . ,Tn

of Acc, where Acc is initially set to T (the input conjunction), and to the

536 G.J. Duck, L. De Koninck, and P.J. Stuckey

accumulated result from the previous pass of the repeat loop in all further
passes. For each pass, this may be a different set. Next Acc and rulefired are
initialised, followed by the forall loop, which normalises each conjunct Ti of T
with respect to CC′, which is CC extended by all other conjuncts of T excluding
Ti. The new conjuncts Ui are accumulated into variable Acc. One complication is
that each Ui may itself be a conjunction, so flatten is used to ensure Acc remains
in flattened form. We also compare the old Ti against its normalised version Ui.
If there is a difference, then a rule has fired, and rulefired is set to true, which
ensures another pass of the repeat loop. Note that the Cadmium implementation
tracks rule firings explicitly rather than actually comparing (potentially large)
terms. Finally, once Acc has reached a fixed point, i.e. ¬rulefired holds, the pro-
cedure call ∧ is run. Each pass of the repeat-loop is referred to as a conjunction
pass.

The intuition behind the normalise acdtr algorithm is as follows. If a Ti changes
to a Ui, then the CC of all Tj where j �= i has also changed – i.e. the CC
contained Ti but now contains Ui. The next pass of the repeat loop ensures
each Tj is woken-up with respect to the up-to-date CC containing Ui. Here, the
terminology wake-up means a conjunct is renormalised with a new CC in the
next conjunction pass.

Example 6 (Early Application). Consider the program and goal G1 from Exam-
ple 4. The first pass of the normalise acdtr algorithm is (1) A with CC A=pass
is rewritten to pass (early application), then (2) A=pass (with CC pass) is
rewritten to A=true. After the first pass the conjunction Acc is pass ∧ A=true.

Since a rule has fired, the conjunction is normalised again. This time (3) pass
(with CC A=true) is rewritten to true, then (4) A=true (with CC true) remains
unchanged. After the second pass the conjunction Acc is true ∧ A=true. Since
again a rule has fired, the conjunction is renormalised once more. This time no
rule fires, since the conjunction is already in normal form. The ¬rulefired test
succeeds, and true ∧ A=true is ultimately returned. �

Example 7 (Early Failure). Consider the program and goal G2 from Example 4.
The normalise acdtr algorithm works as follows: (1) A with CC eq(A,true) re-
mains unchanged (early failure), then (2) eq(A,true) (with CC A) is rewritten
to A=true. After the first pass the conjunction Acc is A ∧ A=true.

Since a rule has fired, the conjunction is normalised again. This time (3) A
with CC A=true is rewritten to true, then (4) A=true (with CC true) remains
unchanged. After the second pass the conjunction Acc is true ∧ A=true. An-
other pass is tried, but since the conjunction is already in normal form, no more
rewrites take place, and true ∧ A=true is returned. �

3 Improved Normalisation

Algorithm normalise acdtr is relatively simple and was used in earlier versions of
the Cadmium implementation. However, the algorithm is still very “coarse” in
the sense that any change of a conjunct results in the entire conjunction being
processed again. Clearly this is sub-optimal, as it is probable that some changes

Cadmium: An Implementation of ACD Term Rewriting 537

in the CC do not affect the normalisation status of other conjuncts. An extreme
example of this situation occurs when all rules in a program are simplification
rules, and thus do not depend on the CC at all. In this case, conjunction can
be treated the same as any other AC functor, hence only one pass is required to
ensure a normal form.

Even if the program contains simpagation rules, the number of conjuncts that
need to be woken-up per pass can often be reduced.

Example 8 (Early Failure). For example, consider the following rule that sim-
plifies less-than constraints if the negation greater-than is present in the CC.

X > Y \ X < Y <=> false.

Suppose that the goal is A<B ∧ f(A,B). Clearly the normal form of the A<B
conjunct only depends on the presence/absence of A>B in its CC.

During the initial conjunction pass of normalise acdtr, conjunct A<B will not
be rewritten because A>B does not appear in the CC (i.e. early failure). Then
A<B will only need to wake-up iff a A>B term is subsequently added to the CC.
Any other change to the CC can be safely ignored, since this would not affect
the applicability of the above rule. �
By definition, early failure means a conjunct C is not rewritten because some
term T was not in its CC. Thus, we only need to wake-up C if a suitable T
is subsequently added to C’s CC. Likewise, a wake-up for early application is
sometimes not necessary.

Example 9 (Early Application). Consider the following rules for Zinc expression
manipulation in Cadmium.
decl(T,X) /\ decl(T,Y) /\ decl(T,Z) \ X*(Y+Z) <=> X*Y+X*Z.
int <=> float.

Here, decl(T,V) encodes a Zinc variable declaration, where T is the type and
V is the variable. Consider the goal
A*(B+C) ∧ decl(int,A) ∧ decl(int,B) ∧ decl(int,C)

During the first conjunction pass, conjunct A*(B+C) is rewritten to A*B+A*Cwith
the reaminder of the goal as CC. The CC is not in normal form since subterm(s)
int are not in normal form, hence this is a case of early application.

However, A*B+A*C is in normal form and therefore does not need to be woken-
up again. This is because the rule body depended only on program variables also
appearing in the rule head, i.e. X, Y, and Z, but not T. Therefore if X, Y, and Z
are in normal form, the new term A*B+A*C will also be in normal form. �
The basic idea of the refined algorithm is to only wake up conjuncts if there is
actually a need to do so.

Events and Wake-up Conditions. Wake-up conditions are conditions asso-
ciated to conjuncts in conjunctions. An event declares that a wake-up condition
has become satisfied. During normalisation, if an event occurs satisfying a wake-
up condition, then any associated conjunct will be woken-up during the next
conjunction pass.

538 G.J. Duck, L. De Koninck, and P.J. Stuckey

normalise cadmium(T ,Curr,CC)
if T = ∧(. . .)

Acc := T
repeat

let Acc = ∧(T1, . . . , Tn)
Acc := ∧
Prev := Curr ∪ {redo}
Curr := ∅
forall 1 ≤ i ≤ n

if wakeup conds(Ti) ∩ Prev = ∅
CC′ := flatten(∧(Acc, Ti+1, . . . , Tn, CC))
Ui := normalise cadmium(Ti,∅,CC′)
if (Ui = Ti) Curr := createtop(Ui) ∪ Curr
Acc := flatten(Acc ∧ Ui)

else Acc := flatten(Acc ∧ Ti)
until Curr = ∅
return call ∧(Acc, CC)

if T = f(T1, . . . , Tn) . . . /* As in Figure 1 */

Fig. 2. Improved normalisation algorithm from the Cadmium implementation

The Cadmium implementation uses the following wake-up conditions:

Case Condition/Event
Early Application redo
Early Failure create(f/a)

Condition redo means that the conjunct is always to be woken-up during the
next pass. It will be associated to a conjunct C if C is not in normal form due to
early application. Early application does not always result in a redo condition,
as was the case in Example 9. Condition create(f/a) means that the conjunct
will be woken-up if some term with functor/arity f/a is added to the CC. This
condition is useful for early failure. For example, in Example 8, the conjunct A<B
needs to be woken up if a A>B term is added to its CC. We can approximate this
precise condition with a create(>/2)wake-up condition. In general, determining
the precise conditions is undecidable, so some approximation is always required.

The improved algorithm is described in Figure 2. This version is called nor-
malise cadmium because it is the actual normalisation algorithm used by the
Cadmium implementation. The main difference between this version and the
previous algorithm is the tracking of events and wake-up conditions. Prev and
Curr are sets of events. Prev contains all events that occurred during the previ-
ous pass and a redo event. Each new pass generates this event. Curr accumulates
the events that occur during the current pass. Note that initially Curr is an ar-
gument to normalise cadmium. For now, we can assume that the value passed in
through Curr is always the empty set. This will change later in Section 4.

The function wakeup conds(Ti) returns the set of wake-up conditions asso-
ciated to a given conjunct Ti. If Ti has not been normalised yet (i.e. in the
initial pass), then its set of wake-up conditions is assumed to be {redo}. If Ti is

Cadmium: An Implementation of ACD Term Rewriting 539

subsequently normalised to Ui, then the wake-up conditions for Ui are roughly
determined as follows:

1. Early Application: If an early application resulted in an unnormalised sub-
term of Ui, then redo ∈ wakeup conds(Ui).

2. Early Failure: If a simpagation rule (C\H ⇐⇒ G|B) failed to fire on some
subterm S of Ti, and S also appears in Ui, then

{create(f1/a1), . . . , create(fn/an)} ⊆ wakeup conds(Ui)

where the fi/ai are the functor/arity pairs of the conjuncts in C.

Note that wake-up conditions propagate upwards, i.e. if the normalisation of
some subterm S of Ti generates a wake-up condition C, then C is propagated
upwards and attached to Ui. For nested conjunctions, C will be propagated
upwards to every conjunct S appeared in. The exact mechanism for generating
wakeup conditions is the role of the Cadmium compiled code, i.e. in the call f
procedures. This will explained in Section 4.2.

Wake-up conditions are used to prevent unnecessary renormalisation during
the second or later conjunction passes. Conjunct Ti will only wake-up if there
exists an event in Prev that is also present in wakeup conds(Ti). Otherwise, the
conjunct is already in normal form, and the old value can be used.

If a conjunct Ti is renormalised to Ui where Ti �= Ui, the call createtop(Ui)
will generate an appropriate set of create events. If Ui = ∧(V1, . . . , Vn), then
createtop(Ui) generates {create(f1/a1), . . . , create(fn/an)}, where f1/a1, . . . ,
fn/an are the functor/arities of V1, . . . , Vn. Otherwise, if Ui = g(W1, . . . ,Wn)
where g �= ∧, then createtop(Ui) generates the singleton set {create(g/n)}.
The generated events are accumulated into Curr and used as Prev during the
next pass.

Example 10. Consider the following three rule program.

(1) X > Y \ X < Y <=> false.
(2) gt(X,Y) <=> X > Y.
(3) h() \ f(X) <=> g(X).

Rule (1) is the rule from Example 8. Rule (2) rewrites an auxiliary term into a
>/2 term. Rule (3) is an artificial rule which depends on the CC.

Consider the execution of the goal term: h(1) ∧ wrap(f(x<y) ∧ gt(x,y)).
There are two levels of nested conjunction, with the inner conjunction inside the
wrap/1 term. Assume execution proceeds from left-to-right. First h(1) is nor-
malised and remains unchanged. Next the wrap/1 term and the inner conjunction
are normalised. The inner conjunct f(x<y) is normalised first. As normalisation
proceeds bottom-up, the following wake-up conditions are generated:

1. Subterm x<y could potentially fire Rule (1), given a x>y term in the CC.
Thus a create(>/2) waking condition is generated for this term.

2. Term f(x<y) fires rule (3) to give g(x<y). Since the body is independent of
the CC, no redo waking condition needs to be generated for this term.

540 G.J. Duck, L. De Koninck, and P.J. Stuckey

Thus, the set of waking conditions attached to the first inner conjunct g(x<y)
is {create(>/2)}.

Next, the second inner conjunct gt(x,y) is normalised to x>y. This generates
a create(>/2) event, which is recorded in Curr, but no wake-up conditions are
recorded for this term. The intermediate result after the first pass is: h(1) ∧
wrap(g(x<y) ∧ x>y).

In the second pass, the inner conjunct g(x<y) is renormalised to g(false),
since the attached wake-up condition create(>/2) matches an event that oc-
curred during the previous pass. The second inner conjunct, x>y, will not be
woken up since it has no wake-up conditions. Normalisation proceeds without
any more rule applications, thus the final result is: h(1) ∧ wrap(g(false) ∧
x > y). �

4 Implementation

In this section we discuss some details about the Cadmium implementation.
The current Cadmium implementation compiles rules of the form (C \H ⇐⇒

B) into a low-level byte-code for a simple virtual machine. There are two parts
to compilation: compiling the matching (C \ H), and compiling the body B.

Matching. Matching in Cadmium is similar to matching in any other declara-
tive programming language, such as Prolog. For example, the rule (f(g(X,Y),h)
<=> ...) can be compiled directly into a Prolog clause (call f(g(X,Y),h) :- !,
...) that uses Prolog unification for matching. The cut is necessary since Cad-
mium rules are committed choice.

Compiling AC matching is somewhat more complicated, as it involves non-
deterministically trying combinations of matchings – i.e. the different permu-
tations of the arguments of an AC term. This can be implemented in Prolog
as backtracking search. CC matching is essentially the same as AC matching,
except we match against the accumulated CC rather than a term matching the
rule head.

Body. The simplest version of rule body compilation is to call the Cadmium nor-
malisation procedure. For example, given (f(X,Y,Z) <=> g(h(X,Y),a(1,Z)))
then the compiled rule in Prolog is

call f(X,Y,Z,Ret) :- !, normalise(g(h(X,Y),a(1,Z)),Ret)

where normalise implements the Cadmium normalisation algorithm. This will
cause each term matching X, Y, Z to be renormalised again, which is inefficient.

A better (and more standard) approach is to eliminate all calls to the normalise
procedure by iteratively unfolding its application, and to substitute matching vari-
ables directly rather than renormalising them. For example, after one unfolding
step we have:

normalise(g(h(X,Y),a(1,Z))) ≡ call g(normalise(h(X,Y)),normalise(a(1,Z)))

After completely unfolding normalise, the rule code becomes:

call f(X,Y,Z,Ret) :- !, call h(X,Y,RH), call a(1,Z,RA), call g(RH,RA,Ret).

Cadmium: An Implementation of ACD Term Rewriting 541

4.1 Compiling Conjunction in the Body

Compiling conjunction in the rule body is the same as before, i.e. iterative un-
folding of the call to the normalise procedure. However, because of CC, the
normalise procedure cannot be unfolded any deeper than any top-most con-
junction appearing in the rule body. For example, consider the rule:

f(X,Y) <=> g(X) /\ f(Y).

According to the Cadmium normalisation algorithm, g(X) and all of its subterms
must be (re)normalised with f(Y) in the CC, and vice versa. Therefore, unfolding
normalise directly will not work, i.e.,

normalise(g(X)∧f(Y)) ≡ call ∧(normalise(g(X)),normalise(f(Y)))

since the latter does not handle CC correctly.
The basic approach for handling conjunctions is to unfold normalise as much

as possible, but stopping at the top-most conjunction. This conjunction is simply
constructed, then passed to normalise to be executed as if it were a fresh goal.
For example, the compiled version of the above rule is:

call f(X,Y,Ret) :- !, C1 = g(X), C2 = f(Y), wakeup on(redo,C1),
wakeup on(redo,C2), normalise(C1 /\ C2,Ret).

This clause constructs g(X) /\ f(Y) and passes it to normalise. The built-in
wakeup on/2 attaches a redo wake-up condition to each conjunct to force nor-
malisation via wake-up. Without the redo, normalise will skip each conjunct.

Conjunction Collector Optimisation. Under the basic approach, each con-
junct in a rule body is completely (re)normalised again, which in some cases is
inefficient. However, sometimes we can avoid wake-up in a rule body. Consider
the following rule from the MiniZinc to FlatZinc mapping [6,2]:

cons(X) /\ cons(Y) /\ Z <=> cons(X /\ Y) /\ Z.

Here cons(X) represents a Zinc constraint item (constraint X). The body of
the rule contains two conjuncts: cons(X /\ Y) and Z. In this rule, Z will always
match a conjunction – i.e. the “rest” of the conjunction matching the rule head
minus cons(X) and cons(Y). Furthermore, thanks to bottom-up evaluation, Z
must already be normalised, so each conjunct in Z already has a set of wake-up
conditions attached to it. We can use these tighter wake-up conditions instead
of attaching a redo condition as was the case above. This can potentially avoid
a lot of unnecessary renormalisation.

Example 11. Consider the constraint item collection rule from above. When this
rule is applied, the CC of the conjuncts in Z remains unchanged save for the
removal/addition of some cons/1 terms. Therefore, only the conjuncts with a
create(cons/1) wake-up condition need be renormalised.

542 G.J. Duck, L. De Koninck, and P.J. Stuckey

The optimised code of the constraint item collection rule is:

call /\(Conj,Ret) :- /* Code for matching */ !,
C1 = cons(X /\ Y), wakeup on(redo,C1),
normalise(C1 /\ Z,[create(cons/1)],Ret).

Notice that (1) there is no redo wake-up condition attached to Z, and (2) we
now pass the initial event create(cons/1) to the normalise procedure, since
a new cons/1 term was added to the conjunction. This will cause any conjunct
with a create(cons/1) in Z to be renormalised as expected. �

4.2 Generating Wake-Up Conditions

In this section we explain how wake-up conditions are generated in the compiled
code. This depends on the type of condition being generated.

Wake-up Condition redo: The normalise cadmium algorithm returns either
a normalised term, or an unnormalised term because of early application. In
the latter case, a redo wake-up condition must be generated to ensure overall
completeness after subsequent passes of the super conjunctions.3 A redo wake-
up condition is therefore needed when the body B from a rule (C\H ⇐⇒ G|B)
contains a variable X such that X is also in C, but not in H . Note that if X
also appears in H , then because X was processed before its super term H , we
can assume X is in normal form, or redo has already been generated.

Example 12. Consider the following rules:

X > Y \ X < Y <=> false.
X = Y \ X <=> var(X) | Y.
decl(T,X) /\ decl(T,Y) /\ decl(T,Z) \ X*(Y+Z) <=> X*Y+X*Z.

from Examples 8, 4, and 9 respectively. The body of the first rule does not
contain any variables, thus is independent of the CC. The body of the second
rule does depend on the CC through variable Y. The body of the third rule
shares variables X, Y, and Z with the CC; however these variables also appear
in the rule head. Therefore, only the second rule is required to generate a redo
wake-up condition. The code for the second rule is therefore:

call var(X,Ret) :- /* Matching */, !, wakeup lift([redo]), Ret = Y.

Here, the call wakeup lift(C) lifts wake-up conditions C to any conjunct con-
taining the term matching X. �

Wake-up Condition create: The create wake-up conditions are generated
after all rules for a particular term fail to match. The compiler assumes that any
simpagation rule matching failure is caused by early failure.

3 Early application implies there is at least one super conjunction, since otherwise the
CC will be empty.

Cadmium: An Implementation of ACD Term Rewriting 543

Bench. Maude Cadmium

qsort(216) 1.12s 1.20s
qsort(343) 6.37s 6.74s
msort(729) 4.27s 4.28s
msort(1000) 12.56s 11.64s
bsort(240) 1.65s 1.78s
bsort(360) 7.67s 8.52s
rev 0.83s 1.25s
taut hard(2) 0.13s 3.84s
taut hard(3) 0.36s 37.82s
perm(8) 0.38s 0.27s
perm(9) 6.79s 3.71s

(a) Maude vs. Cadmium

Bench. −events +events

queens(8) 2.61s 2.74s
queens(9) 40.70s 43.69s
cnf conversion(19) 11.07s 9.36s
cnf conversion(20) 15.42s 12.97s
substitution(22) 1.54s 0.92s
substitution(23) 3.13s 2.04s
warehouses.mzn 5.14s 0.57s
langford.mzn >300s 33.42s
packing.mzn 0.96s 0.23s
timetabling.mzn 9.19s 0.76s
radiation.mzn 37.58s 2.47s
Geom. mean5 6.57s 36.76%

(b) Cadmium ±events

Fig. 3. Experiments comparing the run-time performance of Cadmium

Example 13. Consider the following program which contains two rules for f/2.

g(X) \ f(X,Y) <=> i(Y). g(Y) /\ h(Y,Y) \ f(1,Y) <=> Y.

Consider the compiled version of this program, where procedure call f checks
these rules. If both rules fail to match, then call f will simply construct the
f/2 term, but will also generate the appropriate create wake-up conditions:

· · · /* Code for rules 1-2. */
call f(X,Y,Ret) :- !, wakeup lift([create(g/1),create(h/2)]), Ret = f(X,Y).

In general this approach is an over-approximation. For example, call f(2,Y)
will never apply the second rule. However the compiler still assumes early failure
has occurred, and generates a create(h/2) wake-up condition accordingly. This
may result in some unnecessary wake-ups.

5 Experiments

Cadmium is part of the G12 project [10]. Its main application is mapping Zinc
models, represented as terms, into various solver-dependent back-ends and/or to
FlatZinc [6].

Two sets of benchmarks are tested.4 The first set in Figure 3(a) compare
Cadmium versus the Maude 2.3 system [3]. The second set in Figure 3(b) com-
pare the Cadmium implementation using normalisation with/without events. All
timings are an average over 10 runs on an Intel E8400 clocked at 3.6GHz.

The benchmarks from Figure 3(a) originate from the second Rewriting En-
gines Competition [7]. Note that the remaining examples from [7] could not be

4 Benchmarks are available at http://www.cs.mu.oz.au/∼gjd/download/iclp2008.
tar.gz

http://www.cs.mu.oz.au/~gjd/download/iclp2008.
tar.gz

544 G.J. Duck, L. De Koninck, and P.J. Stuckey

used for various reasons, e.g. running too fast/slow on both systems, or test-
ing confluence (not supported in Cadmium). The benchmarks show that Cad-
mium is competitive compared to an established implementation on pure (AC)
term rewriting problems. The exception is taut hard, where Cadmium is slower
than Maude, because of differences in the implementation of AC indexing. The
taut hard causes worst-case behaviour for Cadmium’s AC index structures. For
the perm benchmark, which also uses AC matching, Cadmium improves upon
Maude. Note that none of these benchmarks use CC matching, hence the CC
optimisations shown in Figure 3(b) are not applicable here.

To test CC normalisation with/without events the benchmarks are as follows:
Benchmark queens(n) finds all solutions to the n-queens problem. Benchmark
cnf conversion(n) converts the following Boolean formula into conjunctive
normal form

∧n
i=1
∨n

j=i+1 xi ⊕ xj . using a generic CNF conversion algorithm.
Benchmark substitution(n) applies the substitution rule (Example 4) to the
conjunction:

∧n
i=1 Xi = [Xi+1,...,Xn] /\ f(Xi). Finally, the ∗.mzn benchmarks

test MiniZinc to FlatZinc flattening in Cadmium [6]. These benchmarks are the
most important, since they are a “real-world” Cadmium application doing what
Cadmium was intended to do – i.e. rewrite (Mini)Zinc models. Note that the map-
ping used is further developed than earlier versions appearing in [6,2].

Figure 3(b) compares Cadmium normalisation without events (−events) ver-
sus with events (+events). Overall, normalisation with events is significantly
better, with a 63% improvement.5 The MiniZinc flattening benchmarks showed
the largest gains. This is especially true for langford.mzn, where the −events
version is too slow to be practical. On the other hand, the queens benchmarks
were better off without events. In this case, the +events version avoided almost
no wake-ups, so the extra overhead of tracking events causes a slow-down.

6 Related Work and Conclusions

Cadmium is a powerful rewriting language that implements rewriting based on
non-local information in the form of Conjunctive Context. However, CC com-
plicates any potential Cadmium normalisation algorithm, since the CC must
be distributed to everywhere it is used. Furthermore, there are no guarantees
the context itself is normalised, so traditional bottom-up evaluation strategies
do not work. We have presented a normalisation algorithm based on waking-up
conjuncts whose context may have changed in a way that affects rule appli-
cation. By tracking wake-up conditions and events, renormalisation because of
context changes can be significantly decreased. Experiments show speed-ups in
real-world Cadmium applications such as Zinc model flattening.

There exist several other implementations of term rewriting, such as Maude [3],
and others. Like Cadmium, matching modulo AC is a standard feature. The main
difference between Cadmium and other implementations is the native support for
CC normalisation.

5 Excluding langford.mzn.

Cadmium: An Implementation of ACD Term Rewriting 545

Unification (and therefore matching) modulo distribution, i.e. x ∗ (y + z) =
x∗y+x∗z, has also been studied, e.g. in [9]. However, this work is not relevant to
CC-distribution, which is based on a different axiom, e.g. x∧f(y) = x∧f(x∧y).

For future work we intend to further improve the performance of Cadmium.
We believe it is possible to refine the normalisation algorithm further, i.e. to avoid
even more wake-ups by refining events, and to specialise the renormalisation that
occurs during wake-up.

References

1. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge Univ. Press, Cam-
bridge (1998)

2. Brand, S., Duck, G.J., Puchinger, J., Stuckey, P.J.: Flexible, Rule-based Con-
straint Model Linearisation. In: Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS,
vol. 4902, pp. 68–83. Springer, Heidelberg (2008)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The Maude 2.0 System. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003)

4. Duck, G.J., Stuckey, P.J., Brand, S.: ACD Term Rewriting. In: Etalle, S.,
Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 117–131. Springer, Hei-
delberg (2006)

5. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming 37, 95–138 (1998)

6. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
Towards a Standard CP Modelling Language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

7. Rewriting Engines Competition,
http://www.lcc.uma.es/∼duran/rewriting competition/

8. Eker, S.M.: Associative-Commutative Matching Via Bipartite Graph Matching.
Computer Journal 38(5), 381–399 (1995)

9. Schmidt-Schauß, M.: Decidability of Unification in the Theory of One-Sided Dis-
tributivity and a Multiplicative Unit. Journal of Symbolic Computation 22(3),
315–344 (1997)

10. Stuckey, P.J., Garćıa de la Banda, M., Maher, M., Marriott, K., Slaney, J., Somogyi,
Z., Wallace, M., Walsh, T.: The G12 project: Mapping solver independent models to
efficient solutions. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668,
pp. 9–13. Springer, Heidelberg (2005)

http://www.lcc.uma.es/~duran/rewriting_competition/

Quantified Equilibrium Logic and Foundations for
Answer Set Programs

David Pearce1,∗ and Agustı́n Valverde2,�

1 Universidad Rey Juan Carlos, Madrid, Spain
davidandrew.pearce@urjc.es

2 Universidad de Málaga, Málaga, Spain
a valverde@ctima.uma.es

Abstract. QHT is a first-order super-intuitionistic logic that provides a foun-
dation for answer set programming (ASP) and a useful tool for analysing and
transforming non-ground programs. We recall some properties of QHT and its
nonmonotonic extension, quantified equilibrium logic (QEL). We show how the
proof theory of QHT can be used to extend to non-ground programs previous
results on the completeness of θ-subsumption. We also establish a reduction of
QHT to classical logic and show how this can be used to obtain and extend
classical encodings for concepts such as the strong equivalence of programs and
theories. We pay special attention to a class of general (disjunctive) logic pro-
grams that capture all universal theories in QEL.

1 Introduction

Answer set programming (ASP) [1] is now becoming an established paradigm of logic-
based, declarative programming with promising applications in areas such planning,
diagnosis, information management, program verification, logical agents, Web reason-
ing and others. Until now ASP solvers have reduced programs with variables to the
propositional case by a costly grounding or instantiation process. However, it is likely
that future generation systems will operate directly at the first-order level as in tradi-
tional logic programming. In particular, formal methods will need to be developed that
will provide for program transformation and optimisation and will delay or virtually
eliminate the grounding process. Already, there is considerable interest in foundational
concepts and methods for non-ground programs, see eg. [2,3,4,5,6].

There are two viable approaches to developing such formal methods. One of them
is direct and based on a logical system called quantified here-and-there logic, QHT,
and its non-monotonic extension quantified equilibrium logic, QEL. Its close relation to
non-ground logic programs under answer set semantics has been studied in [7,8,9,10].
Since this is the logic that determines when programs are strongly equivalent or inter-
changeable in any context, it guarantees robust, semantics-preserving transformations.

� We gratefully acknowledge support from the Spanish MEC (now MCI) under the projects
TIN2006-15455-CO3 and Agreement Technologies, Consolider CSD2007-00022, and the
Junta de Andalucia, project P6-FQM-02049. We would also like to thank the anonymous ref-
erees for helpful comments that we hope have led to improvements in the paper.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 546–560, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Quantified Equilibrium Logic and Foundations for Answer Set Programs 547

A second approach to ASP foundations is more indirect and involves classical logic.
Its primary advantage is its familiarity, its wealth of results and its suitability for rapid
prototyping. Its drawback is that it lies one level removed from the action. We first
have to translate and manipulate expressions before we obtain relevant representations
in classical logic that in some cases could have been obtained in simpler fashion using
QHT. This can sometimes add an ad hoc flavour to the modelling and make it hard to
understand why a given representation works correctly.

The present paper has four main parts. In the first (§2) we recall the main features
of QHT and QEL and their relevance for ASP foundations; and we show how a class
of general logic programs can capture any universal theory in QEL. In the next section
we illustrate how QHT can be applied to an important topic in ASP foundations, that
of rule redundancy in programs, previously studied for the non-ground case in [2,11,3].
We show how to capture a general form of rule redundancy, θ-subsumption, and extend
a subsumption result of [12] to the first-order case. In Section 4 we show how classical
logic can be applied (indirectly) in ASP in virtue of a reduction relation that can be
established from QHT to classical logic. This extends the reduction of propositional
here-and-there logic studied in [13] and it yields an easy method of implementing a
prototype QHT theorem prover. Lastly, in Section 5 we show how this reduction tech-
nique can be used to derive some classical encodings of key properties and concepts in
ASP, from that of stable model in the sense of [4] to that of strong equivalence and its
complexity, studied in [14].

2 Review of Quantified Equilibrium Logic and Answer Sets

For the propositional version of the logic HT of here-and-there and an overview of
propositional equilibrium logic, see [15]. We denote by |=HT the deduction relation for
HT. Usually in quantified equilibrium logic we consider a full first-order language al-
lowing function symbols and we include a second, strong negation operator as occurs in
several ASP dialects. In this paper we shall restrict attention to the function-free language
with a single negation symbol, ‘¬’. In particular, we shall work with a quantified version
of the logic HT of here-and-there. In other respects we follow the treatment of [10].

For the remainder of the paper we consider function-free first order languages L =
〈C,P 〉 built over a set of constant symbols, C, and a set of predicate symbols, P .
The sets of L-formulas, L-sentences and atomic L-sentences are defined in the usual
way. We work here with sentences. If D is a non-empty set, we denote by AtD(C,P)
the set of ground atomic sentences of L′ = 〈C ∪ D,P 〉 ie. the extension of L with
additional constant symbols for each element of D. By an L-interpretation I over a
set D we mean a subset I of AtD(C,P). A classical L-structure can be regarded as
a tuple M = 〈(D,σ), I〉 where I is an L-interpretation over D. On the other hand,
a here-and-there L-structure with static domains, or QHTs(L)-structure, is a tuple
M = 〈(D,σ), Ih, It〉 where

– D is a non-empty set, called the domain of M.
– σ is a mapping: C ∪ D → D called the assignment such that σ(d) = d for all
d ∈ D. If D = C and σ = id, M is a Herbrand structure.

– Ih, It are L-interpretations over D such that Ih ⊆ It.

548 D. Pearce and A. Valverde

Thus we can think of a here-and-there structureM as similar to a first-order classical
model, but having two parts, or components, h and t that correspond to two different
points or “worlds”, ‘here’ and ‘there’, in the sense of Kripke semantics for intuitionistic
logic [16], where the worlds are ordered by h ≤ t. At each worldw ∈ {h, t} one verifies
a set of atoms Iw in the expanded language for the domain D. We call the model static,
since, in contrast to say intuitionistic logic, the same domain serves each of the worlds.
Since h ≤ t, whatever is verified at h remains true at t. The satisfaction relation for
M is defined so as to reflect the two different components, so we write M, w |= ϕ
to denote that ϕ is true in M with respect to the w component. Evidently we should
require that an atomic sentence is true atw just in case it belongs to thew-interpretation.
Formally, if p(t1, . . . , tn) ∈ AtD then

M, w |= p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ Iw. (1)

Then |= is extended recursively as follows1:

– M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ.
– M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ.
– M, t |= ϕ→ ψ iff M, t �|= ϕ or M, t |= ψ.
– M, h |= ϕ→ ψ iff M, t |= ϕ→ ψ and M, h �|= ϕ or M, h |= ψ.
– M, w |= ¬ϕ iff M, t �|= ϕ.
– M, t |= ∀xϕ(x) iff M, t |= ϕ(d) for all d ∈ D.
– M, h |= ∀xϕ(x) iff M, t |= ∀xϕ(x) and M, h |= ϕ(d) for all d ∈ D.
– M, w |= ∃xϕ(x) iff M, w |= ϕ(d) for some d ∈ D.

Truth of a sentence in a model is defined as follows:M |= ϕ iff M, w |= ϕ for each
w ∈ {h, t}. A sentence ϕ is valid if it is true in all models, denoted by |= ϕ. A sentence
ϕ is a consequence of a set of sentences Γ , denoted Γ |= ϕ, if every model of Γ is a
model of ϕ. In a modelM we also use the symbols H and T , possibly with subscripts,
to denote the interpretations Ih and It respectively; so, an L-structure may be written
in the form 〈U,H, T 〉, where U = (D,σ).

The resulting logic is called Quantified Here-and-There Logic with static domains,
and denoted in [5] by QHTs. In terms of satisfiability and validity this logic is equiv-
alent to the logic previously introduced in [8]. To simplify notation we drop the super-
script ‘s’ and refer to this logic simply as quantified here-and-there, QHT.

A complete axiomatisation of QHT can be obtained as follows [5]. We take the
axioms and rules of first-order intuitionistic logic [16] and add the axiom of Hosoi

α ∨ (¬β ∨ (α→ β))

which determines 2-element here-and-there models in the propositional case, together
with the axiom:

∃x(α(x) → ∀xα(x)).

In the context of logic programs, the following assumptions often play a role. In the
case of both classical and QHT models, we say that the parameter names assumption

1 The following corresponds to the usual Kripke semantics for intuitionistic logic given our
assumptions about the two worlds h and t and the single domain D, see e.g. [16].

Quantified Equilibrium Logic and Foundations for Answer Set Programs 549

(PNA) applies in case σ|C is surjective, i.e., there are no unnamed individuals in D;
the unique names assumption (UNA) applies in case σ|C is injective; in case both the
PNA and UNA apply, the standard names assumption (SNA) applies, i.e. σ|C is a bijec-
tion. In the following, we will speak about PNA-, UNA-, or SNA-models, respectively,
depending on σ.

Equilibrium Models. As in the propositional case, quantified equilibrium logic is
based on a suitable notion of minimal model.

Definition 1. Among QHT-structures over a given language we define the order �
by: 〈(D,σ), H, T 〉 � 〈(D′, σ′), H ′, T ′〉 if D = D′, σ = σ′, T = T ′ and H ⊆ H ′. If
the subset relation is strict, we write ‘�’.

Definition 2. Let Γ be a set of sentences and M = 〈(D,σ), H, T 〉 a model of Γ . M
is said to be total if H = T . M is said to be an equilibrium model of Γ if it is minimal
under � among models of Γ , and it is total.

Notice that a total QHT model of a theory Γ is equivalent to a classical first order
model of Γ .

Answer Set Semantics. We consider a general form of non-ground disjunctive logic
programs where negation is allowed in both rule heads and bodies, interpreted under
the answer set semantics [17].2 A general program Π consists of a set of rules of the
form

a1 ∨ a2 ∨ . . . ∨ ak ∨ ¬ak+1 ∨ . . . ∨ ¬al ← b1, . . . , bm,¬bm+1, . . . ,¬bn (2)

where ai (i ∈ {1, . . . , l}) and bj (j ∈ {1, . . . , n}) are atoms, called head (body, respec-
tively) atoms of the rule, in a function-free first-order language L = 〈C,P 〉 without
equality. CΠ ⊆ C is the set of constants which appear in Π . Rules where each variable
appears in b1, . . . , bm are called safe. A program is safe if all its rules are safe. An (or-
dinary) disjunctive program is one whose rules contain no occurrences of negation in
the head, ie. where k = l in (2).

The grounding grU (Π) of Π wrt. a universe U = (D,σ) denotes the set of all rules
obtained as follows: For r ∈ Π , replace (i) each constant c appearing in r with σ(c)
and (ii) each variable with some element in D. Observe that thus grU (Π) is a ground
program over the atoms in AtD(C,P).

For a ground program Π and first-order structure I the reduct ΠI consists of rules

a1 ∨ a2 ∨ . . . ∨ ak ← b1, . . . , bm

obtained from all rules of the form (2) in Π for which I |= ai for all k < i ≤ l and
I �|= bj for all m < j ≤ n.

Answer set semantics is usually defined in terms of Herbrand structures over L =
〈C,P 〉. Herbrand structures have a fixed universe, the Herbrand universe H = (C, id),
where id is the identity function. For a Herbrand structure I = 〈H, I〉, I can be viewed

2 We follow here largely the exposition from [18].

550 D. Pearce and A. Valverde

as a subset of the Herbrand base, B, which consists of the ground atoms of L. Note
that by definition of H, Herbrand structures are SNA-structures. A Herbrand structure
I is an answer set [17] of Π if I is subset minimal among the structures satisfying
grH(Π)I . Two variations of this semantics, the open [19] and generalised open answer
set [20] semantics, consider open domains, thereby relaxing the PNA. An extended
Herbrand structure is a first-order structure based on a universe U = (D, id), where
D ⊇ C.

Definition 3. A first-order L-structure I = 〈U, I〉 is called a generalised open answer
set of Π if I is subset minimal among the structures satisfying all rules in grU (Π)I . If,
additionally, I is an extended Herbrand structure, then I is an open answer set of Π .

Note that in the case of open answer set semantics the UNA applies. The following facts
are straightforward (see eg [18] for proofs).

– If M is an answer set of Π then M is also an open answer set of Π .
– Let Π be a safe program over L = 〈C,P 〉 with M = 〈U, I〉 a (generalised) open

answer set over universe U = (D,σ). Then, for any atom from AtD(C,P) such
that M |= p(d1, . . . , dn), there exist ci ∈ CΠ such that σ(ci) = di for each
1 ≤ i ≤ n. Consequently:

– M is an (generalised) open answer set of a safe program Π if and only if M is an
(generalised) answer set of Π .

Answer Sets and Equilibrium Models. In the propositional case it is well-known that
equilibrium models coincide with answer sets [21]. For the present version of QEL the
correspondence to answer sets can be described as follows.

Proposition 1 ([10]). Let Γ be a universal theory in L = 〈C,P 〉. Let 〈U, T, T 〉 be a
total QHT model of Γ . Then 〈U, T, T 〉 is an equilibrium model of Γ iff 〈T, T 〉 is a
propositional equilibrium model of grU (Γ).

By convention, when Π is a logic program with variables we consider the models and
equilibrium models of its universal closure expressed as a set of logical formulas. So,
from Proposition 1 we obtain:

Corollary 1. Let Π be a logic program. A total QHT model 〈U, T, T 〉 of Π is an
equilibrium model of Π iff it is a generalised open answer set of Π .

If we assume all models are UNA-models, we obtain the version of QEL found in [8].
There, the relation of QEL to (ordinary) answer sets for logic programs with variables
was established.

Proposition 2. [8, Corol. 7.7] Let Π be a logic program. A total UNA-QHT model
〈U, T, T 〉 of Π is an equilibrium model of Π iff it is an open answer set of Π .

2.1 Strong Equivalence and Normal Forms

The study of strong equivalence for logic programs and nonmonotonic theories was
initiated in [9]. Programs or theories Π1 and Π2 are said to be strongly equivalent if

Quantified Equilibrium Logic and Foundations for Answer Set Programs 551

and only if for any set of rules Σ, Π1 ∪ Σ and Π2 ∪ Σ have the same answer sets.
Strong equivalence has also been defined and studied for logic programs with variables
and first-order nonmonotonic theories under the stable model or equilibrium logic se-
mantics [22,2,5,10]; it has become an important tool in ASP as a basis for program
transformation and optimisation. In equilibrium logic we say that two (first-order) the-
ories Π1 and Π2 are strongly equivalent if and only if for any theory Σ, Π1 ∪ Σ and
Π2 ∪Σ have the same equilibrium models [5,10]. Under this definition we have:

Theorem 1 ([5,10]). Two (first-order) theories Π1 and Π2 are strongly equivalent if
and only if they are equivalent in QHT.

The proof contained in [10] shows that if theories are not strongly equivalent, the set of
formulas Σ such that Π1 ∪ Σ and Π2 ∪ Σ do not have the same equilibrium models
can be chosen to have the form of implications (p→ q) where p and q are atomic. So if
we are interested in the case where Π1 and Π2 are sets of rules, Σ can also be regarded
as a set of rules.

A sentence is said to be in prenex form if it has the following shape, for some n ≥ 0:

Q1x1 . . .Qnxnα (3)

where Qi is ∀ or ∃ and α is quantifier-free. A sentence is said to be universal if it is
in prenex form and all quantifiers are universal. A universal theory is a set of universal
sentences. For QHT, normal forms such as prenex and Skolem forms were studied
in [8]. In particular we have there the following property.

Theorem 2 ([8]). In QHT every sentence is logically equivalent to a sentence in
prenex form.

Suppose that we convert a sentence ϕ into one in prenex form of kind (3). Since the ma-
trix α is quantifier-free, we can apply equivalences from propositional logic to convert
α into a special reduced form. The appropriate transformations are described in detail
in [23]. They allow us to convert α into a logically equivalent general rule of form (2).
In other words the matrix has precisely the form of a rule of a general logic program.
So combining the transformations of [23] with Theorem 2 we obtain a normal form for
theories in QHT. This resembles the form of general logic programs except that exis-
tential quantifiers may appear in front of rules.3 On the other hand if Π is a universal
theory in QHT, it is equivalent to a set of universal sentences and hence to a logic
program in this general form. So we obtain:

Proposition 3. Any universal theory is equivalent in QHT to a general logic program,
hence in QEL any universal theory is strongly equivalent to some general program.

3 Rule Redundancy and θ-Subsumption

We continue our analysis of general programs comprising rules of form (2) that rep-
resent a normal form for universal sentences in QHT. Instead of writing expressions

3 A similar observation regarding first-order formulas under the new stable model semantics
of [4] is made in [24].

552 D. Pearce and A. Valverde

of type (2), we shall consider a rule as a logical formula ∀xr, where r = B+(r) ∧
¬B−(r) → Hd+(r) ∨ ¬Hd−(r)

B+(r) =
∧

pi(ti), B−(r) =
∨

pi(ti), Hd+(r) =
∨

pi(ti), Hd−(r) =
∧

pi(ti),

every ti is a vector of terms, ie. either variables or constants, and x is the vector of
variables in r.

For non-ground disjunctive programs under answer set semantics, various types of
transformations and programs simplifications have been studied, eg. in [2,11,3]. Special
cases arise when eg. a tautological rule may simply be dropped from a program, or one
rule is more ‘specific’ than another so that removing the latter in the presence of the
former results in a strongly equivalent program. In light of our results about QHT it
is clear that a rule ∀xr is tautological if and only if is valid in QHT, ie. |=QHT ∀xr.
Similarly, in the general case a rule ∀xr is redundant in the presence of another rule
∀xs if

∀xs |=QHT ∀xr (4)

When (4) holds it is clear that the rule ∀xr can be dropped from any program containing
∀xs without loss, ie. the reduced program is strongly equivalent to the original.

In the works mentioned, one aim is to characterise such properties in terms of re-
lations between the various elements in the bodies and heads of rules. We shall also
consider here some aspects of rule redundancy, but our approach differs from that
of [2,11,3] in two main ways. First, we consider general rules, where Hd−(r) need
not be empty. Secondly, the works mentioned do not make use of properties such as (4).
As a consequence, the methods they use for proving properties of rule transformations
are different from those obtained by applying the logic QHT. An advantage of us-
ing (4) is that by completeness we have a sound and complete calculus for deduction
in QHT. We can also of course use the reduction of QHT to classical logic, however
here it will be convenient to work directly with proof systems for QHT.

In the rest of the section we need to use substitutions. As usual, a substitution ϑ is a
map from the set of variables to the set of terms, ie. variables and constants; if α is a
formula, αϑ is obtained by replacing every free variable x by ϑ(x).

Lemma 1. A rule ∀xr is a tautology iff either B+(r) ∩ B−(r) �= ∅, or B+(r) ∩
Hd+(r) �= ∅, or B−(r) ∩Hd−(r) �= ∅.

Proof: The “if” condition is trivial. To prove the “only if”, let us assume that r is a
tautology and let Cr be the set of constants in r and Vr the set of variables in r. Let
us consider the assignment (D,σ), where D = Cr ∪ Vr and σ = id : Cr → D and
the substitution ϑ = id : Vr → D. If r is a tautology, then rϑ is true in the assignment
(D,σ). Applying the propositional characterisation to the quantifier-free formula rϑ,
we obtain the conclusion. �
Aside from tautologies, various different kind of rule elimination are studied in [11].
Since the most general of these is subsumption, we focus here on this property. First we
establish a key result about substitutions.

Theorem 3. Let ∀xr and ∀xs be two rules; let C be the set of constants in r or s, Vr

the set of variables in r and Vs the set of variables in s. Then, the following conditions
are equivalent

Quantified Equilibrium Logic and Foundations for Answer Set Programs 553

1. {∀xs, ∀xr} ≡s ∀xs.
2. ∀xs |=QHT ∀xr
3. {sϑ | ϑ : Vs → C ∪ Vr} |=HT r

In item 3, we use the propositional entailment relation, |=HT, because the involved
formulas are quantifier free and thus we only need to use propositional interpretations,
where the first order atomic formulas are considered as propositional atoms.

To prove the theorem, we shall use a tableau system for QHT. This system is con-
structed by extending the propositional system introduced in [25] based on the many-
valued semantics of HT. The labels of the expansion rules are regular sets of truth
values: [> j] = {i | i > j}, [< j] = {i | i < j}. The quantifiers in QHT are also
regular and thus the expansion rules for them are the following:

[> j]:∃xα(x)
[≤ j]:α(d)

[< j]:∀xα(x)
[≥ j]:α(d)

[< j]:∃xα(x)
[≥ j]:α(c)

[> j]:∀xα(x)
[≤ j]:α(c)

δ-rules: d is a fresh constant. γ-rules: c is a previously used constant.

The general proof of the soundness and completeness theorem for the tableau system
can be found in [26].

Proof of theorem 3: (1)⇔(2) is trivial. To prove (2)⇔(3) we use the semantic tableaux
system for QHT. ∀xs |=QHT ∀xr if and only if {{2}:∀xs, [< 2]:∀xr} can be extended
to a closed tableau. The δ-formula [< 2]:∀xr is expanded by replacing every variable
in x by a fresh parameter; we can do that eliminating the universal quantifiers and
treating the variables in r as new parameters. So, {{2}:∀xs, [< 2]:∀xr} can be extended
to a closed tableau if and only if {{2}:∀xs, [< 2]:r} can; in this tableau, the rule r is
considered ground. This tableau contains a finite set of parameters and constants,C∪Vr,
and thus, {{2}:sϑ | ϑ : Vs → C ∪ Vr} ∪ {[< 2]:r} is finite and can be extended to a
closed tableau if and only if {{2}:∀xs, [< 2]:r} can. The tableau {{2}:sϑ | ϑ : Vs →
C ∪ Vr} ∪ {[< 2]:r} does not contain quantifiers, and thus, it may be considered as
a propositional tableau. Therefore, {{2}:sϑ | ϑ : Vs → C ∪ Vr} ∪ {[< 2]:r} can be
extended to a closed tableau if and only if

{sϑ | ϑ : Vs → C ∪ Vr} |=HT r �

As a consequence of this result, we can conclude that the checking whether a rule r
entails another rule s is decidible, because the set of premises in condition 3 is finite.

It is not true that, in general, there is a single substitution θ0 such that sθ0 |=HT r if
and only if {∀xs, ∀xr} ≡s ∀xs. For example,

∀x(p(a, x) → p(x, b)) |= p(a, a) → p(b, b)

however there is no instance of p(a, x) → p(x, b) implying p(a, a) → p(b, b). There-
fore, as for clauses in classical logic, we can not improve the previous characterisation.

As a consequence of Theorem 3, we have that, if sϑ |=HT r, then ∀xs |=QHT ∀xr
and by the completeness results for subsumption found in [12,27], sϑ subsumes r. This
justifies the following definition as a suitable notion of subsumption for extended rules
using a single substitution.

554 D. Pearce and A. Valverde

Definition 4. For every pair of fundamental rules r and s we say that s θ-subsumes r
if there exists a substitution ϑ : Vs → C ∪ Vr such that:

1. B−(sϑ) ⊆ B−(r)
2. Hd−(sϑ) ⊆ Hd−(r) ∪B+(r)
3. B+(sϑ) ⊆ B+(r) ∪Hd−(r)
4. Hd+(sϑ) ⊆ Hd+(r) ∪B−(r)
5. Either B+(sϑ) ∩Hd−(r) = ∅ or Hd+(sϑ) ∩Hd+(r) = ∅.

For ordinary disjunctive rules this corresponds to the property s ≤ r studied in [3].

Example 1. The rule s = p(x)∧¬q(x, y) → u(y) θ-subsumes r = ¬q(x, a)∧¬u(x) →
¬p(a), because the substitution ϑ such that ϑ(x) = a and ϑ(y) = x satisfies the con-
ditions in the previous definition; hence in any program containing both rules, r can be
eliminated. This is verified as follows:

1. B−(sϑ) = {q(x, a)} = B−(r)
2. Hd−(sϑ) = {u(x)} = Hd−(r)
3. B+(sϑ) = {p(a)} = Hd−(r)
4. Hd+(sϑ) = {u(x)} ⊆ B−(r)
5. Hd+(sϑ) ∩Hd+(r) = ∅.

Proposition 4. If s θ-subsumes r, then ∀xs |=QHT ∀xr.

And finally, with the following result, we extend to non-ground programs the complete-
ness results for subsumption found in [12,27].

Proposition 5. s θ-subsumes r if there exists a substitution ϑ : Vs → C ∪ Vr such that
sθ |=HT r.

4 Reduction of QHT to Classical Logic

In this section we show how the deduction problem for QHT can be reduced to an
equivalent problem in classical predicate logic. This result has two main uses. First,
since QHT is a pivotal tool for analysing answer set programs, it is useful to de-
velop automated deduction methods for it. Reduction to classical logic provides such
a method and allows for rapid prototyping and checking of properties of QHT. Sec-
ondly, classical logic is already being used as a foundational approach to ASP. This can
be seen for example in the work of Ferraris, Lee, and Lifschitz [4] giving a new defini-
tion of stable model for first-order formulas, in the work of Lin [22] reducing the strong
equivalence of programs to a satisfiability problem in classical logic, to extensions of
this work by Traxler [14,11] implementing a strong equivalence checker using a clas-
sical logic theorem prover, and in many other cases. However, it is not always easy to
understand from a conceptual point of view exactly why these applications of classical
logic work the way they do. By establishing a general reduction of QHT to classical
logic, we obtain almost immediately the equivalent classical formulations of certain key
concepts and problems and explain easily why these representations function as they do.

Quantified Equilibrium Logic and Foundations for Answer Set Programs 555

Our aim is, given first order formulas ϕ, ψ to find a formula Φ such that ϕ |=QHT ψ
if and only if Φ is classically valid. In the absence of dedicated theorem provers for
QHT, this approach will nevertheless provide a proxy by allowing us to apply classical
provers. We use notation essentially following [5].

If p and q are predicate constants of the same arity then p ≤ q stands for

∀x(p(x) → q(x)),

where x is a tuple of distinct object variables. If p and q are tuples p1, . . . , pn and
q1, . . . , qn of predicate constants then p ≤ q stands for

p1 ≤ q1 ∧ · · · ∧ pn ≤ qn.

Let L be a language containing the predicate constants p1, . . . , pn and ϕ a formula in
L. Denote by L(p) the expansion of L by adding a new predicate pi of the same arity
for each predicate symbol pi of L. Define ϕ∗ inductively as follows.

– pi(t1, . . . , tm)∗ = pi(t1, . . . , tm)
– ⊥∗ = ⊥;
– (ϕ5 ψ)∗ = ϕ∗ 5 ψ∗, where 5 ∈ {∧,∨};
– (ϕ→ ψ)∗ = (ϕ∗ → ψ∗) ∧ (ϕ→ ψ);
– (Qxϕ)∗ = Qxϕ∗, where Q ∈ {∀, ∃}.

(There is no clause for negation here, because ¬ϕ is treated as shorthand for ϕ→ ⊥.)
We define a function f which maps a classical structure M for L(p) to a triple

f(M) = (U,H, T) where U = UM; T = {pi(d) : d ∈ M(pi)}; H = {pi(d) : d ∈
M(pi)}. Note that

M |= p ≤ p ⇔ f(M) is a QHT structure for L. (5)

Moreover, it is evident that by the construction of f(M), for any L-formulaϕ, we have

〈U,H, T 〉, t |= ϕ⇔M � L |= ϕ⇔M |= ϕ (6)

Likewise we define a translation τ fromL formulas to L(p) formulas by setting τ(ϕ) =
p ≤ p ∧ ϕ∗.

Lemma 2. For all models M and L-formulas ϕ:

f(M) |= ϕ⇔M |= τ(ϕ).

Proof: We only need to prove that f(M), h |= ϕ if and only if M |= τ(ϕ) and we do
that by induction on ϕ:

(i) If ϕ = pi(d1, . . . , dk), then the property holds immediately by the definition of τ .
(ii) Let ψ1 and ψ2 be such that, for i = 1, 2,

〈U,H, T 〉, h |= ψi iff M |= τ(ψi). (7)

556 D. Pearce and A. Valverde

• For ϕ = ψ1 ∧ ψ2:

〈U,H, T 〉, h |= ψ1 ∧ ψ2 ⇔ 〈U,H, T 〉, h |= ψ1 and 〈U,H, T 〉, h |= ψ2

⇔M |= τ(ψ1) and M |= τ(ψ2) ⇔M |= p ≤ p ∧ ψ∗
1 ∧ p ≤ p ∧ ψ∗

2

⇔M |= p ≤ p ∧ (ψ1 ∧ ψ2)∗ ⇔M |= τ(ψ1 ∧ ψ2).

• For ϕ = ψ1 ∨ ψ2 is similar.
• For ϕ = ψ1 → ψ2:

〈U,H, T 〉, h |= ψ1 → ψ2 ⇔
⇔ 〈U,H, T 〉, t |= ψ1 → ψ2 and, 〈U,H, T 〉, h �|= ψ1 or 〈U,H, T 〉, h |= ψ2

⇔M |= p ≤ p ∧ (ψ1 → ψ2) (by (5) and (6)) and,

M �|= τ(ψ1) or M |= τ(ψ2)
⇔M |= p ≤ p ∧ (ψ1 → ψ2) and, M �|= ψ∗

1 or M |= ψ∗
2

⇔M |= p ≤ p ∧ (ψ1 → ψ2) and, M |= ψ∗
1 → ψ∗

2

⇔M |= p ≤ p ∧ (ψ1 → ψ2)∗

⇔M |= τ(ψ1 → ψ2)

Let ψ be such that, for every d ∈ D: 〈U,H, T 〉, h |= ψ(d) iff M |= τ(ψ(d)).
• For ϕ = ∀xψ(x):

〈U,H, T 〉, h |= ∀xψ(x) ⇔ 〈U,H,T 〉, h |= ψ(d) for all d ∈ D

⇔M |= τ(ψ(d)) for all d ∈ D ⇔M |= p ≤ p ∧ ψ(d)∗ for all d ∈ D

⇔M |= p ≤ p ∧ ∀xψ(x)∗ ⇔M |= p ≤ p ∧ (∀xψ(x))∗

⇔M |= τ(∀xψ(x))

• For ϕ = ∃xψ(x) is similar. �

Lemma 3. Let K be the class of models M such that M |= p ≤ p. The mapping f
restricted to K is a bijection of K onto the QHT structures for L.

By Lemma 2 we obtain immediately the following reduction of the deduction problem
for QHT.

Theorem 4. ϕ |=QHT ψ ⇔ τ(ϕ) |= τ(ψ).

By the strong completeness theorem for QHT, proved in [5], we know that for any ϕ
and set Γ

Γ �QHT ϕ⇔ Γ |=QHT ϕ

Since derivations are finite, it follows that QHT has the following compactness prop-
erty: Suppose Γ |=QHT ϕ, then there is a finite subset Γ ′ of Γ such that Γ ′ |=QHT ϕ.
Using the compactness property, we can extend Theorem 4 to:

Theorem 5. Let Π be a theory in L and set τ(Π) = {τ(ψ) : ψ ∈ Π}. Then Π |=QHT

ϕ⇔ τ(Π) |= τ(ϕ).

Quantified Equilibrium Logic and Foundations for Answer Set Programs 557

In order to express validity in QHT in terms of classical logic, we use Lemma 3 to
conclude:

Theorem 6. |=QHT ϕ⇔ p ≤ p |= τ(ϕ).

But clearly we can now simplify the right hand side and state:

|=QHT ϕ⇔ p ≤ p |= ϕ∗.

5 Classical Encodings of Stable Models and Strong Equivalence

Our reduction technique can be easily implemented and combined with a classical the-
orem prover to yield a method for automated deduction in QHT.4 As remarked earlier
our reduction also allows us to derive classical encodings of key concepts and proper-
ties, including stable model and strong equivalence. Let us start with the case of equi-
librium model. Recall that a model of ϕ is in equilibrium if there is no ‘smaller’ model,
that is, a model with the same ‘there’ part but with less atoms in the ‘here’ part. By
the reduction technique we have seen that the ‘here’ part can be reconstructed from the
evaluation of the new atoms p and thus, to obtain a smaller model, we need p < p and
ϕ∗ to be satisfiable. Therefore the equilibrium models of ϕ are those which cannot be
extended to the atoms p to obtain a model of p < p ∧ ϕ∗. This property is expressed
by a second order formula: the equilibrium models of ϕ are the classical models of

ϕ ∧ ¬∃p(p < p ∧ ϕ∗)

This formula is denoted by SM[ϕ] in [4] and is exactly the new definition of stable
model for arbitrary first-order formulas by Ferraris, Lee, and Lifschitz.5 In a sequel to
that paper, Lee, Lifschitz and Palla [6] have applied the new definition and made the
following refinements. The stable models of a formula are defined as in [4] while the
answer sets of a formula are those Herbrand models of the formula that are stable in the
sense of [4]. Using this new terminology, it follows that in general stable models and
equilibrium models coincide, while answer sets are equivalent to SNA-QHT models
that are equilibrium models.

Let us return to the subject of strong equivalence as characterised in Theorem 1.
There have been several similar proposals for encoding the property of strong equiv-
alence for logic programs into classical logic. For the propositional case, see for ex-
ample [13,22,12,28]. Extensions to the case of non-ground programs can be found
in [22,14,2,11,4]. Combining Theorem 1 with Theorems 4 and 5 we can obtain very
simply the main encodings of strong equivalence for the non-ground case, as well as
extend them to more general classes of programs and theories. In addition, these encod-
ings no longer have an ad hoc flavour: they appear precisely as a result of the fact that
QHT can be reduced as above to classical logic.

4 For a prototype implementation of the QHT reduction using Prover9 see The Equilubrium
Logic Workbench: a selection of tools facilitating reasoning with here-and-there and equilib-
rium logic; http://www.equilibriumlogic.net.

5 In [4] it is also shown that this new notion of stable model is equivalent to that of equilibrium
model defined here.

558 D. Pearce and A. Valverde

Let us start with [4] where Ferraris, Lee, and Lifschitz give a (first-order) charac-
terisation in classical logic of strong equivalence for formulas under their new stable
model semantics. We can derive a simple proof of this characterisation by applying
Theorems 4 and 1 to obtain.

Proposition 6 ([4]). ϕ is strongly equivalent to ψ if and only if the formula

p ≤ p → (ϕ∗ ↔ ψ∗)

is logically valid (where ϕ, ψ are formulas of the language L above and p is the list of
predicate symbols appearing in at least one of ϕ, ψ).

As a second example let’s consider how Theorem 5 can be used to generalise the charac-
terisation of strong equivalence by Lin [22] and refined and applied by Traxler [14,11] to
implement a strong equivalence checker using a classical theorem prover (see also [2]).
Traxler considers finite disjunctive logic programs under the variant of stable model
semantics that works with Herbrand models. His stable models correspond therefore
to equilibrium models that are SNA-models of QHT. Using a variant of the charac-
terisation of strong equivalence for propositional programs due to Lin [22], he shows
that the non strong equivalence of two programs can be reduced to the satisfiability of
a first-order formula of a special form, called a Bernays-Schönfinkel formula, whose
shape is

∃x1 . . . xm∀y1 . . . ynϕ(x1, . . . , xm, y1, . . . , yn) (8)

He observes that the satisfiability problem for such formulas is NEXPTIME-complete,
while testing the strong equivalence of such datalog programs is coNEXPTIME-com-
plete (a result previously obtained by Eiter et al [2]).

Suppose we deal with finite sets of universal sentences ∀xϕ and ∀xψ where p is the
list of predicate symbols appearing in at least one of ϕ, ψ. Applying Theorem 4 or its
corollary Proposition 6, theories ϕ and ψ are not strongly equivalent if and only if

∀x(p ≤ p) ∧ ∀xϕ∗ ∧ ¬∀xψ∗ (9)

is satisfiable or
∀x(p ≤ p) ∧ ∀xψ∗ ∧ ¬∀xϕ∗ (10)

is satisfiable. By classical logic, (9) is equivalent to ∀x(p ≤ p)∧∀xϕ∗∧∃y¬ψ∗ which
is in turn equivalent to

∃y∀x(p ≤ p ∧ ϕ∗ ∧ ¬ψ∗). (11)

Likewise (10) is equivalent to

∃y∀x(p ≤ p ∧ ψ∗ ∧ ¬ϕ∗). (12)

This yields two Bernays-Schönfinkel formulas of kind (8) to be tested for satisfiabil-
ity. This test is NEXPTIME-complete [29]. It follows that for finite universal theories
the complexity of testing strong equivalence in QEL is the same as that of Datalog
programs ([2]):

Theorem 7. For finite universal theories without function symbols or equality the com-
plexity of checking strong equivalence in QEL is coNEXPTIME-complete.

Quantified Equilibrium Logic and Foundations for Answer Set Programs 559

The formulas obtained by Traxler are a special case of (11) and (12) where ϕ, ψ are
disjunctive logic programs and the transformation ‘∗’ is expanded.6

6 Conclusions

The intermediate predicate logic QHT provides a useful tool for program analysis and
transformation in ASP. As we have seen, this is true not only for the case of normal and
disjunctive programs usually handled by current ASP systems, but also for more general
classes of programs discussed here. The case of stable models for arbitrary first-order
formulas [4] is also covered, due to the correspondence with quantified equilibrium
logic. We have illustrated how the proof theory of QHT can be used to analyse some
types of rule redundancy for non-ground answer set programs and yield some novel
results on θ-subsumption. We have also provided a reduction of QHT to classical logic.
This can be used for automating deduction in QHT by means of classical theorem
provers. The reduction is also useful for reproducing and extending many key concepts
and properties of ASP expressed in terms of classical logic.

A prototype implementation of the QHT reduction is now available (see note 8). In
the future we hope this may shed light on more complex kinds of rule redundancy and
valid program transformations in ASP. One area of future work will be to analyse the
new variant of the ASP language called RASPL-1 [6] which extends the syntactic class
of general programs by allowing restricted use of existential quantification.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2002)

2. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and uniform equivalence in answer-set
programming: Characterizations and complexity results for the non-ground case. In: AAAI
2005, Proceedings, pp. 695–700. AAAI Press/The MIT Press (2005)

3. Fink, M., Pichler, R., Tompits, H., Woltran, S.: Complexity of rule redundancy in non-ground
answer-set programming over finite domains. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS, vol. 4483, pp. 123–135. Springer, Heidelberg (2007)

4. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: IJCAI 2007, Pro-
ceedings, pp. 372–379 (2007)

5. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for logic
programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS,
vol. 4483, pp. 188–200. Springer, Heidelberg (2007)

6. Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in answer set
programming. In: AAAI 2008, Proceedings, pp. 472–479. AAAI Press, Menlo Park (2008)

7. Pearce, D., Valverde, A.: Towards a first order equilibrium logic for nonmonotonic reason-
ing. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 147–160. Springer,
Heidelberg (2004)

6 Additionally Traxler converts the matrix in each case to (a satisfiability equivalent) conjunctive
normal form in order for it be processed by the classical theorem prover. Since he applies the
unique name assumption, Traxler’s formulas involve additional ‘naming’ predicates for each
constant of the language, a technique found already in [22].

560 D. Pearce and A. Valverde

8. Pearce, D., Valverde, A.: A first order nonmonotonic extension of constructive logic. Studia
Logica 80(2-3), 321–346 (2005)

9. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans.
Comput. Log. 2(4), 526–541 (2001)

10. Pearce, D., Valverde, A.: Quantified equilibrium logic. Technical report, Universidad Rey
Juan Carlos (2006),
http://www.matap.uma.es/investigacion/tr/ma06 02.pdf

11. Traxler, P.: Techniques for simplifying disjunctive datalog programs with negation. Magis-
terarbeit, TU Wien (January 2006)

12. Lin, F., Chen, Y.: Discovering classes of strongly equivalent logic programs. In: IJCAI 2005,
Proceedings, Professional Book Center, pp. 516–521 (2005)

13. Pearce, D., Tompits, H., Woltran, S.: Encodings for equilibrium logic and logic programs
with nested expressions. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS, vol. 2258,
pp. 306–320. Springer, Heidelberg (2001)

14. Traxler, P.: Testing strong equivalence of datalog programs - implementation and examples.
Technical report, TU Wien (September 2004)

15. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1-2), 3–41 (2006)
16. van Dalen, D.: Logic and Structure, 3rd edn. Springer, Heidelberg (1997)
17. Lifschitz, V., Woo, T.Y.C.: Answer sets in general nonmonotonic reasoning (preliminary

report). In: KR, pp. 603–614 (1992)
18. de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: Quantified equilibrium logic and hybrid

rules. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 58–
72. Springer, Heidelberg (2007)

19. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Open answer set programming with guarded
programs. ACM Trans. Comput. Log. 9(4) (2008)

20. Heymans, S., Predoiu, L., Feier, C., de Bruijn, J., Nieuwenborgh, D.V.: G-hybrid knowledge
bases. In: ALPSWS 2006, Proceedings. CEUR Workshop Proceedings, CEUR-WS.org.,
vol. 196, pp. 39–54 (2006)

21. Pearce, D.: A new logical characterization of stable models and answer sets. In: Dix, J.,
Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70.
Springer, Heidelberg (1997)

22. Lin, F.: Reducing strong equivalence of logic programs to entailment in classical propo-
sitional logic. In: KR 2002, Proceedings, pp. 170–176. Morgan Kaufmann, San Francisco
(2002)

23. Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilibrium logic to
logic programs. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS, vol. 3808, pp.
4–17. Springer, Heidelberg (2005)

24. Lee, J., Palla, R.: Yet another proof of the strong equivalence between propositional theories
and logic programs. In: CENT 2007, Proceedings. CEUR Workshop Proceedings, CEUR-
WS.org. vol. 265 (2007)

25. Pearce, D., de Guzmán, I.P., Valverde, A.: A tableau calculus for equilibrium entailment. In:
Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 352–367. Springer, Heidelberg
(2000)

26. Hähnle, R.: Automated Deduction in Multiple-Valued Logics. International Series of Mono-
graphs on Computer Science, vol. 10. Oxford University Press, Oxford (1994)

27. Cabalar, P., Pearce, D., Valverde, A.: Minimal logic programs. In: Dahl, V., Niemelä, I. (eds.)
ICLP 2007. LNCS, vol. 4670, pp. 104–118. Springer, Heidelberg (2007)

28. Pearce, D., Tompits, H., Woltran, S.: Chatacterising equilibrium logic and nested logic pro-
grams: reductions and complexity. Technical Report GIA 2007-01-12, Universidad Rey Juan
Carlos (2007); (to appear in Theory and Practice of Logic programming)

29. Papadimitriu, C.: Comptuational Complexity. Addison-Wesley, Reading (1994)

http://www.matap.uma.es/investigacion/tr/ma06_02.pdf

Elimination of Disjunction and Negation in
Answer-Set Programs under Hyperequivalence�

Jörg Pührer, Hans Tompits, and Stefan Woltran

Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9–11, A–1040 Vienna, Austria
{puehrer,tompits}@kr.tuwien.ac.at,

woltran@dbai.tuwien.ac.at

Abstract. The study of different notions of equivalence is one of the corner-
stones of current research in answer-set programming. This is mainly motivated
by the needs of program simplification and modular programming, for which or-
dinary equivalence is insufficient. A recently introduced equivalence notion in
this context is hyperequivalence, which includes as special cases strong, uniform,
and ordinary equivalence. We study in this paper the question of replacing pro-
grams by syntactically simpler ones preserving hyperequivalence (we refer to
such a replacement as a casting). In particular, we provide necessary and suffi-
cient semantic conditions under which the elimination of disjunction, negation,
or both, in programs is possible, preserving hyperequivalence. In other words,
we characterise in model-theoretic terms when a disjunctive logic program can
be replaced by a hyperequivalent normal, positive, or Horn program, respectively.
Furthermore, we study the computational complexity of the considered tasks and,
based on similar results for strong equivalence developed in previous work, we
provide methods for constructing the respective hyperequivalent programs. Our
results contribute to the understanding of problem settings in logic programming
in the sense that they show in which scenarios the usage of certain constructs are
superfluous or not.

1 Introduction

Answer-set programming (ASP) is an important logic-programming paradigm [1] that
is based on principles of nonmonotonic reasoning and became popular for its fully
declarative semantics [2]. An important research field in ASP is the study of equivalence
of answer-set programs. Given the nonmonotonic nature of logic programs under the
answer-set semantics, ordinary equivalence (which holds between two programs if their
answer sets coincide) is too weak to yield a replacement property similar to the one of
classical logic. That is to say, given a program P = Q ∪ R, when replacing Q with an
ordinarily equivalent programQ′, it is not guaranteed thatQ′∪R is ordinarily equivalent
to P . This led to the introduction of stricter notions of equivalence, in particular strong
and uniform equivalence: two programs, P and Q, are strongly equivalent [3] if P ∪R
and Q ∪ R have the same answer sets for any program R, called the context, while

� This work was partially supported by the Austrian Science Fund (FWF) under projects P18019
and P20704.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 561–575, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

562 J. Pührer, H. Tompits, and S. Woltran

they are uniformly equivalent [4] if the context is restricted to sets of facts. Recently,
Woltran [5] introduced hyperequivalence, or head-body relativised equivalence, which
is a parametrised notion that subsumes as special cases strong, uniform, and ordinary
equivalence. It allows for specifying, on the one hand, the atoms which are permitted to
occur in the rule heads of context programs and, on the other hand, the atoms allowed
in the rule bodies. Besides generalising various equivalence notions, hyperequivalence
can be parametrised for application-specific equivalence tests [6].

In this paper, we are interested in the question whether a given disjunctive logic pro-
gram P can be replaced by a program Q that is from a syntactically simpler program
class than P preserving hyperequivalence (we refer to Q as a casting of P). In partic-
ular, we are interested in the questions whether a given program can be casted (i) to a
program without disjunctions, (ii) to a program without negations, and (iii) to a pro-
gram without both disjunctions and negations. There is previous work addressing these
questions for the notions of strong and uniform equivalence [7,8], introducing model-
theoretic characterisations when a casting is possible. We will introduce such conditions
for the general case of hyperequivalence, and thereby obtain proper generalisations of
the old concepts. More specifically, our main contributions are the following:

– We introduce necessary and sufficient conditions for deciding whether, for a given
program, a hyperequivalent normal, positive, or Horn program exists. These condi-
tions are model-theoretic, operating on sets of SE-interpretations [9], which are well-
known structures derived from the logical underpinning of strong equivalence [3].

– We provide methods that allow the construction of a casting, whenever a given pro-
gram is castable. That is, if a program satisfies one of our model-theoretic condi-
tions, we give a constructive method for finding a desired hyperequivalent program.

– We analyse the complexity of the casting problems under consideration. It turns out
that these are located on the second and third level of the polynomial hierarchy.

In many situations, our results allow for program simplifications that are not pos-
sible under stronger notions of equivalence. For example, the program Pex = {f ←
b,not n; n ← p; b ∨ p} cannot be replaced by a program Q without negations such
that Pex∪R and Q∪R have the same answer sets for every program R. However, such
a Q exists whenever atoms b and n do not occur in the head of any rule of R.

Casting under hyperequivalence is also essential for program simplification and mod-
ular programming: Depending on the atoms permitted to occur in the rule heads and rule
bodies in the context, a module can faithfully be replaced by a simpler one. Moreover,
understanding under which circumstances such a replacement is possible gives insight
into which roles negation and disjunction play in a certain program.

2 Preliminaries

We deal with finite propositional disjunctive logic programs containing rules (over a
set At of atoms) of form a1 ∨ · · · ∨ al ← b1, . . . , bm,not bm+1, . . . ,not bn, where
l ≥ 0, n ≥ m ≥ 0, all ai, bj are from At , and not denotes default negation. A rule r as

Elimination of Disjunction and Negation in Answer-Set Programs 563

described is normal, if l ≤ 1; positive, if m = n; and a fact, if l = 1 and m = n = 0.
A rule is Horn if it is positive and normal. The head of r is the set H(r) = {a1, . . . , al};
the body of r is B(r) = {b1, . . . , bm,not bm+1, . . . , not bn}. We also define B+(r) =
{b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}. A disjunctive logic program (DLP) over
At , or simply a program, is a finite set of rules over At . A DLP P is a normal logic
program (NLP) if every rule in P is normal. Likewise, P is a positive logic program
(PLP) if every rule in P is normal, and it is a Horn program if every rule in it is Horn.
We denote the class of all DLPs (resp., NLPs, PLPs, Horn programs) by DLP (resp.,
NLP , PLP, HORN). Furthermore, atm(P) stands for the set of all atoms occurring
in P , and we define H(P) =

⋃
r∈P H(r) and B(P) =

⋃
r∈P (B+(r) ∪B−(r)).

Let I be an interpretation, i.e., a set of atoms. I satisfies a rule r, symbolically
I |= r, iff I ∩ H(r) �= ∅ whenever B+(r) ⊆ I and I ∩ B−(r) = ∅ jointly hold.
Furthermore, I is a model of a program P , symbolically I |= P , iff I |= r, for all
r ∈ P . I is an answer set [2] of a program P iff I is a minimal model of P I , where
P I = {H(r) ← B+(r) | r ∈ P, B−(r) ∩ I = ∅} is the reduct of P relative to I .

We recall the recently introduced notion of hyperequivalence, also called head-body-
relativised equivalence [5]. The idea is to restrict the alphabets of rule heads and rule
bodies of the context programs, and thereby limiting the nonmonotonic side-effects of
putting a program in some context. For alphabets H,B ⊆ At , let DLPH

B denote the
class of all programs P such that H(P) ⊆ H and B(P) ⊆ B. Then, two programs
P,Q over At are hyperequivalent relative to 〈H,B〉, or 〈H,B〉-equivalent, in symbols
P ≡H

B Q, iff, for each R ∈ DLPH
B , it holds that AS(P ∪ R) = AS(Q ∪ R). Hyper-

equivalence includes well-known equivalence notions as special cases: strong equiva-
lence [3] coincides with 〈At ,At〉-equivalence; uniform equivalence [4] coincides with
〈At , ∅〉-equivalence; and ordinary equivalence coincides with 〈∅, ∅〉-equivalence.

Following Turner [9], strong equivalence can model-theoretically be characterised in
terms of SE-models: First of all, by an SE-interpretation we understand a pair (X,Y),
where X,Y ⊆ At are sets of atoms such that X ⊆ Y . If X = Y , then (X,Y) is
total, otherwise (X,Y) is non-total. An SE-interpretation (X,Y) is an SE-model of a
program P over At if Y |= P and X |= P Y . It then holds that two programs P and
Q are strongly equivalent iff they possess the same set of SE-models. In view of the
logical underpinning of strong equivalence [3], viz., the logic of here-and-there [10]
(also known as Gödel’s three-valued logic [11]), the first component of an SE-inter-
pretation is identified with the world “here”, whilst the second component refers to the
world “there”. We write SE (P) to refer to the set of all SE-models of a program P .

A semantical characterisation for hyperequivalence, similar to that using SE-models
for strong equivalence, is given by the concept of an HE-model [5].1 For H,B, X, Y ⊆
At , an SE-interpretation (X,Y) is an HE-model relative to 〈H,B〉 of a DLP P over At ,
or an 〈H,B〉-model of P for short, iff (i) Y |= P , (ii) for all Y ′ ⊂ Y with Y ′∩H = Y ∩
H, it holds that Y ′ �|= PY , (iii) if X ⊂ Y , there is an X ′ ⊂ Y with X ′ ∩ (H∪B) = X
such that X ′ |= PY , and (iv) if X ⊂ Y , for each X ′ ⊂ Y with (X ∩H) ⊆ (X ′ ∩ H),
(X ′ ∩ B) ⊆ (X ∩ B), and X �= X ′ ∩ (H ∪ B), it holds that X ′ �|= PY . The set of all
〈H,B〉-models of a program P is denoted by HEH

B (P). Note that, for every non-total
〈H,B〉-model (X,Y) of P , it holds that (X ∩H) ⊂ (Y ∩H) and X ⊂ Y ∩ (H ∪ B).

1 We slightly rephrase the original definition of an HE-model.

564 J. Pührer, H. Tompits, and S. Woltran

Proposition 1 ([5]). For all programs P,Q over At and every H,B ⊆ At , P ≡H
B Q iff

HEH
B (P) = HEH

B (Q).

3 Setting the Stage: Casting under Strong Equivalence

The main question addressed in this paper is expressed by the following parametrised
decision problem:

Definition 1. Let C be a class of programs over some set At of atoms. Then, CAST(C)
is the problem of deciding whether, for a given DLP P over At and sets H,B ⊆ At of
atoms, there exists a program Q ∈ C with P ≡H

B Q.

If a program P together with sets H,B of atoms constitute a yes-instance of CAST(C),
we say that P is castable to C under 〈H,B〉-equivalence. Furthermore, a program Q ∈
C with P ≡H

B Q is called an 〈H,B〉-casting of P to C. In this paper, we are interested
in those versions of CAST(C) where C ∈ {NLP ,PLP,HORN}. Our aim is to find
model-theoretic conditions precisely characterising the yes-instances of CAST(C). We
do so by providing, for each class C as above and setsH,B of atoms, a property φH

B,C(·)
satisfying the following key condition:

(�) φH
B,C(S) holds iff there exists a program Q ∈ C with S = HEH

B (Q), for each set S
of SE-interpretations.

From this, we immediately get that, for a given DLP P , φH
B,C(HEH

B (P)) holds iff there

exists a program Q ∈ C such that HEH
B (P) = HEH

B (Q), which in turn implies that
φH
B,C(HEH

B (P)) holds iff P together with H and B is a yes-instance of CAST(C), repre-
senting our desired characterisation. In addition to deciding whether an 〈H,B〉-casting
of P exists, we also provide constructive methods to obtain such castings.

As a preparatory step towards the general setting, in this section we deal with the
case where H = B = At , corresponding to casting under strong equivalence, which
was already studied in the literature [12,8,7]. In particular, we will provide a special
case of Condition (�), in terms of a property ϕC(·), amounting to φAt

At,C(·), as follows:

(�SE) ϕC(S) holds iff there exists a program Q ∈ C with SE (Q) = S, for each set S
of SE-interpretations.

We start with the following concept: A set S of SE-interpretations is well-defined iff,
for each (X,Y) ∈ S, also (Y, Y) ∈ S. A well-defined set S of SE-interpretations is
complete iff, for each (X,Y) ∈ S, also (X,Z) ∈ S, for any Y ⊆ Z with (Z,Z) ∈ S.

Proposition 2 ([12]). For each DLP P , SE (P) is complete. Moreover, for any com-
plete set S of SE-interpretations (over At), there is a DLP Q (over At) such that
SE (Q) = S.

Eiter, Tompits, and Woltran [12] describe, for a given complete set S of SE-inter-
pretations, a concrete way for obtaining a DLP, CPS , such that SE (CPS) = S holds,
which we refer to as the canonical program for S. In fact, CPS is composed of rules
← Y,not (At \Y), for each Y ⊆ At such that (Y, Y) /∈ S, and of rules

∨
p∈(Y \X) p←

X,not (At \ Y), for each X ⊂ Y such that (X,Y) /∈ S and (Y, Y) ∈ S.

Elimination of Disjunction and Negation in Answer-Set Programs 565

To characterise programs castable to NLP , we need an additional criterion on SE-
interpretations: A set S of SE-interpretations is closed under here-intersection, or HI-
closed, iff, whenever (X,Y) ∈ S and (X ′, Y) ∈ S, then (X ∩ X ′, Y) ∈ S. This
property results from the facts that the reduct of a program relative to a set of atoms is
a Horn program if disjunction is not involved, and that the models of Horn theories are
closed under intersection.

The characterising property for DLPs that can be casted to PLP under strong equiv-
alence is called here-totality: A set S of SE-interpretations is here-total iff, for any pair
(X,Y) ∈ S, it holds that (X,X) ∈ S.

In order for a DLP P to be castable to HORN under strong equivalence, it is not
sufficient that SE (P) is both HI-closed and here-total. In fact, the transformations to
an NLP introduce in general negations, and those to a PLP disjunctions. Additionally, it
turns out that the property of closure under there-intersection is required: A set S of SE-
interpretations is closed under there-intersection, or TI-closed, iff, whenever (X,X) ∈
S and (Y, Y) ∈ S, then (X ∩ Y,X ∩ Y) ∈ S. Note that a set of SE-interpretations
which is here-total and TI-closed is also HI-closed.

The next proposition states how the defined properties characterise castable DLPs.

Proposition 3 ([8,7]). Let P be a DLP over set of atoms At . Then, there exists (i) an
NLP Q with P ≡At

At Q iff SE (P) is HI-closed, (ii) a PLP Q′ with P ≡At
At Q

′ iff SE (P)
is here-total, and (iii) a Horn program Q′′ with P ≡At

At Q
′′ iff SE (P) is here-total and

TI-closed.

Example 1. Consider programsP1 = {b∨c← a; a← not b; b← not a; b← not c}
and P2 = {a ∨ b ← c; b ← a; a ← b,not c; c ← b,not a; ← a, b, c} over {a, b, c}.
The sets of SE-models of these programs are2

SE (P1) = {(b, b), (b, ab), (ab, ab), (ac, ac), (b, bc), (bc, bc),
(∅, abc), (b, abc), (c, abc), (ab, abc), (ac, abc), (bc, abc), (abc, abc)} and

SE (P2) = {(∅, ∅), (∅, ab), (ab, ab), (∅, bc), (bc, bc)}.

SE (P1) is not HI-closed as it contains (ab, abc), (ac, abc), but not (a, abc). Hence,
for each NLP Q, P1 �≡At

At Q. SE (P2) is HI-closed and P2 ≡At
At P ′

2 holds for NLP
P ′

2 = {a← b,not c; c← b,not a; b← a; b← c; ← a, b, c}.

For creating a strongly equivalent NLP for a given DLP P with SE (P) being HI-closed,
we refer to a known technique for removing disjunctions under strong equivalence [8].

Example 2. For program P1 from Example 1, SE (P1) is not here-total, since, e.g.,
(∅, abc) ∈ SE (P1) but (∅, ∅) /∈ SE (P1). Hence, there is no strongly equivalent PLP.
Consider program P3 = {a← not b; b← not a; ← a, b} over {a, b} with SE (P3) =
{(a, a), (b, b)} that is here-total. P3 can be replaced by the strongly equivalent PLP
P ′

3 = {a ∨ b←; ← a, b}.

Note that P ′
3 is obtained from P3 by moving all atoms from B−(r) of each rule r

to H(r). This transformation is called the left-shift of a program. Generally, the left-
shift of any DLP P , where SE (P) is here-total, is strongly equivalent to P .

2 We write “abc” instead of “{a, b, c}”, “a” instead of “{a}”, etc.

566 J. Pührer, H. Tompits, and S. Woltran

Example 3. For program P2 from Example 1, SE (P2) is HI-closed, here-total, but not
TI-closed, as (ab, ab), (bc, bc) ∈ SE (P2) but (b, b) /∈ SE (P2). Hence, there is no Horn
program which is strongly equivalent to P2. Consider program P4 = {a ∨ b ←; a ←
b,not c; ← b, c} over {a, b, c}, where SE (P4) = {(a, a), (a, ab), (ab, ab), (a, ac),
(ac, ac)} is both here-total and TI-closed. P4 can be replaced by the strongly equivalent
Horn program P ′

4 = {a←; ← b, c}.

To obtain a Horn program Q such that P ≡H
B Q for a given DLP P , we proceed in

two steps. First, a left-shift is applied on P to obtain a strongly equivalent PLP. Then,
the remaining disjunctions can be eliminated by removing atoms from rule heads, as
suggested by the following theorem.

Theorem 1. For every PLP P such that SE (P) is TI-closed, a Horn program P ′ such
that P ≡At

At P
′ can be obtained by removing all but one atom, a, from the head of each

rule r ∈ P with |H(r)| > 1. Thereby, a has to be chosen in such a way that, for every
model Y of P with B(r) ⊆ Y , a ∈ Y holds.

For lifting the results for strong equivalence to general hyperequivalence, we will
need the following consequence of Propositions 2 and 3.

Theorem 2. Let S be a set of SE-interpretations. Then, there exists

– an NLP Q with SE (Q) = S iff S is complete and HI-closed,
– a PLP Q′ with SE (Q′) = S iff S is complete and here-total, and
– a Horn program Q′′ with SE (Q′′) = S iff S is complete, here-total, and TI-closed.

4 Main Results

We now lift the results for strong equivalence to hyperequivalence. Note that Theo-
rem 2 provides us with the special case (�SE) of our key condition (�), expressing
that a property ϕC(S) holds iff there exists a program Q ∈ C with SE (Q) = S, for
each C ∈ {NLP ,PLP, HORN}. We will use this property for proving the general
case of Condition (�), thus establishing our main results, as outlined in the beginning
of Section 3. This is achieved as follows: First of all, for each C as above, we define
the corresponding property φH

B,C(·) together with a function τHB,C(·) from sets of SE-
interpretations to sets of SE-interpretations, which we refer to as a completion transfor-
mation, such that the following properties hold:

(i) if, for a set S of SE-interpretations, φH
B,C(S) holds, then ϕC(τHB,C(S)) holds;

(ii) if, for a set S of SE-interpretations,φH
B,C(S) holds and there exists a programQ ∈ C

such that τHB,C(S) = SE (Q), then HEH
B (Q) = S;

(iii) for every program Q ∈ C, φH
B,C(HEH

B (Q)) holds.

From these properties, (�) can then be established as follows: Assume that φH
B,C(S)

holds. Then, by (i), so does ϕC(τHB,C(S)). From property (�SE) it follows that there is

a program Q ∈ C with SE (Q) = τHB,C(S). Hence, by (ii), HEH
B (Q) = S. Conversely,

let Q ∈ C be a program with HEH
B (Q) = S. By (iii), φH

B,C(HEH
B (Q)) holds. Since

Elimination of Disjunction and Negation in Answer-Set Programs 567

HEH
B (Q) = S, we get that φH

B,C(S) holds. Hence, (�) holds. As argued in Section 3, (�)
in turn implies our main result expressing that, for each C ∈ {NLP , PLP ,HORN},
φH
B,C(HEH

B (P)) holds iff P , H, and B constitute a yes-instance of CAST(C).
In the remainder of this section we will show, for each individual class C, how φH

B,C(·)
and τHB,C(·) are defined. We will provide the main proofs for the case of casting toNLP
but only show the constructions and formulate the main results for the cases of casting
to PLP and HORN due to space limitations.

4.1 Completeness for Hyperequivalence Models

First, we will introduce the notion of 〈H,B〉-completeness, a property of sets of SE-
interpretations which is characteristic for the set of all 〈H,B〉-models of a program.

Definition 2. Let H,B be sets of atoms and S a set of SE-interpretations. Then, S is
〈H,B〉-well-defined if, for each (X,Y) ∈ S such thatX ⊂ Y , it holds that (i) (Y, Y) ∈
S, (ii) X ⊂ (Y ∩ (H∪B)), (iii) (X ∩H) ⊂ (Y ∩H), and (iv) there is no (X ′, Y) ∈ S
with X ′ ⊂ Y , (X ∩H) ⊆ (X ′ ∩H), (X ′ ∩ B) ⊆ (X ∩ B), and X �= X ′.

Moreover, S is 〈H,B〉-complete if S is 〈H,B〉-well-defined and, for all X,Y, Z such
that (X,Y), (Z,Z) ∈ S and Y ⊂ Z , there is some X ′ ⊂ Z such that (X ′, Z) ∈ S,
(X ∩H) ⊆ (X ′ ∩H), and (X ′ ∩ B) ⊆ (X ∩ B).

Condition (i) of 〈H,B〉-well-definedness subsumes well-definedness. Conditions (ii)
and (iii) reflect that the “there”-component Y of an 〈H,B〉-model of P is a model
of PY , minimal amongst the models sharing the same atoms from H, and express that
the “here”-component of non-total 〈H,B〉-models is a subset of H ∪ B. Observe that
Condition (iv) expresses an optimality property of non-total 〈H,B〉-models with respect
to sets H and B. For relating 〈H,B〉-models to SE-models, this optimality criterion is
also captured in the following notion:

Definition 3. Let H,B be sets of atoms and S a set of SE-interpretations. Then, a non-
total SE-interpretation (X,Y) ∈ S is 〈H,B〉-optimal in S if there is no X ′ ⊂ Y such
that (X ′, Y) ∈ S, (X ∩ H) ⊆ (X ′ ∩ H), (X ′ ∩ B) ⊆ (X ∩ B), and X ∩ (H ∪ B) �=
X ′ ∩ (H∪ B).

The following two lemmas express relations between SE-models and HE-models.

Lemma 1. Let H,B ⊆ At be sets of atoms, P a DLP over At , and (X,Y) a non-
total SE-model of P that is 〈H,B〉-optimal in SE (P). If (Y, Y) ∈ HEH

B (P), then
(X ∩ (H∪ B), Y) ∈ HEH

B (P).

Lemma 2. Let H,B ⊆ At be sets of atoms and P a DLP over At . If (Y, Y) is an
〈H,B〉-model of P , then (Y, Y) is an SE-model of P . If (X,Y) is a non-total 〈H,B〉-
model of P , then, for some X ′ ⊂ Y with X = X ′ ∩ (H ∪ B), (X ′, Y) ∈ SE (P) and
(X ′, Y) is 〈H,B〉-optimal in SE (P).

With Lemmas 1 and 2 at hand, we can show the following result for DLPs.

Theorem 3. Let H,B ⊆ At be sets of atoms and P a DLP over At . Then, HEH
B (P) is

〈H,B〉-complete.

568 J. Pührer, H. Tompits, and S. Woltran

Proof. First, we show that HEH
B (P) is 〈H,B〉-well-defined. Consider some X ⊂ Y

with (X,Y) ∈ HEH
B (P). Conditions (i) and (ii) of the definition of an〈H,B〉-model

are satisfied for (Y, Y). As (Y, Y) is total, also Conditions (iii) and (iv) hold, and con-
sequently (Y, Y) ∈ HEH

B (P). Since (X,Y) is non-total, we have that (X ∩ H) ⊂
(Y ∩ H) and X ⊂ Y ∩ (H ∪ B). Towards a contradiction, assume that there is some
(U, Y) ∈ HEH

B (P) with U ⊂ Y , (X ∩ H) ⊆ (U ∩ H), (U ∩ B) ⊆ (X ∩ B), and
X �= U . From (U, Y) ∈ HEH

B (P) it follows from Condition (iii) of the definition of an
〈H,B〉-model of P that there is some U ′ ⊂ Y with U ′ |= PY and U ′ ∩ (H∩ B) = U .
From the latter and X �= U , we get X �= U ′ ∩ (H ∩ B). Furthermore, it holds that
(X ∩ H) ⊆ (U ′ ∩ H) and (U ′ ∩ B) ⊆ (X ∩ B). Since (X,Y) ∈ HEH

B (P), we
get by Condition (iv) that U ′ �|= PY , being a contradiction to our previous result that
U ′ |= PY . Hence, HEH

B (P) is 〈H,B〉-well-defined. Towards a contradiction, assume
there is a DLP P such that HEH

B (P) is not 〈H,B〉-complete. Observe that there must be
someX,Y, Z with Y ⊂ Z such that (X,Y), (Z,Z) ∈ HEH

B (P) and, for everyX ′ ⊂ Z
with (X ∩H) ⊆ (X ′∩H) and (X ′ ∩B) ⊆ (X ∩B), it holds that (X ′, Z) /∈ HEH

B (P).
Now we show that there is some X ′ ⊂ Z such that X ′ ∩ (H ∪ B) = X ∩ (H ∪ B)
and (X ′, Z) ∈ SE (P). Consider the case that X = Y . We know from Lemma 2 that
(X,X) and (Z,Z) are SE-models of P . By completeness of SE-models, we get that
(X,Z) ∈ SE (P). Note that X ⊂ Z . Now assume that X ⊂ Y . Then, by Lemma 2,
there is a U ⊂ Z with X = U ∩ (H ∪ B) such that (U, Y) ∈ SE (P). Thus, since
(Z,Z) ∈ SE (P) and it holds that Y ⊆ Z , we get by completeness of SE-models that
(U,Z) ∈ SE (P). Consequently, in either case, there exists some X ′ ⊂ Z such that
X ′ ∩ (H ∪ B) = X ∩ (H ∪ B) and (X ′, Z) ∈ SE (P). From that, and by definition of
〈H,B〉-optimality, there exists an 〈H,B〉-optimalXopt ⊂ Z in SE (P) with (X∩H) ⊆
(Xopt ∩H) and (Xopt ∩B) ⊆ (X ∩B). By 〈H,B〉-optimality of Xopt in SE (P), since
(Z,Z) ∈ HEH

B (P), we get by Lemma 1 that (Xopt ∩ (H ∪ B), Z) ∈ HEH
B (P). How-

ever, as (X ∩ H) ⊆ (Xopt ∩H) and (Xopt ∩ B) ⊆ (X ∩ B), this is a contradiction to
our observation. Hence, HEH

B (P) is 〈H,B〉-complete. �

Next, we show that, conversely, for every 〈H,B〉-complete set S of SE-interpreta-
tions, there is a DLP P such that HEH

B (P) = S. To this end, we define a mapping
cH,B(·), representing the completion transformation τHB,C(·) for the case C = NLP
mentioned at the beginning of this section, assigning sets of SE-interpretations to sets
of SE-interpretations, serving a double role: On the one hand, it is a device to con-
struct a DLP from any 〈H,B〉-complete set S of SE-interpretations. On the other hand,
the rewriting is designed such that cH,B(S) is HI-closed iff S is 〈H,B〉-closed under
here-intersection, a property that is described later in this section.

Definition 4. Let H,B be sets of atoms. For every set S of SE-interpretations, let
cH,B(S) be given by {(Y, Y) | (Y, Y) ∈ S} ∪ {(X,Y) | X ⊂ Y, (X ∩ H) ⊆
(X ′ ∩H), (X ′ ∩ B) ⊆ (X ∩ B), (X ′, Y) ∈ S, X ′ ⊂ Y }.

Note that whenever (X,Y) ∈ S, also (X,Y) ∈ cH,B(S).

Lemma 3. Let H,B be sets of atoms and S a set of SE-interpretations. If S is 〈H,B〉-
complete, then cH,B(S) is complete.

Elimination of Disjunction and Negation in Answer-Set Programs 569

Proof. Assume that S is 〈H,B〉-complete. First, we show that cH,B(S) is well-defined.
Consider some (X,Y) ∈ cH,B(S) with X ⊂ Y . By Definition 4, there is some
(X ′, Y) ∈ S. Since S is well-defined, we also have (Y, Y) ∈ S and therefore (Y, Y) ∈
cH,B(S). So, cH,B(S) is well-defined. Towards a contradiction, assume that cH,B(S)
is not complete. There must be some interpretations X,Y, Z with Y ⊆ Z such that
(X,Y), (Z,Z) ∈ cH,B(S) and (X,Z) /∈ cH,B(S). Note that by Definition 4, it holds
that (Z,Z) ∈ S. From (X,Y) ∈ cH,B(S), it follows that X ⊆ Y . Furthermore, it must
hold that Y ⊂ Z , as otherwise (X,Z) = (X,Y) ∈ cH,B(S). In case that X = Y , we
get by Definition 4 that (X,X) ∈ S. Since (Z,Z) ∈ S, by 〈H,B〉-completeness of S
there is an X ′ ⊂ Z , where (X ′, Z) ∈ S, (X∩H) ⊆ (X ′∩H) and (X ′∩B) ⊆ (X∩B).
In case that X ⊂ Y , we get by Definition 4 that there is some (X ′′, Y) ∈ S such that
(X ∩ H) ⊆ (X ′′ ∩ H) and (X ′′ ∩ B) ⊆ (X ∩ B). Since (Z,Z) ∈ S, by 〈H,B〉-
completeness of S, there is again an X ′ ⊂ Z with (X ′, Z) ∈ S, where (X ∩ H) ⊆
(X ′′ ∩ H) ⊆ (X ′ ∩ H) and (X ′ ∩ B) ⊆ (X ′′ ∩ B) ⊆ (X ∩ B). Therefore, in both
cases, we have (X,Z) ∈ cH,B(S), being a contradiction to (X,Z) /∈ cH,B(S). Hence,
cH,B(S) is complete. �

The next lemma shows that a program having cH,B(S) as its set of SE-models is guar-
anteed to have S as its set of 〈H,B〉-models. This is the case since all freshly introduced
SE-interpretations either lack 〈H,B〉-optimality in cH,B(S) or are already represented
by an SE-interpretation in S.

Lemma 4. LetH,B ⊆ At be sets of atoms, S a set of SE-interpretations, and P a DLP
over At . If SE (P) = cH,B(S) and S is 〈H,B〉-complete, then HEH

B (P) = S.

Now we put things together. By using Proposition 2 and Lemmas 3 and 4 we get the
following result:

Theorem 4. Let H,B ⊆ At be sets of atoms. Then, for every 〈H,B〉-complete set S of
SE-interpretations, there is a DLP P over At such that HEH

B (P) = S.

4.2 Elimination of Disjunction

While 〈H,B〉-completeness generally characterises sets of SE-interpretations that are
〈H,B〉-models of a DLP, we now define a supplementary property for NLPs.

Definition 5. Let H and B be sets of atoms. A set S of SE-interpretations is 〈H,B〉-
closed under here-intersection, or 〈H,B〉-HI-closed, if, whenever (X1, Y) ∈ S and
(X2, Y) ∈ S, withX1 ⊂ Y andX2 ⊂ Y , there is someX ′ ⊂ Y such that (X ′, Y) ∈ S,
(X1 ∩X2) ∩H ⊆ (X ′ ∩H), and (X ′ ∩ B) ⊆ (X1 ∩X2) ∩ B.

In terms of the discussion from the beginning of this section, the joint stipulation of
〈H,B〉-completeness and 〈H,B〉-closure under here-intersection amounts to condition
φH
B,C(·) for C = NLP .

Theorem 5. Let H,B ⊆ At be sets of atoms and P an NLP over At . Then, HEH
B (P)

is 〈H,B〉-HI-closed.

570 J. Pührer, H. Tompits, and S. Woltran

Proof. Towards a contradiction, assume HEH
B (P) is not 〈H,B〉-HI-closed. Then, there

must be some X1, X2, Y such that (X1, Y), (X2, Y) ∈ HEH
B (P) with X1 ⊂ Y and

X2 ⊂ Y , but there is no X ′ ⊂ Y such that (X ′, Y) ∈ HEH
B (P), (X1 ∩ X2 ∩ H) ⊆

(X ′∩H), and (X ′∩B) ⊆ (X1∩X2∩B). Note that therefore (X1∩X2, Y) /∈ HEH
B (P).

Moreover, from well-definedness of HEH
B (P) and (X ′, Y) ∈ HEH

B (P), it follows that
(Y, Y) ∈ HEH

B (P). By Lemma 2, there are SE-models (X ′
1, Y), (X ′

2, Y) of P such that
X ′

1 ⊂ Y , X ′
2 ⊂ Y , X1 = (X ′

1 ∩ (H∪B)), and X2 = (X ′
2 ∩ (H∪B)). As P is an NLP,

from Theorem 2 it follows that SE (P) is HI-closed. Therefore, (X ′
1∩X ′

2, Y) ∈ SE (P)
holds. Note that Conditions (i) and (ii) of the definition for being an 〈H,B〉-model of P
are satisfied by (X1∩X2, Y) since (Y, Y) ∈ HEH

B (P). Furthermore, from (X ′
1∩X ′

2) ⊂
Y , (X ′

1∩X ′
2∩(H∪B)) = (X1∩X2), andX ′

1∩X ′
2 |= PY , it follows that Condition (iii)

holds. Since (X1 ∩X2, Y) /∈ HEH
B (P), Condition (iv) must be violated. Hence, there

is some X ′ ⊂ Y with (X1 ∩X2 ∩ H) ⊆ (X ′ ∩ H), (X ′ ∩ B) ⊆ (X1 ∩X2 ∩ B), and
(X1∩X2) �= X ′∩(H∪B) such thatX ′ |= PY , and thus (X ′, Y) ∈ SE (P). Consider an
〈H,B〉-optimal SE-interpretation (Xopt , Y) in SE (P) having these properties. Then,
since (Z,Z) ∈ HEH

B (P), we get by Lemma 1 that (Xopt ∩ (H ∪ B), Y) ∈ HEH
B (P).

We end up in a contradiction, as Xopt ∩ (H∪B) ⊂ Y , (X1 ∩X2 ∩H) ⊆ (Xopt ∩H),
and (Xopt ∩ B) ⊆ (X1 ∩X2 ∩ B). Hence, HEH

B (P) is 〈H,B〉-HI-closed. �
As shown next, for an 〈H,B〉-complete set S of SE-interpretations that is 〈H,B〉-HI-
closed, cH,B(S) is the set of SE-models of a normal logic program. New non-total
SE-interpretations are introduced in cH,B(S) that, as we will see below, guarantee that
cH,B(S) is HI-closed.

Lemma 5. Let H,B be sets of atoms and S a set of SE-interpretations. If S is 〈H,B〉-
HI-closed, then cH,B(S) is HI-closed.

Proof. Let S be 〈H,B〉-HI-closed. Consider some (X1, Y), (X2, Y) ∈ cH,B(S). We
show that (X1 ∩X2, Y) ∈ cH,B(S). First, consider the case that X1 = Y or X2 = Y .
Without loss of generality, assume X2 = Y . Then, we have (X1 ∩X2, Y) ∈ cH,B(S)
since X1 = (X1 ∩ X2). Now assume X1 ⊂ Y and X2 ⊂ Y . From S being 〈H,B〉-
HI-closed, it follows that there is some X ′ ⊂ Y such that (X ′, Y) ∈ S, (X1 ∩ X2 ∩
H) ⊆ (X ′ ∩ H), and (X ′ ∩ B) ⊆ (X1 ∩ X2 ∩ B). From Definition 4, we conclude
(X1 ∩X2, Y) ∈ cH,B(S). �
We now state our main result for casting to NLP under hyperequivalence. Its proof
follows the general argumentation for establishing (�) in the beginning of this section,
using the preceding results.

Theorem 6. For sets H,B ⊆ At and a DLP P over At , there exists an NLP Q over At
such that P ≡H

B Q iff HEH
B (P) is 〈H,B〉-HI-closed.

Example 4. Reconsider program P1 from Example 1 and recall that there is no NLP
that is strongly equivalent to P1. We now weaken the notion of equivalence, by banning
b from the bodies of rules in potential context programs. So, for sets H = {a, b, c} and
B = {a, c}, we have HEH

B (P1) = {(b, b), (b, ab), (ab, ab), (ac, ac), (b, bc), (bc, bc),
(b, abc), (ab, abc), (ac, abc), (bc, abc), (abc, abc)}. As HEH

B (P1) is 〈H,B〉-HI-closed,
there is an NLP that is 〈H,B〉-equivalent to P1, e.g., P ′

1 = {a ← not b; b ←
not a; b← not c; c← not b}.

Elimination of Disjunction and Negation in Answer-Set Programs 571

4.3 Elimination of Negation

Similarly to closure under here-intersection, we now generalise the notion of here-
totality.

Definition 6. Let H,B be sets of atoms. A set S of SE-interpretations is 〈H,B〉-here-
total if, for any pair (X,Y) ∈ S with X ⊂ Y , there is some X ′ ⊂ Y such that
(X ′, X ′) ∈ S and X = X ′ ∩ (H ∪ B).

Concerning condition φH
B,C(·) from the beginning of this section, its realisation in case

C = PLP is now given by conjoining 〈H,B〉-completeness and 〈H,B〉-here-totality.

Theorem 7. Let H,B ⊆ At be sets of atoms and P a PLP over At . Then, HEH
B (P) is

〈H,B〉-here-total.

For casting a DLP to PLP , another kind of completion is needed. We aim at mapping
an 〈H,B〉-complete set of SE-interpretations being 〈H,B〉-here-total to a complete set
of SE-interpretations that is here-total.

Definition 7. For any set S of SE-interpretations, let ĉ(S) be given by {(X,Y) | X ⊆
Y, (X,X), (Y, Y) ∈ S}.

Note that ĉ(·) represents the completion transformation τHB,C(·) for C = PLP.
The main result for casting DLPs to PLP is formulated as follows:

Theorem 8. Let H,B ⊆ At be sets of atoms and P a DLP over At . Then, there exists
a PLP Q over At such that P ≡H

B Q iff HEH
B (P) is 〈H,B〉-here-total.

Example 5. Again, consider program P1 from Example 1 and recall that there is no
PLP that is strongly equivalent to P1. For sets H = {a} and B = {a, c}, we have
HEH

B (P1) = {(b, b), (∅, ab), (ab, ab), (ac, ac)}. HEH
B (P1) is 〈H,B〉-here-total, and

thus there is a PLP that is 〈H,B〉-equivalent to P1, e.g., P ′′
1 = {a ∨ b←; b ∨ c←}.

4.4 Joint Elimination of Disjunction and Negation

The characterising property of DLPs being castable to HORN is independent of the
body alphabet. In conjunction with 〈H,B〉-completeness, it constitutes φH

B,HORN (·).

Definition 8. For a set H of atoms, a set S of SE-interpretations is H-closed under
there-intersection, or H-TI-closed, if, whenever (X,X) ∈ S and (Y, Y) ∈ S, there is
a (Z,Z) ∈ S such that Z ⊆ (X ∩ Y) and (Z ∩H) = (X ∩ Y) ∩H.

Theorem 9. Let H,B ⊆ At be sets of atoms and P a Horn program over At . Then,
HEH

B (P) is H-TI-closed.

The completion transformation for casting toHORN , defined next, reuses the comple-
tion ĉ(·) from Definition 7. However, a refinement is necessary for guaranteeing closure
under there-intersection of the respective mapping.

Definition 9. Let H ⊆ At be a set of atoms. For every set S of SE-interpretations, let
c̃H(S) be given by ĉ({(Z ′, Z ′) | (Z,Z) ∈ S, Z ⊆ Z ′ ⊆ At , (Z ′ ∩H) = (Z ∩H)}).

572 J. Pührer, H. Tompits, and S. Woltran

As in the previous cases, c̃H(·) represents τHB,C(·) for C = HORN . As well, in Sec-
tion 5 we will summarise the role of the completion transformations cH,B(·), ĉ(·), and
c̃H(·) for computing a casting of a given program.

Theorem 10. Let H,B ⊆ At be sets of atoms and P a DLP over At . Then, there
is a Horn program Q over At with P ≡H

B Q iff HEH
B (P) is 〈H,B〉-here-total and

H-TI-closed.

Example 6. Consider program P2 from Example 1 and recall from Example 3 that
there is no Horn program strongly equivalent to P2. For sets H = {a, c} and B =
{a, b, c}, we have HEH

B (P1) = {(∅, ∅), (∅, ab), (ab, ab), (∅, bc), (bc, bc)}. HEH
B (P2) is

〈H,B〉-here-total and 〈H,B〉-TI-closed. Thus, there is a Horn program that is 〈H,B〉-
equivalent to P2, e.g., P ′

2 = {b← a; b← c; ← a, c}.

4.5 Special Cases

We briefly discuss our results with respect to important corner cases of hyperequiv-
alence. Naturally, for strong equivalence, the introduced characterisations reduce to
the notions presented in Section 3. Hence, we provided proper generalisations of the
concepts known for this special case. For identical head and body alphabets, hyper-
equivalence reduces to relativised strong equivalence as introduced by Woltran [13].
Interestingly, 〈A,A〉-closure under here-intersection reduces to ordinary closure under
here-intersection for 〈A,A〉-well-defined sets of SE-interpretations. Consequently, for
relativised strong equivalence, we get the following refinement of Theorem 6:

Theorem 11. Let A ⊆ At be a set of atoms and P a DLP over At . Then, there exists
an NLP Q over At such that P ≡A

A Q iff HEA
A(P) is HI-closed.

5 Computational Aspects of Program Casting

In this section, we first summarise how program castings can be computed, and after-
wards we discuss the complexity of casting under hyperequivalence.

Let H,B ⊆ At be sets of atoms. For obtaining an 〈H,B〉-casting of a given DLP P
over At to class C with (i) C = NLP , (ii) C = PLP, or (iii) C = HORN , respectively,
where P is castable to C under 〈H,B〉-equivalence, one can proceed as follows:

1. Compute HEH
B (P).

2. Depending on the class C of programs, compute (i) S = cH,B(HEH
B (P)), (ii) S =

ĉ(HEH
B (P)), or (iii) S = c̃H(HEH

B (P)).
3. Compute the canonical program CPS for S.
4. Apply techniques to remove (i) disjunctions, (ii) negations, or (iii) negations and

disjunctions from CPS , preserving strong equivalence, as discussed in Section 3.

For analysing the complexity of CAST(C) for C ∈ {NLP,PLP ,HORN}, we need
the following membership result for 〈H,B〉-model checking.

Theorem 12. The problem of deciding whether (X,Y) ∈ HEH
B (Q), for givenX,Y,H,

B ⊆ At and DLP Q over At , is in ∆P
2 .

Elimination of Disjunction and Negation in Answer-Set Programs 573

The following relationship between 〈H,B〉-models and SE-models is essential for
efficiently checking whether a DLP can be replaced by a hyperequivalent NLP.

Lemma 6. Let X,Y,H,B ⊆ At be sets of atoms, and P a DLP over At such that
X ⊆ (H ∪ B). If (Y, Y) ∈ HEH

B (P), then the following statements are equivalent:

– there is some X ′ ⊂ Y with (X ′, Y) ∈ HEH
B (P), (X ∩ H) ⊆ (X ′ ∩ H), and

(X ′ ∩ B) ⊆ (X ∩ B);
– there is some X ′′ ⊂ Y with (X ′′, Y) ∈ SE (P), (X ∩ H) ⊆ (X ′′ ∩ H), and

(X ′′ ∩ B) ⊆ (X ∩ B).

Theorem 13. Deciding CAST(NLP) is ΠP
2 -complete. Moreover, the problem remains

ΠP
2 -hard if we restrict it to instances where H = B holds.

Proof (Sketch). For membership, we show that the complementary problem, i.e., de-
ciding whether HEH

B (P) is not 〈H,B〉-HI-closed, is in ΣP
2 . Note that HEH

B (Q) is
〈H,B〉-HI-closed iff HEH

B (Q) ∩ (atm(Q) × atm(Q)) is 〈H,B〉-HI-closed. We can
nondeterministically guess some X1, X2, Y ⊆ atm(Q). By Theorem 12, a polyno-
mial number of NP-oracle calls suffice to decide whether (X1, Y) ∈ HEH

B (Q) and
(X2, Y) ∈ HEH

B (Q). As a consequence of Lemma 6, an NP-oracle can be used to check
whether there is no X ′ ⊂ Y with (X ′, Y) ∈ HEH

B (Q), (X1 ∩X2) ∩ H ⊆ (X ′ ∩ H),
and (X ′ ∩ B) ⊆ (X1 ∩X2) ∩ B. Thus, a nondeterministic algorithm with access to an
NP-oracle solves the complementary problem in polynomial time.

We show hardness by a reducing the problem of deciding the truth of a quantified
Boolean formula (QBF) to checking whether HEH

B (P) is not 〈H,B〉-HI-closed. Con-
sider a QBF Φ = ∃K∀Lδ1 ∨ · · · ∨ δr, where each δi is a conjunction of literals over
K ∪ L. We assume that K �= ∅ and L �= ∅. For every x ∈ K ∪ L, we denote by x
a globally new atom not appearing anywhere in φ. Given a set X of atoms, we define
X = {x | x ∈ X}. Finally, for each conjunction δ = a1 ∧ · · · ∧ ah ∧ ¬ah+1 ∧ ¬an

of literals, we denote by δ† the sequence a1, . . . , ah, ah+1, . . . , an and define program
PΦ, using further new atoms a, b, w, as follows.

PΦ = {k← not k; k ← not k; ← k, k | k ∈ K} ∪
{l ∨ l←; w ← l, l; l← w; l← w; | l ∈ L} ∪
{a ∨ b← δ†i ; w← δ†i ; | 1 ≤ i ≤ r}.

For A = K ∪K ∪ {a, b}, it can be shown that Φ is true iff HEA
A(PΦ) is not HI-closed,

and therefore, by Theorem 11, not 〈A,A〉-HI-closed. Since deciding the truth of a QBF
of form Φ is ΣP

2 -hard, the assertion follows from that. �
It was shown [8] that there is no rewriting f from DLPs to NLPs such that P ≡At

∅ f(P),
where f(P) is polynomial in the size of P , for every program P , unless the polynomial
hierarchy (PH) collapses. Hence, there is also no polynomial rewriting from DLPs to
NLPs for the general case of hyperequivalence, unless the PH collapses.

It turns out that checking whether a DLP can be replaced by a hyperequivalent PLP
is computationally more expensive than deciding whether there is a corresponding NLP.

Theorem 14. Deciding CAST(PLP) is ΠP
3 -complete. Moreover, the problem remains

ΠP
3 -hard if we restrict it to instances where B ⊆ H holds.

574 J. Pührer, H. Tompits, and S. Woltran

Proof (Sketch). We only show the hardness part. Consider a QBF Φ = ∃K∀L∃Mφ,
where φ is a formula in CNF over the set K ∪L∪M of atoms. We assume that K �= ∅,
L �= ∅, and M �= ∅. As before, for every x ∈ K ∪ L ∪M , we denote by x a globally
new atom not appearing anywhere in φ, and we define X = {x | x ∈ X} for every set
X of atoms. Finally, for each clause γ = x1 ∨· · · ∨xk ∨¬xk+1 ∨· · · ∨¬xn, we denote
by γ‡ the sequence x1, . . . , xk, xk+1, . . . , xn, and define a program PΦ, using a further
new atom w, as follows:

PΦ = {j ∨ j ←; o← j, j; o← j, j | j ∈ K ∪ L, o ∈ K ∪ L ∪M} ∪
{m ∨m←; w← m,m; m← w; m← w | m ∈M} ∪
{w← γ‡ | for each clause γ in φ} ∪ {w← not w}.

For B ⊆ H = K ∪K , it can be shown that Φ is true iff HEH
B (PΦ) is not 〈H,B〉-here-

total. As deciding the truth of a QBF of form Φ is ΣP
3 -hard, the assertion follows. �

Theorem 15. Given set At of atoms, there is no rewriting f : DLP×At×At → PLP
such that, for given sets H,B ⊆ At of atoms and a DLP P that is castable to PLP,
P ≡H

B f(P,H,B) and f(P,H,B) is polynomial in the size of P , unless the polynomial
hierarchy collapses. The result also holds under the restriction B ⊆ H.

Proof. Let H,B be sets of atoms such that B ⊆ H. Assume that a polynomial-size
rewriting f of the described kind exists. We can guess a PLP P ′, polynomial in the size
of P , in nondeterministic polynomial time. Since checking P ′ ≡H

B P is in ΠP
2 [5], a

nondeterministic algorithm with access to a ΣP
2 -oracle can decide CAST(PLP). This

yields membership of CAST(PLP) in ΣP
3 , which is a contradiction to theΠP

3 -hardness
of the problem, unless the polynomial hierarchy collapses. �

Finally, we have the following result for the Horn case:

Theorem 16. Deciding CAST(HORN) is in ΠP
3 .

6 Discussion

We studied casting of disjunctive answer-set programs under hyperequivalence and
provided necessary and sufficient semantical conditions, deciding for a program P ,
whether there exists a program Q of a given syntactic subclass of DLPs which is hyper-
equivalent to P . Moreover, we provided methods for constructing such a Q and studied
the complexity of deciding whether casting can be applied. Here, an open issue is de-
termining exact complexity bounds for CAST(HORN).

Other open issues concern the canonical program we used to obtain our results. First
of all, it would be valuable to have canonical programs which are “class sensitive”, i.e.,
given a set S of SE-interpretations, the associated canonical program is one which is
exactly in that class which is characterised by S. This would circumvent the fourth and
last step of our program casting algorithm as sketched in Section 5. Secondly, having
a canonical program directly for HE-models rather than for SE-models would further
simplify the task.

An interesting application of casting under hyperequivalence is modular program-
ming, when modules are to be replaced by syntactically simpler programs. As it is

Elimination of Disjunction and Negation in Answer-Set Programs 575

typically known which atoms are allowed to occur in the heads and bodies of rules in
context modules, adequate casting can be applied even when impossible under strong
equivalence. Furthermore, casting under hyperequivalence gives insight into when a
syntactical class is intrinsically needed, or contrarily, when connectives like disjunc-
tion and negation are dispensable. By varying the hyperequivalence parameters, atoms
which are responsible for the need of a connective can be identified. Based on the no-
tions developed, in a next step, properties can be extracted which allow for constructing
methods for determining the strongest equivalence notion under which casting is possi-
ble. That is, for a given program P and syntactic class C, find H and B such that P is
castable to C under 〈H,B〉-equivalence andH and B satisfy some optimality condition.

Another crucial matter for future work is research into casting with equivalence un-
der projection [12], where answer sets need to be identical only on selected atoms.
Usually, one is interested in the behaviour of a program with respect to distinguished
input and output atoms. By varying parametersH and B, 〈H,B〉-equivalence allows for
specifying the input part. Projection, on the other hand, is needed for determining out-
put atoms. Once conditions for casting with projections are defined, it can be decided
whether the respective task allows for replacing a program by a simpler one.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

2. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385 (1991)

3. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-
tions on Computational Logic 2(4), 526–541 (2001)

4. Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model semantics.
In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238. Springer, Heidelberg
(2003)

5. Woltran, S.: A common view on strong, uniform, and other notions of equivalence in answer-
set programming. Theory and Practice of Logic Programming 8(2), 217–234 (2008)

6. Truszczyński, M., Woltran, S.: Relativized hyperequivalence of logic programs for modular
programming. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
576–590. Springer, Heidelberg (2008)

7. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform
and strong equivalence. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS,
vol. 4483, pp. 87–99. Springer, Heidelberg (2007)

8. Eiter, T., Fink, M., Tompits, H., Woltran, S.: On eliminating disjunctions in stable logic
programming. In: Proc. KR 2004, pp. 447–458. AAAI Press, Menlo Park (2004)

9. Turner, H.: Strong equivalence made easy: Nested expressions and weight constraints. The-
ory and Practice of Logic Programming 3(4-5), 602–622 (2003)

10. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte, physik.-
math. Klasse, preußische Akademie der Wissenschaften (1930)

11. Gödel, K.: Zum intuitionistischen Aussagenkalkül. Anzeiger Akademie der Wissenschaften
in Wien, math.-naturwiss. Klasse 69, 65–66 (1932)

12. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer set programming.
In: Proc. IJCAI 2005, pp. 97–102 (2005)

13. Woltran, S.: Characterizations for relativized notions of equivalence in answer set program-
ming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 161–173. Springer,
Heidelberg (2004)

Relativized Hyperequivalence of Logic Programs for
Modular Programming

Mirosław Truszczyński1 and Stefan Woltran2

1 Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA
2 Institut für Informationssysteme 184/2, Technische Universität Wien, Favoritenstraße 9-11,

A-1040 Vienna, Austria

Abstract. A recent framework of relativized hyperequivalence of programs of-
fers a unifying generalization of strong and uniform equivalence. It seems to be
especially well suited for applications in program optimization and modular pro-
gramming due to its flexibility that allows us to restrict, independently of each
other, the head and body alphabets in context programs. We study relativized
hyperequivalence for the three semantics of logic programs given by stable, sup-
ported and supported minimal models. For each semantics, we identify four types
of contexts, depending on whether the head and body alphabets are given directly
or as the complement of a given set. Hyperequivalence relative to contexts where
the head and body alphabets are specified directly has been studied before. In this
paper, we establish the complexity of deciding relativized hyperequivalence wrt
the three other types of context programs.

1 Introduction

We study variants of relativized hyperequivalence that are relevant for the development
and analysis of logic programs with modular structure. Our main results concern the
complexity of deciding relativized hyperequivalence for the three major semantics of
logic programs given by stable, supported and supported minimal models.

Logic programming with the semantics of stable models, nowadays often referred to
as answer-set programming, is a computational paradigm for knowledge representation,
as well as modeling and solving of constraint problems [1,2,3,4]. In recent years, it has
been steadily attracting more attention. One reason is that answer-set programming is
truly declarative. Unlike in, say, Prolog, the order of rules in programs and the order of
literals in rules have no effect on the meaning of the program. Secondly, the efficiency
of the latest tools for processing programs, especially solvers, reached the level that
makes it feasible to use them for problems of practical importance [5].

It is broadly recognized in software engineering that modular programs are easier
to design, analyze and implement. Hence, essentially all programming languages and
environments support the development of modular programs. Accordingly, there has
been much work recently to establish foundations of modular answer-set programming.
One line of investigations has focused on the notion of an answer-set program module
[6,7,8,9]. This work builds on ideas for compositional semantics of logic programs pro-
posed in [10] and encompasses earlier results on stratification and program splitting [11].

The other main line of research, to which our paper belongs, has centered on program
equivalence and, especially, on the concept of equivalence for substitution. Programs P

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 576–590, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Relativized Hyperequivalence of Logic Programs for Modular Programming 577

and Q are equivalent for substitution wrt a class C of programs called contexts, if for
every context R ∈ C, P ∪ R and Q ∪ R have the same stable models. Thus, if a logic
program is the union of programs P and R, where R ∈ C, then P can be replaced with
Q, with the guarantee that the semantics is preserved no matter what R is (as long as
it is in C) precisely when P and Q are equivalent for substitution wrt C. If C contains
the empty program (which is typically the case), the equivalence for substitution wrt C
implies the standard equivalence under the stable-model semantics.1 The converse is not
true. We refer to these stronger forms of equivalence collectively as hyperequivalence.

Hyperequivalence wrt the class of all programs, known more commonly as strong
equivalence, was proposed and studied in [12]. That work prompted extensive inves-
tigations of the concept that resulted in new characterizations [13,14] and connections
to certain non-standard logics [15]. Hyperequivalence wrt contexts consisting of facts
was studied in [16,17]. This version of hyperequivalence, known as uniform equiva-
lence, appeared first in the database area in the setting of DATALOG and query equiva-
lence [18]. Hyperequivalence wrt contexts restricted to a given alphabet, or relativized
hyperequivalence, was proposed in [17,19]. It was generalized in [20] to allow contexts
that use (possibly) different alphabets for the heads and bodies of rules. The approach
offers a unifying framework for strong and uniform equivalence. Hyperequivalence, in
which one compares projections of answer sets on some designated sets of atoms rather
than entire answer sets was investigated in [21,22].

All those results concern the stable-model semantics of programs. There has been lit-
tle work on other semantics, with [23] long being a notable single exception. Recently
however, [24] introduced and investigated relativized hyperequivalence of programs un-
der the semantics of supported models [25] and supported minimal models, two other
major semantics of logic programs. [24] characterized these variants of hyperequiva-
lence and established the complexity of some associated decision problems.

In this paper, we continue research of relativized hyperequivalence under all three
major semantics of logic programs. As in [20,24], we focus on contexts of the form
HB(A,B), where HB(A,B) stands for the set of all programs that use elements from
A in the heads and atoms from B in the bodies of rules. Our main goal is to establish
the complexity of deciding whether two programs are hyperequivalent (relative to a
specified semantics) wrt HB(A,B). We consider the cases when A and B are either
specified directly or in terms of their complement. As we point out in the following
section, such contexts arise naturally when we design modular logic programs.

2 Motivation

In the paper we consider finite propositional programs only, all over a fixed countable
infinite set of atoms At . For a set of atoms X , we define Xc = At \X .

A logic program is A-defining if it specifies the definitions of atoms in A. The defini-
tions may be recursive, they may involve interface atoms, that is, atoms defined in other
modules, as well as atoms used locally to represent some needed auxiliary concepts.
Let L be the set of local atoms, and let P be a particular logic program expressing the

1 Two programs are equivalent under the stable-model semantics if they have the same stable
models.

578 M. Truszczyński and S. Woltran

definitions. For P to behave properly when combined with other programs, these “con-
text” programs must not have any occurrences of atoms from L and must have no atoms
from A in the heads of their rules. In our terminology, these are precisely programs in
HB((A ∪ L)c, Lc).2

The definitions of atoms in A can in general be captured by several different A-
defining programs. A key question concerning such programs is whether they are equiv-
alent. Clearly, two A-defining programsP and Q, both using atoms from L to represent
local auxiliary concepts, should be regarded as equivalent if they behave in the same
way in the context of any program fromHB((A∪L)c, Lc). In other words, the notion of
equivalence that is appropriate in our setting is hyperequivalence wrtHB((A∪L)c, Lc)
under a selected semantics (stable, supported or supported-minimal).

Example 1. Let us assume that A = {a, b} and that c and d are interface atoms (atoms
defined elsewhere). We need a module that works as follows:

1. If c and d are both true, exactly one of a and b must be true
2. If c is true and d is false, only a must be true
3. If d is true and c is false, only b must be true
4. If c and d are both false, a and b must be false.

We point out that c and d may depend on a and b and so, in some cases the overall
program may have no models of a particular type (to be concrete, for a time being we
fix attention to stable models).

One way to express above conditions is by means of the following {a, b}-defining
program P (in this example we assume programs without local atoms, that is, L = ∅):

a← c,not b; b← d,not a.

Combining P with programs that specify facts: {c, d}, {c}, {d} and ∅, it is easy to see
that P behaves as required. For instance, P ∪ {c} has exactly one stable model {a, c}.

However, P may also be combined with more complex programs. For instance, let
us consider the program R = {c ← not d; d ← a,not c}. Here, d can only be true
if a is true and c is false. But then b must be true and a must be false, a contradiction.
Thus, d must be false and c must be true. According to the specifications, there should
be exactly one stable model for P ∪ R in this case: {a, c}. It is easy to verify that it is
indeed the case.

The specifications for a and b can also be expressed by other {a, b}-defining pro-
grams, in particular, by the following program Q:

a← c, d,not b; b← c, d,not a; a← c,not d; b← d,not c.

The question arises whether Q behaves in the same way as P relative to programs from
HB({a, b}c, ∅c) = HB({a, b}c,At). For all contexts considered earlier, it is the case.
However, in general, it is not so. For instance, if R = {c← ; d← a} then, {a, c, d} is
a stable model of P ∪R, while Q ∪R has no stable models. Thus, P and Q cannot be
viewed as equivalent {a, b}-defining programs. �

A similar scenario is as follows: We call a programA-completing if it completes partial
and non-recursive definitions of atoms in A given elsewhere in the overall program

2 A-defining programs were introduced in [26]. However, that work considered more restricted
classes of programs with which A-defining programs could be combined.

Relativized Hyperequivalence of Logic Programs for Modular Programming 579

(which, for instance, might specify the base conditions for a recursive definition of
atoms in A). Assuming that P is an implementation of such a module (again with L as
a set of local atoms), P can be combined with any program R that has no occurrences
of atoms from L and no occurrences of atoms from A in the bodies of its rules. This is
precisely the class HB(Lc, (A ∪ L)c).

One can also construct scenarios that give rise to hyperequivalence wrt context
classesHB(A,B), where A or B is specified directly. Thus, hyperequivalence wrt con-
text classes HB(A,B), where each of A and B is specified directly or in terms of its
complement is of interest. Our goal is to study the complexity of deciding whether two
programs are hyperequivalent relative to such classes of contexts.

3 Technical Preliminaries

Basic logic programming notation and definitions. Disjunctive logic programs (pro-
grams, for short) are sets of (program) rules — expressions of the form

a1| . . . |ak ← b1, . . . , bm,not c1, . . . ,not cn, (1)

where ai, bi and ci are atoms in At , ‘|’ stands for the disjunction, ‘,’ stands for the
conjunction, and not is the default negation. If k = 0, the rule is a constraint. If k ≤ 1,
the rule is normal. Programs consisting of normal rules are called normal.

We often write the rule (1) as H ← B+,not B−, where H = {a1, . . . , ak}, B+ =
{b1, . . . , bm} and B− = {c1, . . . , cn}. We call H the head of the rule, and the con-
junction B+,not B−, the body of the rule. The sets B+ and B− form the positive and
negative body of the rule. Given a rule r, we write H(r), B(r), B+(r) and B−(r) to
denote the head, the body, the positive body and the negative body of r, respectively.
For a program P , we set H (P) =

⋃
r∈P H(r), and B±(P) =

⋃
r∈P B+(r) ∪B−(r).

For an interpretation M ⊆ At and a rule r, we define entailments M |= B(r),
M |= H(r) and M |= r in the standard way. An interpretation M ⊆ At is a model of
a program P (M |= P), if M |= r for every r ∈ P .

The reduct of a disjunctive logic program P wrt a set M of atoms, denoted by PM ,
is the program {H (r) ← B+(r) | r ∈ P, M ∩ B−(r) = ∅}. A set M of atoms is a
stable model of P if M is a minimal model (wrt inclusion) of PM .

If a setM of atoms is a minimal hitting set of {H (r) | r ∈ P, M |= B(r)}, thenM is
a supported model of P .M is a supported minimal model of P if it is a supported model
of P and a minimal model of P . We recall that each stable model is also supported, but
(generally) not vice versa. Supported models of a normal logic programP have a useful
characterization in terms of the (partial) one-step provability operator TP , defined as
follows. For M ⊆ At , if there is a constraint r ∈ P such that M |= B(r) (that is,
M �|= r), then TP (M) is undefined. Otherwise, TP (M) =

⋃
{H (r) | r ∈ P, M |=

B(r)}. Whenever we use TP (M) in a relation such as (proper) inclusion, equality or
inequality, we always implicitly assume that TP (M) is defined.

It is well known that M is a model of P if and only if TP (M) ⊆ M (that is, TP is
defined for M and satisfies TP (M) ⊆ M). Similarly, M is a supported model of P if
TP (M) = M (that is, TP is defined for M and satisfies TP (M) = M) [27].

For a rule r = a1| . . . |ak ← B , where k ≥ 1, a shift of r is a normal program rule
of the form

580 M. Truszczyński and S. Woltran

ai ← B ,not a1, . . . ,not ai−1,not ai+1, . . . ,not ak,

where i = 1, . . . , k. If r is normal, the only shift of r is r itself. A program consisting of
all shifts of rules in a program P is the shift of P . We denote it by sh(P). It is evident
that a set M of atoms is a (minimal) model of P if and only if M is a (minimal) model
of sh(P). It is easy to check that M is a supported (minimal) model of P if and only if
it is a supported (minimal) model of sh(P). Moreover,M is a supported model of P if
and only if Tsh(P)(M) = M . Thus, in all results concerning supported models, we will
use implicitly the shift of programs involved (see also [24] for further details).

Characterizations of hyperequivalence of programs. Let C be a class of (disjunctive)
logic programs. Programs P and Q are supp-equivalent (suppmin-equivalent, stable-
equivalent, respectively) relative to C if for every program R ∈ C, P ∪ R and Q ∪ R
have the same supported (supported minimal, stable, respectively) models.

In this paper, we are interested in equivalence of all three types relative to classes of
programs defined by the head and body alphabets. Let A,B ⊆ At . By HB(A,B) we
denote the class of all programs P such that H (P) ⊆ A and B±(P) ⊆ B. Hence, the
empty program is contained in any such HB(A,B).

For supp-equivalence and suppmin-equivalence, we need the following concept in-
troduced in [24]. Given a program P , and a set A ⊆ At , we define

ModA(P) = {Y ⊆ At |Y |= P and Y \ TP (Y) ⊆ A}.

Theorem 1. Let P and Q be programs, A ⊆ At , and C a class of programs such that
HB(A, ∅) ⊆ C ⊆ HB(A,At). Then, P and Q are supp-equivalent relative to C if and
only if ModA(P) = ModA(Q) and for every Y ∈ ModA(P), TP (Y) = TQ(Y).

To characterize suppmin-equivalence, we use the set ModB
A(P) (following [24]), which

consists of all pairs (X,Y) such that

1. Y ∈ ModA(P)
2. X ⊆ Y |A∪B

3. for each Z ⊂ Y such that Z|A∪B = Y |A∪B , Z �|= P
4. for each Z ⊂ Y such that Z|B = X |B and Z|A ⊇ X |A, Z �|= P
5. if X |B = Y |B , then Y \ TP (Y) ⊆ X .

Theorem 2. Let A,B ⊆ At and let P,Q be programs. Then, P and Q are suppmin-
equivalent relative to HB(A,B) if and only if ModB

A(P) = ModB
A(Q) and for every

(X,Y) ∈ ModB
A(P), TP (Y)|B = TQ(Y)|B .

Relativized stable-equivalence of programs was characterized in [20]. We define
SEB

A(P) to consist of all pairs (X,Y) such that:3

1. Y |= P
2. X = Y or jointly X ⊆ Y |A∪B and X |A ⊂ Y |A
3. for each Z ⊂ Y such that Z|A = Y |A, Z �|= PY

4. for each Z ⊂ Y such that Z|B ⊆ X |B , Z|A ⊇ X |A, and either Z|B ⊂ X |B or
Z|A ⊃ X |A, Z �|= PY

5. there is Z ⊆ Y such that X |A∪B = Z|A∪B and Z |= PY .

3 We use a slightly different presentation than [20].

Relativized Hyperequivalence of Logic Programs for Modular Programming 581

Theorem 3. Let A,B ⊆ At and let P,Q be programs. Then, P and Q are stable-
equivalent relative to HB(A,B) if and only if SEB

A(P) = SEB
A(Q).

Decision problems. We study problems of deciding hyperequivalence relative to
program classesHB(A′, B′), whereA′ and B′ stand either for finite sets or for comple-
ments of finite sets. In the former case, the set is given directly. In the latter, it is spec-
ified by its finite complement (the set itself is infinite). Thus, we obtain the classes of
direct-direct, direct-complement, complement-direct and complement-complement de-
cision problems. We denote them using strings of the form SEMδ,ε(α, β), where (1) SEM

stands for SUPP, SUPPMIN or STABLE and identifies the semantics relative to which we
define hyperequivalence; (2) δ and ε stand for d or c (direct and complement, respec-
tively), and specify one of the four classes of problems mentioned above; (3) α is either
· or A, where A ⊆ At is finite. If α = A, then α specifies a fixed alphabet for the heads
of rules in contexts: either A or the complement Ac of A, depending on whether δ = d
or c. The parameter does not belong to and does not vary with input. If α = ·, then
the specification A of the head alphabet is part of the input and defines it as A or Ac,
again according to δ; (4) β is either · or B, where B ⊆ At is finite. It obeys the same
conventions as α but defines the body alphabet according to the value of ε.

For instance, SUPPMINd,c(A, ·), where A ⊆ At is finite, stands for the following
problem: given programs P and Q, and a set B, decide whether P and Q are suppmin-
equivalent wrtHB(A,Bc). With some abuse of notation, we often talk about “the prob-
lem SEMδ,ε(A,B)” as a shorthand for “an arbitrary problem of the form SEMδ,ε(A,B)
with fixed finite sets A and B”; likewise we do so for SEMδ,ε(·, B) and SEMδ,ε(A, ·).

As we noted, for supp- and suppmin-equivalence, there is no difference between
normal and disjunctive programs. For stable-equivalence, allowing disjunctions in the
heads of rules affects the complexity. Thus, in the case of stable-equivalence, we distin-
guish versions of the problems STABLEδ,ε(α, β), where the input programs are normal.4

We denote these problems by STABLEn
δ,ε(α, β).

Direct-direct problems for the semantics of supported and supported minimal mod-
els were considered in [24] and their complexity was fully determined there. The com-
plexity of problems STABLEd,d(·, ·), was established in [20], and problems similar to
STABLEc,c(A,A) were already studied in [17]. In this paper, we complete the results
on the complexity of problems SEMδ,ε(α, β) for all three semantics. In particular, we
establish the complexity of the problems with at least one of δ and ε being equal to c.

The complexity of problems involving the complement ofA or B is not a straightfor-
ward consequence of the results on direct-direct problems. In the direct-direct problems,
the class of context programs is essentially finite, as the head and body alphabets for
rules are finite. It is no longer the case for the three remaining problems, where at least
one of the alphabets is infinite and so, the class of contexts is infinite, as well.

Finally, we note that when we change A or B to · in the problem specification, the
resulting problem is at least as hard as the original one. Indeed for each such pair of
problems, there are some straightforward reductions from one to the other. We illustrate
these relationships in Figure 1.

4 We can also restrict the programs used as contexts to normal ones, since this makes no differ-
ence, cf. [20].

582 M. Truszczyński and S. Woltran

A,B()

SEM δ,ε

SEM δ,ε

A,()

δ,ε

SEM δ,ε ,()..

.

SEM ,B.()

Fig. 1. A simple comparison of the hardness of problems

4 Supp-Equivalence

As the alphabet for the bodies of context programs plays no role in supp-equivalence
(cf. Theorem 1), the complexity of SUPPd,c(A, β) and SUPPd,c(·, β) is already solved (β
is · or a set B of atoms) by the complexity of the corresponding direct-direct problems
which have been shown coNP-complete in [24]. It remains to consider SUPPc,d(A, β)
and SUPPc,d(·, β) (which coincide with SUPPc,c(A, β), and respectively, SUPPc,c(·, β)).

First, we prove an upper bound on the complexity of the problem SUPPc,d(·, ·).

Theorem 4. The problem SUPPc,d(·, ·) is in the class coNP.

Proof: It is sufficient to show that SUPPc,d(·, ∅) is in coNP, since (P,Q,A) is a YES
instance of SUPPc,d(·, ∅) if and only if (P,Q,A,B) is a YES instance of SUPPc,d(·, ·).

Let Y ′ = Y ∩ (At(P) ∪ A). We will show that Y ∈ ModAc(P) if and only if
Y ′ ∈ ModAc(P). First, we note that TP (Y) = TP (Y ′). If Y ∈ ModAc(P), then
Y |= P and Y \ TP (Y) ⊆ Ac. The former property implies that Y ′ |= P . Since
Y ′\TP (Y ′) = Y ′\TP (Y) ⊆ Y \TP (Y), the latter one implies that Y ′\TP (Y ′) ⊆ Ac.
Thus, Y ′ ∈ ModAc(P).

Conversely, let Y ′ ∈ ModAc(P). Then Y ′ |= P and, consequently, Y |= P . More-
over, we also have Y ′ \ TP (Y ′) ⊆ Ac. Let y ∈ Y \ TP (Y). If y /∈ Y ′, then y /∈ A, that
is, y ∈ Ac. If y ∈ Y ′, then y ∈ Y ′ \ TP (Y ′) (we recall that TP (Y) = TP (Y ′)). Hence,
y ∈ Ac in this case, too. It follows that Y \ TP (Y) ⊆ Ac and so, Y ∈ ModAc(P).

Next, we prove that ModAc(P) �= ModAc(Q) or, for some Y ∈ ModAc(P),
TP (Y) �= TQ(Y) if and only if there is Y ′ ⊆ At(P ∪ Q) ∪ A such that Y ′ belongs
to exactly one of ModAc(P) and ModAc(Q), or Y ′ belongs to both ModAc(P) and
ModAc(Q) and TP (Y ′) �= TQ(Y ′). Clearly, we need to prove the “only-if” implication.
To this end, we note that if ModAc(P) �= ModAc(Q), then by the observation proved
above, there is Y ′ ⊆ At(P ∪Q)∪Awith that property. Thus, assume that ModAc(P) =
ModAc(Q). If for some Y ∈ ModAc(P), TP (Y) �= TQ(Y) then, Y belongs to both
ModAc(P) and ModAc(Q). By the argument given above, Y ′ = Y ∩ (At(P ∪Q)∪A)
belongs to both ModAc(P) and ModAc(Q), and TP (Y ′) �= TQ(Y ′).

Thus, to decide the complementary problem, we nondeterministically guess Y ⊆
At(P ∪Q)∪A, and verify that Y belongs to exactly one of ModAc(P) and ModAc(Q),
or that Y belongs to ModAc(P) and ModAc(Q), and that TP (Y) �= TQ(Y).

Checking Y |= P and Y |= Q can be done in polynomial time. Similarly, for R = P
orQ, Y \TR(Y) ⊆ Ac if and only if (Y \TR(Y))∩A = ∅. Thus, checking Y \TR(Y) ⊆
Ac can be done in polynomial time, too, and so the algorithm is polynomial. Hence, the
complementary problem is in NP, which implies the assertion. �

For the lower bound we use the problem SUPPc,d(A,B).

Relativized Hyperequivalence of Logic Programs for Modular Programming 583

Theorem 5. The problem SUPPc,d(A,B) is coNP-hard.

Proof: Let us consider a CNF ϕ, let Y be the set of atoms in ϕ, and let Y ′ = {y′ | y ∈
Y } be a set of new atoms. We define

P (ϕ) = {y ← not y′; y′ ← not y | y ∈ Y } ∪ {← ĉ | c is a clause in ϕ}

where, for each clause c ∈ ϕ, say c = y1 ∨ · · · ∨ yk ∨¬yk+1 ∨ · · · ∨¬ym, ĉ denotes the
the sequence y′1, . . . , y

′
k, yk+1, . . . , ym. To simplify the notation, we write P for P (ϕ).

One can check that ϕ has a model if and only if P has a model. Moreover, for every
modelM of P such that M ⊆ At(P), M is a supported model of P and, consequently,
satisfies M = TP (M).

Next, let Q consist of f and ← f . As Q has no models, Theorem 1 implies that Q
is supp-equivalent to P relative to HB(Ac, B) if and only if ModAc(P) = ∅. If M ∈
ModAc(P), then there is M ′ ⊆ At(P) such that M ′ ∈ ModAc(P). Since every model
M ′ of P such that M ′ ⊆ At(P) satisfies M ′ = TP (M ′), it follows that ModAc(P) =
∅ if and only if P has no models. Thus, ϕ is unsatisfiable if and only if Q is supp-
equivalent to P relative to HB(Ac, B), and the assertion follows. �

We combine Theorems 4 and 5 via the relations depicted in Figure 1 and obtain:

Corollary 1. The problem SUPPδ,ε(α, β) is coNP-complete, for any combination of
δ, ε ∈ {c, d}, α ∈ {A, ·}, β ∈ {B, ·}.

5 Suppmin-Equivalence

In this section, we establish the complexity for direct-complement, complement-direct
and complement-complement problems of deciding suppmin-equivalence. The com-
plexity of direct-direct problems was determined in [24].

Upper bounds. The argument consists of a series of auxiliary results. Due to space
restrictions, we omit some of the proofs. The first two lemmas are concerned with the
basic problem of deciding whether (X,Y) ∈ ModB′

A′ (P), where A′ and B′ stand for A
or Ac and B or Bc, respectively.

Lemma 1. The following problems are in the class coNP: Given a program P , and sets
X , Y , A, and B, decide whether (i) (X,Y) ∈ ModB

Ac(P); (ii) (X,Y) ∈ ModBc

A (P);
(iii) (X,Y) ∈ ModBc

Ac (P).

Proof: We first show that the complementary problem to decide whether (X,Y) /∈
ModB

Ac(P) is in NP. To this end, we observe that (X,Y) /∈ ModB
Ac(P) if and only if at

least one of the following conditions holds: (1) Y /∈ ModAc(P), (2) X �⊆ Y |Ac∪B (3)
there is Z ⊂ Y such that Z|Ac∪B = Y |Ac∪B and Z |= P , (4) there is Z ⊂ Y such that
Z|B = X |B, Z|Ac ⊇ X |Ac and Z |= P , (5) X |B = Y |B and Y \ TP (Y) �⊆ X . We
note that verifying any condition involving Ac can be reformulated in terms of A. For
instance, for every set V , we have V |Ac = V \A, and V ⊆ Ac if and only if V ∩A = ∅.
Thus, the conditions (1), (2) and (5) can be decided in polynomial time. Conditions (3)
and (4) can be decided by a nondeterministic polynomial time algorithm. Indeed, once

584 M. Truszczyński and S. Woltran

we nondeterministically guess Z , all other tests can be decided in polynomial time. The
proofs for the remaining two claims use the same ideas and differ only in technical
details depending on which of A and B is subject to the complement operation. �

Lemma 2. For every finite set B ⊆ At , the following problems are in the class Pol:
given a program P , and sets X , Y and A, decide whether (i) (X,Y) ∈ ModBc

Ac (P);
(ii) (X,Y) ∈ ModBc

A (P).

Proof: In each case, the argument follows the same lines as that for Lemma 1. The
difference is in the case of the conditions (3) and (4). Under the assumptions of this
lemma, they can be decided in deterministic polynomial time. Indeed, let us note that
there are no more than 2|B| sets Z such that Z|Ac∪Bc = Y |Ac∪Bc (or, for the second
problem, such that Z|A∪Bc = Y |A∪Bc). Since B is finite and fixed, the condition (3)
can be checked in polynomial time by a simple enumeration of all possible sets Z such
that Z ⊂ Y and Z|Ac∪Bc = Y |Ac∪Bc and checking for each of them whether Z |= P .
For the condition (4), the argument is similar. Since Z is constrained by Z|Bc = X |Bc ,
there are no more than 2|B| possible candidate sets Z to consider in this case, too. �

The role of the next lemma is to show that (X,Y) ∈ ModB
A(P) implies constraints on

X and Y .

Lemma 3. Let P be a program and A,B ⊆ At . If (X,Y) ∈ ModB
A(P) then X ⊆

Y ⊆ At(P) ∪A.

Lemma 3 is too weak for the membership results for complement-direct and comple-
ment-complement problems, as for these two types of problems, it only limits Y to
subsets of At(P) ∪ Ac, which is infinite. To handle these two classes of problems we
use the following lemma that can be derived from Theorem 2.

Lemma 4. Let P,Q be programs andA,B ⊆ At . If (X,Y) ∈ ModB
Ac(P)\ModB

Ac(Q)
then there is (X ′, Y ′) ∈ ModB

Ac(P) \ModB
Ac(Q) such that Y ′ ⊆ At(P ∪ Q) ∪ A. If

(X,Y) ∈ ModB
Ac(P) and TP (Y)|B �= TQ(Y)|B , then there is (X ′, Y ′) ∈ ModB

Ac(P)
such that TP (Y ′)|B �= TQ(Y ′)|B and Y ′ ⊆ At(P ∪Q) ∪A.

Theorem 6. The following problems are contained in the class ΠP
2 : SUPPMINc,d(·, ·),

SUPPMINc,c(·, ·) and SUPPMINd,c(·, ·). The following problems are in the class coNP:
SUPPMINd,c(·, B), SUPPMINc,c(·, B), SUPPMINc,c(∅, ·) and SUPPMINc,d(∅, ·).

Proof: We provide a detailed argument for the problem SUPPMINc,d(·, ·). Clearly, P and
Q are not suppmin-equivalent relative to HB(Ac, B) if and only if there is (X,Y) ∈
ModB

Ac(P) ÷ ModB
Ac(Q), or (X,Y) ∈ ModB

Ac(P) and TP (Y)|B �= TQ(Y)|B . By
Lemma 4, P and Q are not suppmin-equivalent relative to HB(Ac, B) if and only if
there is (X,Y) such that X ⊆ Y ⊆ At(P ∪ Q) ∪ A and (X,Y) ∈ ModB

Ac(P) ÷
ModB

Ac(Q), or (X,Y) ∈ ModB
Ac(P) and TP (Y)|B �= TQ(Y)|B .

Thus, to decide the complementary problem, it suffices to guess X,Y ⊆ At(P ∪
Q) ∪ A and check that (X,Y) ∈ ModB

Ac(P) ÷ ModB
Ac(Q), or that (X,Y) is in both

sets and TP (Y)|B �= TQ(Y)|B . The first task can be decided by NP oracles (Lemma
1(i)) and testing TP (Y)|B �= TQ(Y)|B can be accomplished in polynomial time.

Relativized Hyperequivalence of Logic Programs for Modular Programming 585

The remaining arguments are similar. The only differences are: For SUPPMINd,c(·, ·)
and SUPPMINd,c(·, B) we use Lemma 3 to ensure that the decision algorithm can restrict
in the guessing phase to pairs (X,Y) with Y ⊆ At(P ∪Q) ∪ A; for SUPPMINd,c(·, ·)
and SUPPMINc,c(·, ·), we use Lemma 1(ii)-(iii); to obtain a stronger upper bound for
SUPPMINd,c(·, B) and SUPPMINc,c(·, B), we make use of Lemma 2. The result for
SUPPMINc,d(∅, ·) was settled in [24] (although not directly, the case of SUPPMINc,c(∅, ·)
follows also from [24]; we provide details in the full version). For problems involving
Bc, we test TP (Y)|Bc = TQ(Y)|Bc by comparing TP (Y) \B and TQ(Y) \B. �

Suppmin-equivalence — lower bounds and exact complexity results. To illustrate
methods we use to obtain our results, we will provide full details for the case of direct-
complement problems. For the other two types of problems, we only state the results.

Theorem 7. The problem SUPPMINd,c(A, ·) is ΠP
2 -hard.

Proof: Let ∀Y ∃Xϕ be a QBF, where ϕ is a CNF formula over X ∪ Y . We can assume
that A ∩ X = ∅ (if not, variables in X can be renamed). Next, we can assume that
A ⊆ Y (if not, add “dummy” tautology clauses to ϕ). We will construct programs
P (ϕ) and Q(ϕ), and a set B, so that ∀Y ∃Xϕ is true if and only if P (ϕ) and Q(ϕ)
are suppmin-equivalent relative to HB(A,Bc). Since the problem to decide whether a
given QBF ∀Y ∃Xϕ is true is ΠP

2 -complete, the assertion will follow.
For every atom z ∈ X∪Y , we introduce a fresh atom z′. Given a set of “non-primed”

atoms Z , we define Z ′ = {z′ | z ∈ Z}. In particular, A ∩ (Y ′ ∪X ′) = ∅. We use ĉ as
in the proof of Theorem 5 and define the following programs:

P (ϕ) = {z ← not z′; z′ ← not z | z ∈ X ∪ Y } ∪ {← y, y′ | y ∈ Y } ∪
{x← u, u′; x′ ← u, u′ | x, u ∈ X} ∪
{x← ĉ; x′ ← ĉ | x ∈ X, c is a clause in ϕ};

Q(ϕ) = {z ← not z′; z′ ← not z | z ∈ X ∪ Y } ∪ {← z, z′ | z ∈ X ∪ Y } ∪
{← ĉ | c is a clause in ϕ}.

To simplify notation, from now on we write P for P (ϕ) andQ forQ(ϕ). We also define
B = X ∪X ′ ∪ Y ∪ Y ′. We observe that At(P) = At(Q) = B.

One can check that the models of Q contained in B are sets of type

1. I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′, where J ⊆ X , I ⊆ Y and I ∪ J |= ϕ.

Each model of Q is also a model of P but P has additional models contained in B, viz.

2. I ∪ (Y \ I)′ ∪X ∪X ′, for each I ⊆ Y .

Clearly, for each model M of Q such that M ⊆ B, TQ(M) = M . Similarly, for each
model M of P such that M ⊆ B, TP (M) = M .

From these comments, it follows that for every model M of Q (resp. P), TQ(M) =
M ∩ B (resp. TP (M) = M ∩ B). Thus, for every model M of both P and Q,
TQ(M)|Bc = TP (M)|Bc . It follows that P and Q are suppmin-equivalent with re-
spect to HB(A,Bc) if and only if ModBc

A (P) = ModBc

A (Q) (indeed, we recall that if
(N,M) ∈ ModBc

A (R) then M is a model of R).

586 M. Truszczyński and S. Woltran

Let us assume that ∀Y ∃Xϕ is false. Hence, there exists an assignment I ⊆ Y to
atoms Y such that for every J ⊆ X , I ∪ J �|= ϕ. Let N = I ∪ (Y \ I)′ ∪X ∪X ′. We
will show that (N |A∪Bc , N) ∈ ModBc

A (P).
Since N is a supported model of P , N ∈ ModA(P). The requirement (2) for

(N |A∪Bc , N) ∈ ModBc

A (P) is evident. The requirement (5) holds, since N \TP (N) =
∅. By the property of I , N is a minimal model of P . Thus, the requirements (3) and
(4) hold, too. It follows that (N |A∪Bc , N) ∈ ModBc

A (P), as claimed. Since N is not a
model of Q, (N |A∪Bc , N) /∈ ModBc

A (Q).
Let us assume that ∀Y ∃Xϕ is true. First, observe that ModBc

A (Q) ⊆ ModBc

A (P).
Indeed, let (M,N) ∈ ModBc

A (Q). It follows that N is a model of Q and, consequently,
of P . From our earlier comments, it follows that TQ(N) = TP (N). SinceN\TQ(N) ⊆
A, N \ TP (N) ⊆ A. Thus, N ∈ ModA(P). Moreover, if M |Bc = N |Bc then N \
TQ(N) ⊆ M and, consequently, N \ TP (N) ⊆ M . Thus, the requirement (5) for
(M,N) ∈ ModBc

A (P) holds. The condition M ⊆ N |A∪Bc is evident (it holds as
(M,N) ∈ ModBc

A (Q)). Since N is a model of Q, N = N ′ ∪ V , where N ′ is a model
of type 1 and V ⊆ At \ B. Thus, every model Z ⊂ N of P is also a model of Q.
It implies that the requirements (3) and (4) for (M,N) ∈ ModBc

A (P) hold. Hence,
(M,N) ∈ ModBc

A (P) and, consequently, ModBc

A (Q) ⊆ ModBc

A (P).
We will now use the assumption that ∀Y ∃Xϕ is true to prove the converse inclusion.

To this end, let us consider (M,N) ∈ ModBc

A (P). If N = N ′ ∪V , where N ′ is of type
1 and V ⊆ At \ B, then arguing as above, one can show that (M,N) ∈ ModBc

A (Q).
Therefore, let us assume thatN = N ′∪V , whereN ′ is of type 2 and V ⊆ At \B. More
specifically, let N ′ = I ∪ (Y \ I)′ ∪X ∪X ′. By our assumption, there is J ⊆ X such
that I∪J |= ϕ. That is, Z = I∪(Y \I)′∪J∪(X \J)′ is a model of P . Clearly,Z ⊂ N .
Moreover, sinceZ,N ⊆ B, we haveZ|A∪Bc = N |A∪Bc . Since (M,N) ∈ ModBc

A (P),
the requirement (3) implies that Z is not a model of P , a contradiction. Hence, the latter
case is impossible and ModBc

A (P) ⊆ ModBc

A (Q) follows.
We proved that ∀Y ∃Xϕ is true if and only if ModBc

A (P) = ModBc

A (Q). This com-
pletes the proof of the assertion. �

Theorem 8. The problem SUPPMINd,c(A,B) is coNP-hard.

Proof: Consider a CNF ϕ over atoms Y , and the programsP (ϕ) andQ = {f ←; ← f}
from the proof of Theorem 5. We use P for P (ϕ) in the following. We already know
that P has a model if and only if ϕ is true. We now show that ModBc

A (P) �= ∅ if and
only if ϕ is true. Since ModBc

A (Q) = ∅ holds (as is easily seen), the assertion follows
by Theorem 2.

Let us assume that P has a model. Then P has a model, say M , such that M ⊆ Y ∪
Y ′. We show that (M,M) ∈ ModBc

A (P). Indeed, since TP (M) = M ,M ∈ ModA(P).
Also, since Y ∪Y ′ ⊆ Bc,M |A∪Bc = M and so,M ⊆M |A∪Bc . Lastly,M \TP (M) =
∅ ⊆ M . Thus, the conditions (1), (2) and (5) for (M,M) ∈ ModBc

A (P) hold. Since
M |A∪Bc = M and M |Bc = M , there is no Z ⊂ M such that Z|A∪Bc = M |A∪Bc or
Z|Bc = M |Bc . Thus, also conditions (3) and (4) hold, and ModBc

A (P) �= ∅ follows.
Conversely, let ModBc

A (P) �= ∅ and let (N,M) ∈ ModBc

A (P). Then M ∈ ModA(P)
and, in particular, M is a model of P . �

Relativized Hyperequivalence of Logic Programs for Modular Programming 587

Combining Theorems 7 and 8 with Theorem 6 yields the following result that fully
determines the complexity of direct-complement problems.

Corollary 2. The problems SUPPMINd,c(A, ·) and SUPPMINd,c(·, ·) are ΠP
2 -complete.

The problems SUPPMINd,c(A,B) and SUPPMINd,c(·, B) are coNP-complete.

This concludes the more detailed discussion on the direct-complement problems. Next,
we just give the corresponding results for the remaining settings we have to study for
suppmin-equivalence, complement-complement and complement-direct problems.

Theorem 9. With A �= ∅, SUPPMINc,c(A, ·) and SUPPMINc,d(A,B) are ΠP
2 -hard. The

problems SUPPMINc,c(∅, ·) and SUPPMINc,c(A,B) are coNP-hard.

Combining Theorem 9 with Theorem 6 yields the following corollary completing the
picture of the complexity for suppmin-equivalence. The coNP-completeness results for
the complement-direct problems were already proved in [24].

Corollary 3. The problems SUPPMINc,c(·, ·), SUPPMINc,d(·, B) and SUPPMINc,d(·, ·)
are ΠP

2 -complete. For A �= ∅, also the problems SUPPMINc,c(A, ·), SUPPMINc,d(A,B)
and SUPPMINc,d(A, ·), are ΠP

2 -complete. Moreover, the following problems are coNP-
complete: SUPPMINc,c(∅, ·), SUPPMINc,c(A,B), SUPPMINc,c(·, B), SUPPMINc,d(∅, ·)
and SUPPMINc,d(∅, B).

6 Stable-Equivalence

We turn now to stable-equivalence. Here we also consider direct-direct problems as, in
the case of fixed alphabets, they were not considered in [20].

Upper bounds. The following lemmas mirror the respective results from the previous
section but show some interesting differences.

Lemma 5. The following problems are in the class DP in general5 and in the class Pol
for normal programs: Given a program P , and sets X , Y , A, and B, decide whether (i)
(X,Y) ∈ SEB

A(P); (ii) (X,Y) ∈ SEB
Ac(P); (iii) (X,Y) ∈ SEBc

A (P); (iv) (X,Y) ∈
SEBc

Ac (P).

Lemma 6. For every finite sets A,B ⊆ At , the following problem is in the class Pol:
given a program P , and sets X , Y decide whether (X,Y) ∈ SEBc

Ac (P).

Hence, polynomial-time model-checking for disjunctive programs is only possible for
the set SEBc

Ac (P). Compared to Lemma 2, this is due to the more involved condition (4)
for SEBc

Ac (P). For normal programs the reductPY is a Horn program, which is essential
for the tractability results in Lemma 5.

The following lemmas hold for both disjunctive and normal programs.

Lemma 7. Let P be a program and A,B ⊆ At . If (X,Y) ∈ SEB
A(P) then X ⊆ Y ⊆

At(P) ∪A.

5 The class DP consists of all problems expressible as the conjunction of a problem in NP and a
problem in coNP. However, this slight increase of complexity compared to Lemma 1 does not
influence the subsequent ΠP

2 -membership results, since a DP -oracle amounts to an NP-oracle.

588 M. Truszczyński and S. Woltran

Lemma 8. Let P,Q be programs and A,B ⊆ At . If (X,Y) ∈ SEB
Ac(P) \ SEB

Ac(Q)
then there is (X ′, Y ′) ∈ SEB

Ac(P) \ SEB
Ac(Q) such that Y ′ ⊆ At(P ∪Q) ∪A.

We can now use the similar arguments in the previous section to obtain the following
collection of membership results:

Theorem 10. The problem STABLEδ,ε(·, ·), is contained in the class ΠP
2 , for any δ, ε ∈

{c, d}; STABLEc,c(A,B) is contained in the class coNP. The problem STABLEn
δ,ε(·, ·),

is contained in the class coNP for any δ, ε ∈ {c, d}.

Stable-equivalence — lower bounds and exact complexity results. We start with
hardness for normal programs.

Theorem 11. The problem STABLEn
δ,ε(A,B) is coNP-hard for any δ, ε ∈ {c, d}.

Proof sketch: We use the standard reduction of UNSAT, thus let P (ϕ) and Q be as in
the proof of Theorem 5. It can be shown that P (ϕ) has a stable model iff ϕ is satisfiable.
Moreover, P (ϕ) ∪ R has no stable model (for arbitrary R) iff ϕ is not satisfiable. On
the other hand, Q∪R has no stable model, for any R. Thus P is stable equivalent to Q
relative to C iff ϕ is unsatisfiable, whereHB(∅, ∅) ⊆ C ⊆ HB(At ,At), and thus where
C is an arbitrary class. Hence, the result holds in particular for the desired classes. �

We now turn to the case of disjunctive programs. We note that coNP-hardness for
STABLEc,c(A,B) follows immediately from the previous result. The remaining hard-
ness results can be shown by suitable adaptations of the reductions used in [17].

Theorem 12. The following problems are hard for the class ΠP
2 : STABLEd,d(A,B),

STABLEc,d(A,B), STABLEd,c(A,B), STABLEc,c(A, ·), and STABLEc,c(·, B).

Combining Theorems 11 and 12 with Theorem 10 yields the following corollary for the
complete picture of the complexity for stable-equivalence.

Corollary 4. The following problems are ΠP
2 -complete for any combination of δ, ε ∈

{c, d}: STABLEδ,ε(·, ·), STABLEδ,ε(A, ·), STABLEδ,ε(·, B). As well, STABLEd,d(A,B),
STABLEc,d(A,B) and STABLEd,c(A,B) are ΠP

2 -complete, while STABLEc,c(A,B) is
coNP-complete. The problem STABLEn

δ,ε(α, β) is coNP-complete, for any combination
of δ, ε ∈ {c, d}, α ∈ {A, ·}, β ∈ {B, ·}.

7 Discussion

We studied the complexity of deciding relativized hyperequivalence of programs under
the semantics of stable, supported and supported minimal models. We focused on prob-
lems SEMδ,ε(α, β), where at least one of δ and ε equals c, that is, at least one of the
alphabets for the context problems is determined as the complement of the correspond-
ing set A or B. As we noted, such problems arise naturally in the context of modular
design of logic programs, yet they have received essentially no attention so far.

Table 1 summarizes the results. It shows that the problems concerning supp-equiva-
lence (no normality restriction), and stable-equivalence for normal programs are all

Relativized Hyperequivalence of Logic Programs for Modular Programming 589

Table 1. Complexity of SEMδ,ε(α, β); all entries are completeness results

δ ε α β SUPP SUPPMIN STABLE STABLEn

d c · coNP ΠP
2 ΠP

2 coNP
d c B coNP coNP ΠP

2 coNP
c c · or A = ∅ · coNP ΠP

2 ΠP
2 coNP

c c ∅ · coNP coNP ΠP
2 coNP

c c · B coNP coNP ΠP
2 coNP

c c A B coNP coNP coNP coNP
c d · or A = ∅ coNP ΠP

2 ΠP
2 coNP

c d ∅ coNP coNP ΠP
2 coNP

coNP-complete (as are the corresponding direct-direct problems, studied in [24] and
here). The situation is more diversified for suppmin-equivalence and stable-equivalence
(no normality restriction) with some problems being coNP- and others ΠP

2 -complete.
For suppmin-equivalence lower complexity requires that B be a part of problem
specification, or that A be a part of problem specification and be set to ∅. For stable-
equivalence, the lower complexity only holds for the complement-complement prob-
lem with both A and B fixed as part of the problem specification. We also note that
the complexity of problems for stable-equivalence is always at least that for suppmin-
equivalence. Furthermore, our complexity results suggest possible algorithms for test-
ing the equivalence notions under consideration. One such approach is to reduce the
given characterizations to quantified Boolean formulas (QBFs) along the lines of previ-
ous work, e.g. [22], and then use extant solvers for QBFs to decide equivalence.

There are several questions worthy of further investigations. For instance, while
stable-equivalence when only parts of models are compared was studied [21,22], no
similar results are available for supp- and suppmin-equivalence. Also the complexity
of the corresponding complement-direct, direct-complement and complement-comple-
ment problems for the three semantics in that setting has yet to be established.

Acknowledgments

We acknowledge support from the NSF (grant IIS-0325063), the KSEF (grant KSEF-
1036-RDE-008), and the Austrian Science Fund (grants P18019-N04, P20704-N18).

References

1. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.
In: Apt, K., Marek, W., Truszczyński, M., Warren, D. (eds.) The Logic Programming Para-
digm: A 25-Year Perspective, pp. 375–398. Springer, Berlin (1999)

2. Niemelä, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273 (1999)

3. Gelfond, M., Leone, N.: Logic programming and knowledge representation – the A-prolog
perspective. Artificial Intelligence 138, 3–38 (2002)

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

590 M. Truszczyński and S. Woltran

5. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first
answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS, vol. 4483, pp. 3–17. Springer, Heidelberg (2007)

6. Gelfond, M.: Representing knowledge in A-Prolog. In: Kakas, A., Sadri, F. (eds.) Compu-
tational Logic: Logic Programming and Beyond. LNCS, vol. 2408, pp. 413–451. Springer,
Heidelberg (2002)

7. Janhunen, T.: Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics 16, 35–86 (2006)

8. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: Proceedings
of ECAI 2006, pp. 412–416. IOS Press, Amsterdam (2006)

9. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive sta-
ble models. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp.
175–187. Springer, Heidelberg (2007)

10. Gaifman, H., Shapiro, E.: Fully abstract compositional semantics for logic programs. In:
Proceedings of POPL 1989, pp. 134–142 (1989)

11. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of ICLP 1994, pp. 23–37
(1994)

12. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-
tions on Computational Logic 2(4), 526–541 (2001)

13. Lin, F.: Reducing strong equivalence of logic programs to entailment in classical proposi-
tional logic. In: Proceedings of KR 2002, pp. 170–176. Morgan Kaufmann, San Francisco
(2002)

14. Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. Theory
and Practice of Logic Programming 3, 609–622 (2003)

15. de Jongh, D., Hendriks, L.: Characterizations of strongly equivalent logic programs in inter-
mediate logics. Theory and Practice of Logic Programming 3, 259–270 (2003)

16. Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model semantics.
In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238. Springer, Heidelberg
(2003)

17. Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of equivalences
in answer set programming. ACM Transactions on Computational Logic 8, 53 (2007)

18. Sagiv, Y.: Optimizing datalog programs. In: Minker, J. (ed.) Foundations of Deductive Data-
bases and Logic Programming, pp. 659–698. Morgan Kaufmann, San Francisco (1988)

19. Inoue, K., Sakama, C.: Equivalence of logic programs under updates. In: Alferes, J.J., Leite,
J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 174–186. Springer, Heidelberg (2004)

20. Woltran, S.: A common view on strong, uniform, and other notions of equivalence in answer-
set programming. Theory and Practice of Logic Programming 8, 217–234 (2008)

21. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set programming.
In: Proceedings of IJCAI 2005, pp. 97–102. Morgan Kaufmann, San Francisco (2005)

22. Oetsch, J., Tompits, H., Woltran, S.: Facts do not cease to exist because they are ignored:
Relativised uniform equivalence with answer-set projection. In: Proceedings of AAAI 2007,
pp. 458–464. AAAI Press, Menlo Park (2007)

23. Cabalar, P., Odintsov, S., Pearce, D., Valverde, A.: Analysing and extending well-founded
and partial stable semantics using partial equilibrium logic. In: Etalle, S., Truszczyński, M.
(eds.) ICLP 2006. LNCS, vol. 4079, pp. 346–360. Springer, Heidelberg (2006)

24. Truszczyński, M., Woltran, S.: Hyperequivalence of logic programs with respect to supported
models. In: Proceedings of AAAI 2008, pp. 560–565. AAAI Press, Menlo Park (2008)

25. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp.
293–322. Plenum Press, New York (1978)

26. Erdogan, S., Lifschitz, V.: Definitions in answer set programming. In: LPNMR 2004. LNCS
(LNAI), vol. 2923, pp. 114–126. Springer, Heidelberg (2004)

27. Apt, K.: Logic programming. In: van Leeuven, J. (ed.) Handbook of Theoretical Computer
Science, pp. 493–574. Elsevier, Amsterdam (1990)

Program Correspondence under the Answer-Set
Semantics: The Non-ground Case�

Johannes Oetsch and Hans Tompits

Institut für Informationssysteme,
Arbeitsbereich Wissensbasierte Systeme 184/3,

Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria
{oetsch,tompits}@kr.tuwien.ac.at

Abstract. The study of various notions of equivalence between logic programs
in the area of answer-set programming (ASP) gained increasing interest in re-
cent years. The main reason for this undertaking is that ordinary equivalence
between answer-set programs fails to yield a replacement property similar to the
one of classical logic. Although many refined program correspondence notions
have been introduced in the ASP literature so far, most of these notions were
studied for propositional programs only, which limits their practical usability as
concrete programming applications require the use of variables. In this paper,
we address this issue and introduce a general framework for specifying parame-
terised notions of program equivalence for non-ground disjunctive logic programs
under the answer-set semantics. Our framework is a generalisation of a similar
one defined previously for the propositional case and allows the specification of
several equivalence notions extending well-known ones studied for propositional
programs. We provide semantic characterisations for instances of our framework
generalising uniform equivalence, and we study decidability and complexity as-
pects. Furthermore, we consider axiomatisations of such correspondence prob-
lems by means of polynomial translations into second-order logic.

1 Introduction

Logic programs under the answer-set semantics are an established means for declarative
knowledge representation and nonmonotonic reasoning as well as for declarative prob-
lem solving. Their characteristic feature regarding the way problems are represented,
viz. that models represent solutions to problems and not proofs as in traditional logic-
oriented languages (hence, the intended models are the “answer sets” for the problem),
led to the coinage of the term answer-set programming (ASP) for this particular par-
adigm. Several highly sophisticated ASP solvers exist, like DLV [1] or GNT [2], and
typical application areas of ASP are configuration, information integration, security
analysis, agent systems, Semantic Web, and planning.

A recent line of research in ASP deals with the investigation of different notions of
equivalence between answer-set programs, initiated by the seminal paper by Lifschitz,
Pearce, and Valverde [3] on strong equivalence. The main reason for the introduction of

� This work was partially supported by the Austrian Science Fund (FWF) under grant P18019.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 591–605, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

592 J. Oetsch and H. Tompits

these notions is the fact that ordinary equivalence, which checks whether two programs
have the same answer sets, is too weak to yield a replacement property similar to the one
of classical logic. That is to say, given a program R along with some subprogram P⊆ R,
when replacing P with an equivalent program Q, it is not guaranteed that Q∪ (R \P)
is equivalent to R. Clearly, this is undesirable for tasks like modular programming or
program optimisation. Strong equivalence does circumvent this problem, essentially
by definition—two programs P,Q are strongly equivalent iff, for any program R (the
“context program”), P∪R and Q∪R have the same answer sets—, but is too restrictive
for certain aspects. A more liberal notion is uniform equivalence [4], which is defined
similar to strong equivalence but where the context programs are restricted to contain
facts only.1 However, both notions do not take standard programming techniques like
the use of local predicates into account, which may occur in subprograms but which
are ignored in the final computation. Thus, these notions do not admit the projection of
answer sets to a set of designated output letters. For example, consider the two programs
P = {r(x)← s(x)} and Q = {aux(x)← s(x); r(x) ← aux(x)}. While P expresses that
r(x) is selected whenever s(x) is known, Q yields the selection of r(x) via the auxiliary
predicate aux(x). P and Q are not uniformly equivalent (as P and Q conjoined with any
fact aux(·) have differing answer sets), and hence they are not strongly equivalent, but
they are if the context programs do not contain aux which also has to be ignored in the
comparison of the answer sets.

To accommodate such features, strong and uniform equivalence were further relaxed
and generalised. On the one hand, Woltran [7] introduced relativised versions thereof,
where the alphabet of the context can be parameterised (e.g., in the above example,
we could specify contexts disallowing the use of the predicate symbol aux). On the
other hand, Eiter et al. [8] introduced a general framework for specifying parameter-
isable program correspondence notions, allowing not only relativised contexts but also
answer-set projection. Other forms of refined program equivalence are, e.g., modular
equivalence [9] and update equivalence [10].

However, most of the above mentioned notions were introduced and analysed for
propositional programs only, which is clearly a limiting factor given that practical pro-
gramming purposes require the use of variables. In this paper, we address this point
and introduce a general program correspondence framework for the non-ground case,
lifting the propositional one by Eiter et al. [8]. Similar to the latter, program correspon-
dence notions can be parameterised along two dimensions: one for specifying the kind
of programs that are allowed as context for program comparison, and one for specify-
ing a particular comparison relation between answer sets, determining which predicates
should be considered for the program comparison. The framework allows to capture a
range of different program equivalence notions, including the propositional ones men-
tioned above as well as non-ground versions of strong and uniform equivalence studied
already in the literature [11,12,13].

We pay particular attention to correspondence problems which we refer to as gener-
alised query inclusion problems (GQIPs) and generalised query equivalence problems

1 We note that the concept of strong equivalence was actually first studied in the context of (nega-
tion free) datalog programs by Maher [5] using the term “equivalence as program segments”,
and likewise uniform equivalence was first studied for datalog programs by Sagiv [6].

Program Correspondence under the Answer-Set Semantics 593

(GQEPs), respectively. These are extensions of notions studied in previous work [14]
for propositional programs (there termed PQIPs and PQEPs—propositional query in-
clusion problems and propositional query equivalence problems). A GQEP basically
amounts to relativised uniform equivalence with projection, whilst in a GQIP, set equal-
ity is replaced by set inclusion. Intuitively, if Q corresponds to P under a GQIP, then Q
can be seen as a sound approximation of P under brave reasoning and P as a sound ap-
proximation of Q under cautious reasoning. GQEPs and GQIPS are relevant in a setting
where programs are seen as queries over databases and one wants to decide whether two
programs yield the same output database on each input database. Indeed, query equiv-
alence as well as program equivalence emerge as special cases. Also, such versions of
generalised uniform equivalence are appropriate in cases where programs are composed
out of modules, arranged in layers, such that each module of a certain layer gets its input
from higher-layered modules and provides its output to lower-layered modules.

We provide semantic characterisations of GQIPs and GQEPs in terms of structures
associated with each program such that a GQIP holds iff the structures meet set in-
clusion, and a GQEP holds iff the associated structures coincide. Our characterisation
differs from the well-known characterisation of (relativised) uniform equivalence in
terms of (relativised) UE-models [4,7] in case the projection set is unrestricted. Fur-
thermore, we study decidability and complexity issues for correspondence problems,
showing in particular that relativised strong equivalence is undecidable, which is, in
some sense, surprising because usual (unrelativised) strong equivalence is decidable
both in the propositional and the non-ground case.

Finally, we study axiomatisations of GQIPs and GQEPs in terms of second-order
logic (SOL), which is in the spirit of providing logical characterisations of program
equivalence, following the seminal result by Lifschitz, Pearce, and Valverde [3] that
strong equivalence between propositional programs coincides with equivalence in the
logic of here-and-there, which is intermediate between classical logic and intuitionistic
logic. Indeed, the use of SOL recently gained increasing interest in ASP as Ferraris,
Lee, and Lifschitz [15] defined an answer-set semantics for general first-order theories
in terms of SOL, avoiding the need of an explicit grounding step. As well, our SOL
characterisations generalise results for axiomatising PQIPs and PQEPs by means of
quantified propositional logic, which is just a restricted form of SOL.

2 Preliminaries

2.1 Logic Programs

We deal with disjunctive logic programs (DLPs) formulated in a function-free first-
order language. Such a language is based on a vocabulary V defined as a pair (P,D),
where P fixes a countable set of predicate symbols and D, called the LP-domain, or
simply domain, fixes a countable and non-empty set of constants.

As usual, each p∈ P has an associated non-negative integer, called the arity of p. An
atom over V = (P,D) is an expression of form p(t1, . . . ,tn), where p is a n-ary predicate
symbol from P and each ti, 0≤ i≤ n, is either from D or a variable. An atom is ground
if it does not contain variables. By HBV we denote the Herbrand base of V , i.e., the set
of all ground atoms over V . For a set A ⊆ P of predicate symbols and a set C ⊆ D of

594 J. Oetsch and H. Tompits

constants, we also write HBA,C to denote the set of all ground atoms constructed from
the predicate symbols from A and the constants from C.

A rule over V is an expression of form

a1∨·· ·∨al ← al+1, . . . ,am,not am+1, . . . ,not an, (1)

where n ≥ m ≥ l ≥ 0, n > 0, and all ai, 0 ≤ i ≤ n, are atoms over V . A rule is positive
if m = n, normal if l = 1, and Horn if it is positive and normal. A rule of form (1)
with l = m = n = 1 is a fact; we usually identify a fact a ← with the atom a. For each
rule r of form (1), we call {a1, . . . ,al} the head of r. Moreover, we call {al+1, . . . ,am}
the positive body of r and {am+1, . . . ,an} the negative body of r. A rule r is safe iff
all variables that occur in the head of r or in the negative body of r also occur in the
positive body of r. Finally, a rule is ground if it contains only ground atoms.

A program, P, is a finite set of safe rules over V . We say that P is positive (resp.,
normal, Horn, ground) if all rules in P are positive (resp., normal, Horn, ground). Some-
times, we will call ground programs (resp., rules, atoms) propositional. For any program
P, a predicate symbol p that does not occur in the head of any rule in P is extensional
(in P), and intensional otherwise. We denote by PS(P) the set of all predicate symbols
occurring in a program P, and say that P is over A if PS(P)⊆ A. The Herbrand universe
of P, HUP, is the set of all constant symbols occurring in P. For technical reasons, we
assume that HUP contains an arbitrary element from the domain of V in case P does
not contain any constant symbol.

For any set C ⊆ D and any rule r, we define the grounding of r with respect to C,
denoted by grd(r,C), as the set of all rules obtained from r by uniformly replacing all
variables occurring in r by constants from C. Furthermore, for a program P, the ground-
ing of P with respect to C, denoted by grd(P,C), is

⋃
r∈P grd(r,C). An interpretation I

over a vocabulary V is a set of ground atoms over V . Moreover, I is a model of a ground
rule r, symbolically I |= r, iff, whenever the positive body of r is a subset of I and no
elements from the negative body of r are in I, then some element from the head of r is
in I. I is a model of a ground program P, in symbols I |= P, iff I |= r, for all r in P.

Following Gelfond and Lifschitz [16], the reduct PI , where I is an interpretation
and P is a ground program, is the program obtained from P by (i) deleting all rules
containing a default negated atom not a such that a ∈ I and (ii) deleting all default
negated atoms in the remaining rules. An interpretation I is an answer set of a ground
program P iff I is a subset-minimal model of the reduct PI . The answer sets of a non-
ground program P are the answer sets of the grounding of P with respect to the Herbrand
universe of P. The collection of all answer sets of a program P is denoted by AS(P).

For a vocabulary V = (P,D) and a set A ⊆ P, by PA
V we denote the set of all

programs over V that contain only predicate symbols from A. The set FA
V is defined

analogously except that the programs are additionally required to contain only facts.
Note that since we assume safety of rules in programs, the facts in the elements of FA

V
are therefore ground. When omitting A in PA

V or FA
V , we assume that A = P. We also

use the following notation: For an interpretation I and a set S of interpretations, S|I is
defined as {Y ∩ I | Y ∈ S}. For a singleton set S = {Y}, we also write Y |I instead of S|I .

We recall some basic equivalence notions for logic programs. To begin with, two
programs P and Q are ordinarily equivalent iff AS(P) = AS(Q). The more restrictive no-
tions of strong and uniform equivalence, originally defined for propositional programs

Program Correspondence under the Answer-Set Semantics 595

by Lifschitz, Pearce, and Valverde [3] and Eiter and Fink [4], respectively, are given as
follows [12]: Let V = (P,D) be a vocabulary and P, Q two programs over V . Then,
P and Q are strongly equivalent iff AS(P∪R) = AS(Q∪R), for any program R ∈PV ,
and P and Q are uniformly equivalent iff AS(P∪F) = AS(Q∪F), for any F ∈ FV .
We also recall two further equivalence notions, especially important in the context of
deductive databases: query equivalence and program equivalence. Let E be the set of
the extensional predicates of P∪Q. Then, P and Q are query equivalent with respect to
a predicate p iff, for any set F ∈FE

V , AS(P∪F)|HB{p},D = AS(Q∪F)|HB{p},D . Further-

more, P and Q are program equivalent iff, for any set F ∈FE
V , AS(P∪F) = AS(Q∪F).

2.2 Second-Order Logic

Classical second-order logic (SOL) extends classical first-order logic (FOL) by admit-
ting quantifications over predicate and function variables. For our purposes, it suffices to
consider a version of SOL without function variables. More formally, we assume that
the vocabulary of SOL contains denumerable sets of individual variables, predicate
variables, predicate constants, and individual constants, as well as the truth constants
� and ⊥, the usual connectives ¬, ∧, ∨, →, and ↔, and the quantifiers ∀ and ∃. Each
predicate variable and predicate constant is assumed to have a non-negative arity.

We use QX1 · · ·XnΦ , for Q∈ {∀,∃}, as an abbreviation of QX1 · · · QXnΦ . Moreover,
for any set X = {X1, . . . ,Xn} of variables, QXΦ , Q ∈ {∀,∃}, abbreviates QX1 · · ·XnΦ .

The semantics of SOL is defined in terms of SOL-frames. A SOL-frame is a tuple
〈D,m〉, where D is a non-empty set, called the SOL-domain, and m is an interpretation
function that maps any predicate constant with arity n to a subset of Dn and any indi-
vidual constant to an element of D. An assignment over M is a function a that maps any
predicate variable with arity n to a subset of Dn and any individual variable to an ele-
ment of D. If the domain of a SOL-frame M is countable and M meets the unique-names
assumption, i.e., different constant symbols are interpreted by different objects from the
domain, then M is a Herbrand frame. Constant symbols are interpreted by themselves
in a Herbrand frame. The truth-value of a formula Φ in a SOL-frame M with respect to
an assignment a over M is denoted by V M

a (Φ) and is defined as usual.
A formula Φ is satisfied in a SOL-frame M by an assignment a over M iffV M

a (Φ) = 1.
Moreover, Φ is true in M iff Φ is satisfied in M by every assignment over M. If Φ is true
in M, M is a model of Φ . A formula is satisfiable iff it possesses at least one model and
unsatisfiable otherwise. A formula that is true in all frames is called valid. A formula Φ
is consequence of a set A of formulae, symbolically A |= Φ iff, for each SOL-frame M,
Φ is true in M whenever each formula in A is true in M.

We tacitly assume in what follows that each variable in a program vocabulary V is
an individual variable in our SOL-vocabulary, each predicate symbol in V is a predicate
variable, and each constant in V is an individual constant.

3 A Unifying Correspondence-Framework

In this section, we introduce the central concept of our work, a general framework for
specifying parameterised notions of program correspondence for non-ground programs,

596 J. Oetsch and H. Tompits

which allows to capture a range of different equivalence notions defined in the literature
in a uniform manner. We first discuss the basic definitions and some elementary prop-
erties, afterwards we concentrate on a specific instance of our method, viz. on corre-
spondence notions generalising uniform equivalence. We then provide model-theoretic
characterisations for this particular family of correspondences and analyse some com-
putational properties.

3.1 The Basic Framework and Its Instances

We start with our central definition, which is a lifting of a correspondence framework
introduced by Eiter et al. [8] for propositional programs to the non-ground setting.

Definition 1. By a correspondence frame, or simply a frame, F, we understand a triple
(V ,C ,ρ), where (i) V is a vocabulary, (ii) C ⊆PV , called the context class of F, and

(iii) ρ ⊆ 22HBV ×22HBV .
For every program P,Q ∈PV , we say that P and Q are F-corresponding, symboli-

cally P6F Q, iff, for all R ∈ C , (AS(P∪R),AS(Q∪R)) ∈ ρ .

In a frame F = (V ,C ,ρ), V fixes the language under consideration, C is the class
of possible extensions of the programs that are to be compared, and ρ represents the
comparison relation between the sets of answer sets of the two programs.

Following Eiter et al. [8], a correspondence problem, Π , over a vocabulary V is a
tuple (P,Q,C ,ρ), where P and Q are programs over V and (V ,C ,ρ) is a frame. We
say that (P,Q,C ,ρ) holds iff P6(V ,C ,ρ) Q.

Important instances of frames are those where the comparison relation is given by
projective versions of set equality and set inclusion, where projection allows to ignore
auxiliary (“local”) atoms during comparison, and the context class is parameterised
by a set of predicate symbols. More formally, for sets S,S′ of interpretations, an in-
terpretation B, and 5 ∈ {⊆,=}, we define S5B S′ as S|B 5 S′|B. For any vocabulary
V = (P,D) and any set B ⊆ P, the relation /B

V is defined as ⊆HBB,D , and ≡B
V denotes

=HBB,D . If B is omitted, it is assumed that B = P. We call a correspondence problem over
V of form (P,Q,PA

V ,/B
V) an inclusion problem and one of form (P,Q,PA

V ,≡B
V) an

equivalence problem, for A,B⊆ P. Furthermore, for a correspondence problem of form
Π = (P,Q,C ,≡B

V), we set Π/ =df (P,Q,C ,/B
V) and Π4 =df (Q,P,C ,/B

V). Clearly,
Π holds iff Π/ and Π4 jointly hold.

Example 1. Consider the programs P and Q from the introduction. The claim is that,
for any program M with P⊆M, P can be replaced by Q within M without changing the
answer sets of M, provided M does not contain aux(·) which is also ignored concerning
the answer sets of M. This is represented in our framework by the fact that the corre-
spondence problem Π = (P,Q,PA

V ,≡B
V), with A = B = {r,s}, holds. �

With the above notation at hand, it is quite straightforward to express the equivalence
notions introduced earlier:

Theorem 1. Let P,Q be programs over a vocabulary V and E the set of the extensional
predicates of P∪Q. Then, P and Q are

Program Correspondence under the Answer-Set Semantics 597

– ordinarily equivalent iff (P,Q,{ /0},=) holds,
– strongly equivalent iff (P,Q,PV ,=) holds,
– uniformly equivalent iff (P,Q,FV ,=) holds,

– query equivalent with respect to a predicate p iff (P,Q,FE
V ,≡

{p}
V) holds, and

– program equivalent iff (P,Q,FE
V ,=) holds.

We mentioned that our definition of correspondence frames lifts that of Eiter et al. [8]
introduced for propositional programs. Let us elaborate this point in more detail. A
frame in the sense of Eiter et al. [8] (which we henceforth will refer to as a propositional
frame) is a tuple F = (U ,C ,ρ), where U is a set of propositional atoms, C is a set

of propositional programs over U , and ρ ⊆ 22U ×22U
is a comparison relation. As in

our case, two programs P and Q are F-corresponding, in symbols P 6F Q, iff, for any
R∈C , (AS(P∪R),AS(Q∪R)) ∈ ρ . Consider now a propositional frame F = (U ,C ,ρ)
and define the vocabulary V0 = (U ,D), where the arity of each p ∈U is 0, thus D has
no influence on the language and can be fixed arbitrarily (but, of course, D is assumed
to be non-empty). Then, HBV0 = U , and so F0 = (V0,C ,ρ) is a frame in the sense of
Definition 1. Furthermore, for every program P,Q over U , P6F Q iff P 6F0 Q.

Consequently, every equivalence notion expressible in terms of propositional frames
is also expressible in terms of frames in our sense. Indeed, propositional frames capture
the following notions from the literature defined for propositional programs only so far:

– Relativised strong and uniform equivalence [7]: Let U be a set of propositional
atoms, A⊆U , PA the set of all propositional programs constructed from atoms in
A, and FA the subclass of PA containing all programs over A comprised of facts
only. Then, two programs P and Q over U are strongly equivalent relative to A
iff they are (U ,PA,=)-corresponding. Moreover, they are uniformly equivalent
relative to A iff they are (U ,FA,=)-corresponding. Clearly, if A = U , relativised
strong and uniform equivalence collapse to the usual versions of strong and uniform
equivalence, respectively.

– Propositional query equivalence and inclusion problems [14]: Let U be a set of
propositional atoms. A propositional query inclusion problem (PQIP) over U is
defined as a correspondence problem of form (P,Q,FA,⊆B) over U , and a propo-
sitional query equivalence problem (PQEP) over U is defined as a correspondence
problem of form (P,Q,FA,=B) over U , where P and Q are propositional programs
over U , A,B ⊆ U , and FA is as above. Clearly, for B = U , the latter problems
turn into checking uniform equivalence relative to A.

Hence, these notions are then just special cases of correspondence problems accord-
ing to Definition 1. In what follows, we will in particular be interested in analysing
non-ground pendants of PQIPs and PQEPs. We thus define:

Definition 2. Let V = (P,D) be a vocabulary, A,B ⊆ P, and P,Q ∈PV . Then, (P,Q,
FA

V ,/B
V) is a generalised query inclusion problem (GQIP) over V and (P,Q,FA

V ,≡B
V)

is a generalised query equivalence problem (GQEP) over V .

Hence, for a GQEP Π = (P,Q,FA
V ,≡B

V), if A = B = P, Π coincides with testing uni-
form equivalence between P and Q, and if just B = P, Π amounts to testing the exten-
sion of relativised uniform equivalence for non-ground programs.

598 J. Oetsch and H. Tompits

Example 2. Consider the following two programs:

P=
{

sel(x)∨nsel(x)← s(x); ⊥← sel(x),sel(y),not eq(x,y);
some← sel(x); ⊥← not some; eq(x,x)← s(x)

}
,

Q=
{

nsel(x)∨nsel(y)← s(x),s(y),not eq(x,y);
sel(x)← s(x),not nsel(x); eq(x,x)← s(x)

}
.

Program P takes as input facts over s and non-deterministically selects one element
of the set implicitly defined by s, i.e., each answer set of P contains exactly one fact
sel(c) where c is from that set. Program Q, being more compact than P, aims at the
same task, but does it the same job for every input? To answer this question, consider the
GQEP Π = (P,Q,FA

V ,≡B
V), for A = {s} and B = {sel}. Since AS(P) = /0 but AS(Q) =

{ /0}, it follows that Π does not hold. Having only non-empty input regarding s in mind,
we can verify that Π ′ = (P∪{s(a)},Q∪{s(a)},FA

V ,≡B
V) holds. �

The next properties generalise similar results from the propositional setting [8].

Theorem 2 (Anti-Monotony). Let F be a correspondence frame of form (V ,C ,≡B
V).

If two programs are F-corresponding, then they are also F ′-corresponding, for any
frame F ′ = (V ,C ′,≡B′

V) with C ′ ⊆ C and B′ ⊆ B.

Theorem 3 (Projective Invariance). Let V = (P,D) be a vocabulary and F a cor-
respondence frame of form (V ,PV ,=). Then, two programs are F-corresponding iff
they are F ′-corresponding, for any frame F ′ = (V ,PV ,≡B

V) with B⊆ P.

Note that the last result states that strong equivalence coincides with strong equivalence
with projection, no matter what projection set is used.

3.2 Model-Based Characterisations of GQIPs and GQEPs

We now provide necessary and sufficient conditions for deciding GQIPs and GQEPs,
based on model-theoretic concepts. This is along the lines of characterising strong
equivalence in terms of SE-models [17] and uniform equivalence in terms of UE-mod-
els [4]. However, our characterisations of GQIPs and GQEPs are based on structures
which are, in some sense, orthogonal to SE- and UE-models, extending the concepts
introduced in previous work for propositional programs [14].

We start with introducing objects witnessing the failure of a GQIP or GQEP.

Definition 3. A counterexample for a GQIP Π = (P,Q,FA
V ,/B

V) over some vocabu-
lary V is a pair (X ,Y) such that (i) X ∈FA

V , (ii) Y ∈ AS(P∪X), and (iii) there exists
no interpretation Z over V such that Z ≡B

V Y and Z ∈ AS(Q∪X). Furthermore, a coun-
terexample for a GQEP Π is a pair which is a counterexample for one of Π/ or Π4.

Obviously, given a problem Π = (P,Q,FA
V ,5B

V), where 5 ∈ {/,≡}, Π does not hold
iff there exists a counterexample for Π .

Example 3. Recall problem Π from Example 2, which does not hold. The pair (/0, /0)
is a counterexample for Π4 since AS(Q∪ /0) = { /0} but AS(P∪ /0) = /0. On the other
hand, Π ′ = (P∪{s(a)},Q∪{s(a)},FA

V ,≡B
V) from the same example does hold and,

accordingly, has no counterexamples. �

Program Correspondence under the Answer-Set Semantics 599

Next, we introduce structures assigned to programs, rather than to PQIPs or PQEPs as
counterexamples are, yielding our desired model-theoretic characterisation.

Definition 4. Let V = (P,D) be a vocabulary, A,B ⊆ P, and P a program over V . An
A-B-wedge of P over V is a pair (X ,Y) such that X ∈FA

V and Y ∈ AS(P∪X)|HBB,D .
The set of all A-B-wedges of P is denoted by ωA,B(P).

It is straightforward to check that there exists a counterexample for a GQIP Π =
(P,Q,FA

V ,/B
V) iff an A-B-wedge of P exists that is not an A-B-wedge of Q. Hence:

Theorem 4. For Π = (P,Q,FA
V ,5B

V), with 5∈{/,≡}, we have that (i) Π holds iff
ωA,B(P)⊆ ωA,B(Q), if 5 is /, and (ii) Π holds iff ωA,B(P) = ωA,B(Q), if 5 is ≡.

Example 4. Consider again problem Π ′ from Example 3. Then, ωA,B(P) = ωA,B(Q) =
{(/0,{sel(a)}), ({s(a)},{sel(a)}),({s(a),s(b)},{sel(a)}),({s(a),s(b)},{sel(b)}), . . .},
witnessing that Π ′ holds. �
We finally give a characterisation of wedges in terms of classical models of program
reducts, extending a similar one for the propositional case [14].

Theorem 5. Let V = (P,D) be a vocabulary and P a program over V . Then, (X ,Y) is
an A-B-wedge of P iff (i) X ∈FA

V , (ii) Y ⊆HBB,D, and (iii) there exists an interpretation
Y ′ over V such that X ⊆ Y ′, Y ′ ≡B

V Y , Y ′ |= grd(P,HUP∪X), and, for each X ′ with
X ⊆ X ′ ⊂ Y ′, X ′ �|= grd(P,HUP∪X)Y ′ .

3.3 Computability Issues

We continue with an analysis of the computational complexity of deciding correspon-
dence problems. In particular, our primary aim is to draw a border between decidable
and undecidable instances of the framework.

It was shown by Shmueli [18] that query equivalence for Horn programs over infinite
domains is undecidable. This undecidability result was subsequently extended by Eiter
et al. [12] to program equivalence and uniform equivalence for disjunctive logic pro-
grams under the answer-set semantics. Since these notions can be formulated as special
instances within our framework, we immediately get the following result:

Theorem 6. The problem of determining whether a given correspondence problem
over some vocabulary holds is undecidable in general, even if the programs under con-
sideration are positive or normal.

Some important decidable instances of the framework are obtained by imposing certain
restrictions on the language of the programs under consideration. First of all, if we
only consider propositional frames, checking inclusion and equivalence problems is
decidable; in fact, this task is Π P

4 -complete in general [8]. Moreover, the complexity of
checking PQIPs and PQEPs is Π P

3 -complete [14].
Also, for vocabularies with a finite domain, correspondence problems are decidable.

In such a setting, programs are compact representations of their groundings over that
domain. Since the size of a grounding of a program is, in general, exponential in the
size of the program, for problems over a finite domain, we immediately obtain an upper

600 J. Oetsch and H. Tompits

complexity bound for correspondence checking which is increased by one exponential
compared to the propositional case. That is, for a vocabulary V with a finite domain,
checking inclusion and equivalence problems over V has co-NEXPTIMEΣP

3 complex-
ity, and checking GQIPs and GQEPs over V has co-NEXPTIMEΣP

2 complexity.
More relevant in practice than frames over finite domains or propositional vocabu-

laries are frames over infinite domains. For this setting, some decidable instantiations
were already singled out in the literature. For example, checking ordinary equivalence is
decidable, being co-NEXPTIMENP-complete [19]. Furthermore, it was shown that de-
ciding strong equivalence of two programs over an infinite domain is co-NEXPTIME-
complete [12]. If we factor in Theorem 3, we obtain the following result:

Theorem 7. Deciding whether a problem of form (P,Q,PV , 5B
V), for 5 ∈ {/,≡},

over some V = (P,D) holds is co-NEXPTIME-complete, for any B⊆ P.

One could conjecture that relativised strong equivalence is decidable as well, since both
“ends” of the parametrisation, viz. ordinary equivalence and strong equivalence, are
decidable. Interestingly, this is not the case.

Lemma 1. Let P and Q be two programs over a vocabulary V and E the set of the
extensional predicates of P∪Q. Then, P6(V ,FE

V ,=) Q iff P 6(V ,PE
V ,=) Q.

As (V ,FE
V ,=)-correspondence coincides with program equivalence (cf. Theorem 1),

and program equivalence is undecidable, we immediately obtain the following result:

Theorem 8. The problem of determining whether a given correspondence problem of
form (P,Q,PA

V ,=) over some vocabulary V holds is undecidable.

Thus, although testing relativised strong equivalence is decidable in the propositional
case [7], it is undecidable in the general non-ground setting.

Finally, it is to mention that the important case of uniform equivalence, which is un-
decidable in general, is decidable for Horn programs [6]. Furthermore, Eiter et al. [20]
give a detailed exposition of the complexity of strong and uniform equivalence with
respect to restricted syntactic classes of programs. Although lower bounds for analo-
gous classes could be obtained from these results, they do not shift the border between
decidable and undecidable instantiations of our framework.

4 Translations into Second-Order Logic

In this section, we introduce encodings of GQIPs and GQEPs in terms of second-order
logic (SOL). We start with some aspects concerning the choice of SOL as target for-
malism, rather than of FOL, and afterwards we present the encodings.

4.1 A Case for Second-Order Logic

SOL is a highly expressive formalism—too expressive for effective computing—yet with
important applications in knowledge representation (KR) and nonmonotonic reasoning.
Besides McCarthy’s well-known circumscription formalism [21], SOL recently gained
increased interest in the ASP area by using it to define a generalised answer-set semantics

Program Correspondence under the Answer-Set Semantics 601

for first-order theories (which is actually closely related to circumscription) [15]. Also,
many encodings of different KR formalisms into quantified propositional logic were
developed, which is just a decidable fragment of SOL. Indeed, in previous work [14],
polynomial translations of PQIPs and PQEPs into quantified propositional logic were
developed, and therefore translating GQIPs and GQEPs into SOL is a natural lifting.
Nevertheless, one may seek translations into FOL for them. In what follows, we show
some undesired feature of such an endeavour.

Let us understand by an FOL-translation of a class S of correspondence problems a
function assigning to each element of S a FOL-formula. An FOL-translation T of S is
faithful iff, for any Π ∈ S, T (Π) is valid iff Π holds.

Now consider the class U of problems of form (P,Q,FV ,=), i.e., problems testing
for uniform equivalence, where the domain of V is denumerable, and assume that TU is
an FOL-translation of SU which is both faithful and computable. Define C ⊆ SU as the
set containing all the problems in SU that hold and let C̄ = SU \C. We first show that C is
recursively enumerable. Consider the following algorithm: Let Π ∈ SU . (i) Compute ϕ =
TU(Π). (ii) Take any sound and complete calculus for FOL, and start to enumerate all
proofs. If a proof for ϕ is found, terminate. If ϕ is valid, this method will terminate after
a finite number of steps (by completeness of the calculus), otherwise the method will
loop forever (by soundness of the calculus). Hence, C is indeed recursively enumerable.

Next, we show that C̄ is recursively enumerable as well. Consider the following
algorithm: Take a problem Π = (P,Q,FV ,=) from SU . Start enumerating FV . For
each such X ∈ FV , if AS(P∪X) �= AS(Q∪X), terminate. If Π does not hold, there
exists a counterexample for Π and the algorithm will terminate after a finite number of
steps, otherwise it will loop forever. Thus, C̄ is also recursively enumerable. Since both
C and C̄ are recursively enumerable, SU must be decidable. But this is a contradiction
since SU is not decidable. We showed the following result:

Theorem 9. Let SU be the class of problems of form (P,Q,FV ,=), where the domain
of V is denumerable. Then, any FOL-translation of SU is either not faithful or not
computable.

Theorem 9 applies for any logic possessing sound and complete calculi and extends
to any class of correspondence problems that allows to decide uniform equivalence.
Hence, characterising correspondence problems is indeed a case for full SOL; not only
undecidability but also incompleteness with respect to deduction is inherent for verify-
ing program correspondences in general.

4.2 Translating GQIPs and GQEPs

In the sequel, we will make use of superscripts as a renaming schema for predicate vari-
ables and formulae. Formally, for any set V of predicate variables, we assume pairwise
disjoint sets V i = {vi | v ∈ V} of predicate variables, for every i ≥ 1. For a formula
φ and every i ≥ 1, φ i is the formula obtained from φ by uniformly replacing each
occurrence of an atomic formula a(t1, . . . ,tn) in φ by ai(t1, . . . ,tn). Consider a vocab-
ulary V = (P,D). For any rule r over V of form (1), we define H(r) = a1 ∨ ·· · ∨ al ,
B+(r) = al+1∧·· ·∧am, and B−(r) =¬am+1∧·· ·∧¬an. We identify empty disjunctions
with ⊥ and empty conjunctions with �.

602 J. Oetsch and H. Tompits

Next, we introduce some building blocks for our encodings. These are basically lifted
versions of ones used to characterise different notions of program correspondence for
propositional programs by means of quantified propositional logic [22,14].

We will relate sets of ground atoms with assignments over Herbrand frames in the
following way: Let X be a set of predicate variables and a an assignment over a Her-
brand frame M. Moreover, consider a program vocabulary V . Then, for any integer i,
a|Xi| = {x(t1, . . . ,tn) | xi ∈ Xi,(t1, . . . ,tn) ∈ a(xi)}, and, syntactically, a|Xi| is assumed
to be a set of ground atoms over V .

Definition 5. Let P be a program over a vocabulary V and i, j ≥ 1. Then, P〈i, j〉 =df∧
r∈P r〈i, j〉, where r〈i, j〉 =df ∀X

(
(B+(ri)∧B−(r j))→H(ri)

)
and X is the set of all vari-

ables occurring in r.

Theorem 10. Let P be a program over a vocabulary V = (P,D), V = PS(P), M a
Herbrand frame along with an assignment a over M, and X ,Y ⊆ HBV such that for
some i, j, X = a|V i| and Y = a|V j|. Then, X |= grd(P,D)Y iff P〈i, j〉 is satisfied in M by a.

Example 5. Let P = {p(x)← q(x),not q(a); q(x)← p(x),not q(b)} be a program over
a vocabulary V = (P,D), P = {p,q}, D = {a,b}, and let X = {p(a),q(a),q(b)} and
Y = {q(a)} be interpretations over V . Observe that X |= grd(P,D)Y . Furthermore, con-
sider a Herbrand frame M and an assignment a over M such that a|{p,q}1| = X and
a|{p,q}2|= Y . It can be verified that P〈1,2〉 = ∀x(q1(x)∧¬q2(a)→ p1(x))∧∀x(p1(x)∧
¬q2(b)→ q1(x)) is satisfied in M by a.

We also make use of the following abbreviations for sets of predicate variables: Let
p be a predicate variable of arity n. For any two integers i, j ≥ 1, define pi ≤ p j =df

∀x1 · · ·xn(pi(x1, . . .xn)→ p j(x1, . . .xn)). Furthermore, let P be a finite set of predicate
variables and let i, j≥ 1 be integers. Then, (Pi ≤ P j) =df

∧
p∈P(pi ≤ p j), (Pi < P j) =df

(Pi ≤ P j)∧¬(P j ≤ Pi), and (Pi = P j) =df (Pi ≤ P j)∧ (P j ≤ Pi).
We proceed with our central encoding, which captures the notion of an A-B-wedge.

Definition 6. Let P be a program over a vocabulary V = (P,D). Furthermore, let A,B

be finite subsets of P and V = PS(P)∪A∪B. Then, TR(A,B)
V (P) is given by

∃V 3
(
(B3 = B1)∧ (A2 ≤ A3)∧P〈3,3〉 ∧∀V 4(((A2 ≤ A4)∧ (V 4 <V 3))→¬P〈4,3〉

))
.

Lemma 2. Let P be a program over a vocabulary V = (P,D), A,B finite subsets of P,
and V = PS(P)∪A∪B. Then, for any finite Herbrand frame M and an assignment a
over M such that X = a|A2| and Y = a|B1|, it holds that (X ,Y) is an A-B-wedge of P iff

TR(A,B)
V (P) is satisfied in M by a.

To give an intuition of the above encoding, recall the characterisation of wedges in terms
of interpretations from Theorem 5. If we take the semantics of our building blocks into
account, Definition 6 basically encodes Conditions (i)–(iii) of Theorem 5 by means of
SOL. In particular, the interpretations Y , X , Y ′, and X ′ from Theorem 5 are captured by

the sets B1, A2, V 3, and V 4 of variables in TR(A,B)
V (P).

Next, we introduce two axioms that make some assumptions explicit. The first one
captures the well-known unique-names assumption.

Program Correspondence under the Answer-Set Semantics 603

Definition 7. For any program P over vocabulary V , the unique-names axiom for P is
given by UNA(P) =df

∧
a,b∈HUP,a �=b¬(a = b).

We consider only finite sets in the context class of frames, hence we need as second
axiom one which imposes finite SOL-domains for the models which will correspond to
the domains of the programs and the sets of facts from the context class.

Definition 8. Let V = (P,D) be a vocabulary. Then, FDA(D) is given as follows:

1. If D is finite, then FDA(D) =df ∀x(
∨

c∈D(x = c)).
2. If D is denumerable, then FDA(D) =df ∃S

(
∀xS(x)∧∀R

(
PO(R,S)→MAX(R,S)

))
,

where

PO(R,S) =df ∀xyz
(

S(x)∧S(y)∧S(z)→ (R(x,x)∧

(R(x,y)∧R(y,z)→ R(x,z))∧ (R(x,y)∧R(y,x)→ x = y)
))

and

MAX(R,S) =df ∃m
(
S(m)∧∀x(S(x)∧R(m,x)→ m = x)

)
.

The intuition of the first item should be clear: The SOL-domain of any model does not
contain more objects than enumerated by the finite disjunction over the elements from
the LP-domain D. Hence, FDA(·) turns into the customary domain-closure axiom. If D

is denumerable, the intuition of the second item is the following: PO(R,S) is true if R is
a partial order on S, and MAX(R,S) is true if S contains a maximal element with respect
to R. Hence, FDA(D) encodes that there exists a set S such that each element of the
SOL-domain in any model is in S and, for each partial order on S, S contains a maximal
element with respect to that order. The latter is a well-known set-theoretic condition
that ensures that S is finite. Since, for each model, any element from the SOL-domain
is in S, it follows that each model is finite as well.

We are now in a position to state the main characterisation in SOL.

Theorem 11. Let Π be a correspondence problem of form (P,Q,FA
V ,5B

V), where V =
(P,D) and 5 ∈ {/,≡}, and let V = PS(P∪Q), A′ = A|V , and B′ = B|V . Then:

(i) Π holds iff UNA(P∪Q),FDA(D) |= TR(A′,B′)
V (P)→ TR(A′,B′)

V (Q), if 5 is /.

(ii) Π holds iff UNA(P∪Q),FDA(D) |= TR(A′,B′)
V (P) ↔ TR(A′,B′)

V (Q), if 5 is ≡.

That FDA(·) is indeed required can be seen as follows: For a vocabulary with a denu-
merable domain, define the programs

P=

⎧⎨⎩
s(a); r(x,y)∨ r(y,x)← s(x),s(y);
r(x,z)← r(x,y),r(y,z); p(x,y)← r(x,y),not r(y,x);
ḡ(x)← p(x,y); g← s(x),not ḡ(x)

⎫⎬⎭, Q = P∪
{
← not g

}
.

The intuition behind program P is that, for any set X of facts over s, each answer set
from P∪X contains g (the greatest element) iff X is finite. This is realised by formalising
the property that any strict total order on a non-empty set S induces a greatest element
with respect to this order relation iff S is finite. On the other hand, program Q∪X has no
answer sets iff X is infinite. This is realised by defining Q as P augmented with the rule
← not g that eliminates any answer set not containing g. In a nutshell, programs P and
Q show that the answer-set semantics is expressible enough to distinguish whether the

604 J. Oetsch and H. Tompits

domain of X is finite. Now consider the problem Π = (P,Q,FA
V ,/B

V), where A = {s},
B = {g}, and V is a vocabulary with a denumerable domain. It is easy to see that Π holds
since any answer set of P and Q contains g when joined with finite sets of facts over {s}.

Nevertheless, UNA(P∪Q) |= TR(A,B)
V (P)→ TR(A,B)

V (Q) does not hold since there exist
models of infinite size that correspond, roughly speaking, to infinite counterexamples.

Finally, one may wonder why FDA(·) comes in two guises, depending on the cardi-
nality of the LP-domain. Let us assume that FDA(·) would be defined only by Item 2 of
Definition 8, irrespective of the cardinality of D. We use FDA′ to refer to this version of
FDA(·). Consider the following two programs: P = {eq(x,x)← s(x)} and Q = P∪{←
s(x),s(y),not eq(x,y)}. Program P expresses that any element in the set implicitly de-
fined by s is equal to itself; program Q is defined as P plus a rule expressing that Q has
no answer set iff the set implicitly defined by s has more than one element. Hence, the
problem Π = (P,Q,FA

V ,/B
V), for A = {s} and B = /0, holds only if the vocabulary V

has a domain with less than two elements. Assume that V is such a vocabulary. How-

ever, UNA(P∪Q),FDA′ |= TR(A,B)
V (P) → TR(A,B)

V (Q) does not hold since FDA′ only
ensures that all models are finite but it makes no commitment about their cardinalities.

5 Conclusion

The focus of our work is on notions of program correspondence for non-ground logic
programs under the answer-set semantics. Previously, refined equivalence notions tak-
ing answer-set projection and relativised contexts into account were defined and studied
for propositional programs only. Indeed, the framework introduced in this paper is a lift-
ing of a framework due to Eiter et al. [8] defined for specifying parameterised program
correspondence notions for propositional programs. Our framework allows to capture
several well-known equivalence notions in a uniform manner and, moreover, allows to
directly extend notions studied so far for propositional programs only to the general
non-ground case. In particular, we introduced GQIPs and GQEPs as generalisations of
PQIPs and PQEPs, respectively, which in turn generalise uniform equivalence as well
as query and program equivalence. We provided model-theoretic characterisations for
GQIPs and GQEPs—in the spirit of characterising uniform equivalence in terms of
UE-models—and axiomatised them in terms of second-order logic.

We plan to provide characterisations similar to those given for GQIPs and GQEPs
to correspondence problems capturing relativised strong equivalence with projection
(recall that GQEPs amount to relativised uniform equivalence with projection). A fur-
ther point will be to study the generalised answer-set semantics recently introduced by
Ferraris, Lee, and Lifschitz [15] in connection with our correspondence framework—in
particular, to characterise equivalence notions for this semantics in terms of second-
order logic, as that semantics is itself defined by means of second-order logic.

References

1. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)

2. Janhunen, T., Niemelä, I., Seipel, D., Simons, P.: Unfolding Partiality and Disjunctions in
Stable Model Semantics. ACM TOCL 7(1), 1–37 (2006)

Program Correspondence under the Answer-Set Semantics 605

3. Lifschitz, V., Pearce, D., Valverde, A.: Strongly Equivalent Logic Programs. ACM
TOCL 2(4), 526–541 (2001)

4. Eiter, T., Fink, M.: Uniform Equivalence of Logic Programs under the Stable Model Seman-
tics. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238. Springer, Heidel-
berg (2003)

5. Maher, M.J.: Equivalences of logic programs. In: Minker, J. (ed.) Foundations of Deductive
Databases and Logic Programming, pp. 627–658. Morgan Kaufmann, San Francisco (1988)

6. Sagiv, Y.: Optimizing Datalog Programs. In: Minker, J. (ed.) Foundations of Deductive Data-
bases and Logic Programming, pp. 659–698. Morgan Kaufmann, San Francisco (1988)

7. Woltran, S.: Characterizations for Relativized Notions of Equivalence in Answer Set Pro-
gramming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 161–173.
Springer, Heidelberg (2004)

8. Eiter, T., Tompits, H., Woltran, S.: On Solution Correspondences in Answer-Set Program-
ming. In: 19th International Joint Conference on Artificial Intelligence, pp. 97–102 (2005)

9. Oikarinen, E., Janhunen, T.: Modular Equivalence for Normal Logic Programs. In: 17th Eu-
ropean Conference on Artificial Intelligence, pp. 412–416. IOS Press, Amsterdam (2006)

10. Inoue, K., Sakama, C.: Equivalence of Logic Programs Under Updates. In: Alferes, J.J.,
Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 174–186. Springer, Heidelberg (2004)

11. Lin, F.: Reducing Strong Equivalence of Logic Programs to Entailment in Classical Propo-
sitional Logic. In: 8th International Conference on Principles of Knowledge Representation
and Reasoning, pp. 170–176. Morgan Kaufmann, San Francisco (2002)

12. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and Uniform Equivalence in Answer-
Set Programming: Characterizations and Complexity Results for the Non-Ground Case. In:
20th National Conference on Artificial Intelligence, pp. 695–700. AAAI Press, Menlo Park
(2005)

13. Lifschitz, V., Pearce, D., Valverde, A.: A Characterization of Strong Equivalence for Logic
Programs with Variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS,
vol. 4483, pp. 188–200. Springer, Heidelberg (2007)

14. Oetsch, J., Tompits, H., Woltran, S.: Facts do not Cease to Exist Because They are Ignored:
Relativised Uniform Equivalence with Answer-Set Projection. In: 22nd National Conference
on Artificial Intelligence, pp. 458–464. AAAI Press, Menlo Park (2007)

15. Ferraris, P., Lee, J., Lifschitz, V.: A New Perspective on Stable Models. In: 20th International
Joint Conference on Artificial Intelligence, pp. 372–379 (2007)

16. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385 (1991)

17. Turner, H.: Strong Equivalence Made Easy: Nested Expressions and Weight Constraints.
Theory and Practice of Logic Programming 3(4-5), 602–622 (2003)

18. Shmueli, O.: Decidability and Expressiveness Aspects of Logic Queries. In: 6th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 237–249.
ACM, New York (1987)

19. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys 33(3), 374–425 (2001)

20. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Complexity Results for Checking Equivalence of
Stratified Logic Programs. In: 20th International Joint Conference on Artificial Intelligence,
pp. 330–335 (2007)

21. McCarthy, J.: Circumscription—A Form of Non-Monotonic Reasoning. Artificial Intelli-
gence 13, 27–39 (1980)

22. Tompits, H., Woltran, S.: Towards Implementations for Advanced Equivalence Checking in
Answer-Set Programming. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668,
pp. 189–203. Springer, Heidelberg (2005)

Efficient Algorithms for Functional Constraints�

Yuanlin Zhang1, Roland H.C. Yap2,
Chendong Li1, and Satyanarayana Marisetti1

1 Texas Tech University, USA
2 National University of Singapore, Singapore

Abstract. Functional constraints are an important constraint class in
Constraint Programming (CP) systems, in particular for Constraint Logic
Programming (CLP) systems. CP systems with finite domain constraints
usually employ CSP-based solvers which use local consistency, e.g. arc
consistency. We introduce a new approach which is based instead on vari-
able substitution. We obtain efficient algorithms for reducing systems
involving functional and bi-functional constraints together with other non-
functional constraints. It also solves globally any CSP where there exists
a variable such that any other variable is reachable from it through a se-
quence of functional constraints. Our experiments show that variable elim-
ination can significantly improve the efficiency of solving problems with
functional constraints.

1 Introduction

Functional constraints are a common class of constraints occurring in Constraint
Satisfaction Problem(s) (CSP) [10,11,7]. In Constraint Programming (CP) sys-
tems such as Constraint Logic Programming (CLP), functional constraints also
naturally arise as primitive constraints and from unification. Finite domain is a
widely used and successful constraint domain for CLP. In this context, functional
constraints (e.g., those in CHIP [11]), as primitive constraints, can facilitate the
development of more efficient constraint solvers underlying CLP systems. In
CLP, when reducing a goal, unification can also lead to functional constraints.
For example, when matching p(Z2 + 1) with a rule on p(X) where both X and
Z are finite domain variables, a functional constraint X = Z2 + 1 is produced.

Most work on functional constraints follows the approach in CSP which is
based on arc or path consistency [11,3]. In this paper, we propose a new method
— variable substitution — to process functional constraints. The idea is that if
a constraint is functional on a variable, this variable in another constraint can
be substituted using the functional constraint without losing any solution.

Given a variable, the variable elimination method substitutes this variable
in all constraints involving it such that it is effectively “eliminated” from the
problem. This idea is applied to reduce any problem containing non-functional

� Part of this work was supported by National Univ. of Singapore, grant 252-000-
303-112.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 606–620, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Algorithms for Functional Constraints 607

constraints into a canonical form where some variables can be safely ignored
when solving the problem. We design an efficient algorithm to reduce, in O(ed2)
where e is the number of constraints and d the size of the largest domain of the
variables, a general binary CSP containing functional constraints into a canonical
form. This reduction simplifies the problem and makes the functional portion
trivially solvable. When the functional constraints are also bi-functional, then
the algorithm is linear in the size of the CSP.

Many CLP systems with finite domains make use of constraint propagation
algorithms such as arc consistency. Our experiments show that the substitution
based “global” treatment of functional constraints can significantly speed up
propagation based solvers.

In the rest of the paper, background on CSPs and functional constraints is given
in Section 2. Variable substitution for binary functional constraints is introduced
and studied in Section 3. Section 4 presents results on algorithms for variable elim-
ination in general CSPs containing functional constraints. Section 5 presents an
experimental study. Functional elimination is extended to non-binary constraints
in Section 6. Related work is discussed in Section 7 and concluded in Section 8.

2 Preliminaries

We begin with the basic concepts and notation used in this paper.
A binary Constraint Satisfaction Problem (CSP) (N, D, C) consists of a finite

set of variables N = {1, · · · , n}, a set of domains D = {D1, · · · , Dn}, where Di

is the domain of variable i , and a set of constraints each of which is a binary
relation between two variables in N .

A constraint between two variables i and j is denoted by cij . Symbols a and b
possibly with subscript denote the values in a domain. A constraint cij is a set of
allowed tuples. We assume testing whether a tuple belongs to a constraint takes
constant time. For a ∈ Di and b ∈ Dj , we use either (a, b) ∈ cij or cij(a, b) to
denote that a and b satisfy the constraint cij . For the problems of interest here,
we require that for all a ∈ Di and b ∈ Dj , (a, b) ∈ cij if and only if (b, a) ∈ cji. If
there is no constraint on i and j, cij denotes a universal relation, i.e., Di ×Dj .

A constraint graph G = (V,E), where V = N and E = {{i, j} | ∃cij ∈ C},
is usually used to describe the topological structure of a CSP. A solution of
a constraint satisfaction problem is an assignment of a value to each variable
such that the assignment satisfies all the constraints in the problem. A CSP is
satisfiable if it has a solution. The solution space of a CSP is the set of all its
solutions. Two CSPs are equivalent if and only if they have the same solution
space. Throughout this paper, n represents the number of variables, d the size
of the largest domain of the variables, and e the number of constraints in C.

We need two operations on constraints in this paper. One is the intersection
of two constraints (intersection of the sets of tuples) that constrain the same
set of variables. The other operation is the composition, denoted by the sym-
bol “◦,” of two constraints sharing a variable. The composition of two relations is:

608 Y. Zhang et al.

cjk ◦ cij = {(a, c) | ∃b ∈ Dj, such that (a, b) ∈ cij ∧ (b, c) ∈ cjk}.

Composition is a basic operation in our variable substitution method. Composing
cij and cjk gives a new constraint on i and k.

Example. Consider constraints cij = {(a1, b1), (a2, b2), (a2, b3)} and cjk =
{(b1, c1), (b2, c2), (b3, c2)}. The composition of cij and cjk is a constraint on
i and k: cik = {(a1, c1), (a2, c2)}. �

A constraint cij is functional on j if for any a ∈ Di there exists at most one
b ∈ Dj such that cij(a, b). cij is functional on i if cji is functional on i. Given
a constraint cij functional on j and a value a ∈ Di, we assume throughout the
paper that in constant time we can find the value b ∈ Dj , if there is one, such
that (a, b) ∈ cij .

A special case of functional constraints are equations. These are ubiquitous
in CLP. A typical functional constraint in arithmetic is a binary linear equation
like 2x = 5−3y which is functional on x and on y. Functional constraints do not
need to be linear. For example, a nonlinear equation x2 = y2 where x, y ∈ 1..10
is also functional on both x and y. In scene labeling problems [7], there are many
functional constraints and other special constraints. �

When a constraint cij is functional on j, for simplicity, we say cij is functional
by making use of the fact that the subscripts of cij are an ordered pair. When
cij is functional on i, cji is said to be functional. That cij is functional does not
mean cji is functional. In this paper, the definition of functional constraints is
different from the one in [12,11] where constraints are functional on each of its
variables, leading to the following notion.

A constraint cij is bi-functional if cij is functional on i and on j. A bi-
functional constraint is called bijective in [3]. For functional constraints, we have
the following property on their composition and intersection: 1) If cij and cjk

are functional on j and k respectively, their composition remains functional; and
2) The intersection of two functional constraints remains functional.

3 Variable Substitution and Elimination Using Binary
Functional Constraints

We introduce the idea of variable substitution. Given a CSP (N,D,C), a con-
straint cij ∈ C that is functional on j, and a constraint cjk in C, we can substitute
i for j in cjk by composing cij and cjk. If there is already a constraint cik ∈ C,
the new constraint on i and k is simply the intersection of cik and cjk ◦ cij .

Definition 1. Consider a CSP (N,D,C), a constraint cij ∈ C functional on j,
and a constraint cjk ∈ C. To substitute i for j in cjk, using cij, is to get a new
CSP where cjk is replaced by c′ik = cik ∩ (cjk ◦ cij). The variable i is called the
substitution variable.

A fundamental property of variable substitution is that it preserves the solution
space of the problem.

Efficient Algorithms for Functional Constraints 609

Property 1. Given a CSP (N,D,C), a constraint cij ∈ C functional on j, and a
constraint cjk ∈ C, the new problem obtained by substituting i for j in cjk is
equivalent to (N,D,C).

Proof. Let the new problem after substituting i for j in cjk be (N,D,C′) where
C′ = (C − {cjk}) ∪ {c′ik} and c′ik = cik ∩ (cjk ◦ cij).

Assume (a1, a2, · · · , an) is a solution of (N,D,C). We need to show that it
satisfies C′. The major difference between C′ and C is that C′ has new constraint
c′ik. It is known that (ai, aj) ∈ cij , (aj , ak) ∈ cjk, and if there is cik in C,
(ai, ak) ∈ cik. The fact that c′ik = (cjk ◦ cij) ∩ cik implies (ai, ak) ∈ c′ik. Hence,
c′ik is satisfied by (a1, a2, · · · , an).

Conversely, we need to show that any solution (a1, a2, · · · , an) of (N,D,C′) is
a solution of (N,D,C). Given the difference between C′ and C, it is sufficient
to show the solution satisfies cjk. We have (ai, aj) ∈ cij and (ai, ak) ∈ c′ik.
Since c′ik = (cjk ◦ cij) ∩ cik, there must exist b ∈ Dj such that (ai, b) ∈ cij and
(b, ak) ∈ cjk. As cij is functional, b has to be aj . Hence, aj and ak satisfy cjk. �

Based on variable substitution, we can eliminate a variable from a problem so
that no constraint will be on this variable (except the functional constraint used
to substitute it).

Definition 2. Given a CSP (N,D,C) and a constraint cij ∈ C functional on
j, to eliminate j using cij is to substitute i for j, using cij, in every constraint
cjk ∈ C (except cji).

We can also substitute i for j in cji to obtain c′ii and then intersect c′ii with the
identity relation on Di, equivalent to a direct revision of the domain of i with
respect to cij . This would make the algorithms presented in this paper more
uniform, i.e., only operations on constraints are used. Since in most algorithms
we want to make domain revision explicit, we choose not to substitute i for j in
cji.

Given a functional constraint cij of a CSP (N,D,C), let Cj be the set of all
constraints involving j, except cij . The elimination of j using cij results in a new
problem (N,D,C′) where

C′ = (C − Cj) ∪ {c′ik | c′ik = (cjk ◦ cij) ∩ cik, cjk ∈ C}.

In the new problem, there is only one constraint cij on j and thus j can be
regarded as being “eliminated”.
Example. Consider a problem with three constraints whose constraint graph is
shown in Figure 1 (a). Let cij be functional. The CSP after j has been eliminated
using cij is shown in Figure 1 (b). In the new CSP, constraints cjk and cjl are
discarded, and new constraints cik = cjk ◦ cij and cil = cjl ◦ cij are added. �

The variable elimination involves “several” substitutions and thus preserves the
solution space of the original problem by Property 1.

Property 2. Given a CSP (N,D,C) and a functional constraint cij ∈ C, the
new problem (N,D,C′) obtained by the elimination of variable j using cij is
equivalent to (N,D,C).

610 Y. Zhang et al.

i

k

l

j i

k

l

j

(a) (b)

Fig. 1. (a): A CSP with a functional constraint cij . (b): The new CSP after eliminating
the variable j using cij .

4 Elimination Algorithms for CSPs with Functional
Constraints and Non-functional Constraints

We now extend variable elimination to general CSPs with functional and non-
functional constraints. The idea of variable elimination (Definition 2 in Section 3)
can be used to reduce a CSP to the following canonical functional form.

Definition 3. A CSP (N,D,C) is in canonical functional form if for any con-
straint cij ∈ C functional on j, the following conditions are satisfied: 1) if cji

is also functional on i(i.e., cij is bi-functional), either i or j is not constrained
by any other constraint in C; 2) otherwise, j is not constrained by any other
constraint in C.

As a trivial example, a CSP without any functional constraint is in canonical
functional form. If a CSP contains some functional constraints, it is in canonical
functional form intuitively if for any functional constraint cij , there is only one
constraint on j. As an exception, the first condition in the definition implies that
when cij is bi-functional, one variable of {i, j} might have several bi-functional
constraints on it.

In a canonical functional form CSP, the functional constraints form disjoint
star graphs. A star graph is a tree where there exists a node, called the center,
such that there is an edge between this center node and every other node. We
call the variable at the center of a star graph, a free variable, and other variables
in the star graph eliminated variables. Fig. 1(b) is a star graph, assuming cjk

and cjl are functional on k and l respectively, with free variable i. The constraint
between a free variable i and an eliminated variable j is functional on j, but it
may or may not be functional on i. In the special case that the star graph contains
only two variables i and j and cij is bi-functional, any one of the variables can
be called a free variable while the other is called an eliminated variable.

If a CSP is in canonical functional form, all functional constraints and the
eliminated variables can be ignored when we try to find a solution for this
problem. Thus, to solve a CSP (N,D,C) in canonical functional form whose
non-eliminated variables are NE, we only need to solve a smaller problem
(NE,D′, C′) where D′ is the set of domains of the variables NE and C′ =
{cij | cij ∈ C and i, j ∈ NE}.

Efficient Algorithms for Functional Constraints 611

Proposition 1. Consider a CSP P1 = (N,D,C) in a canonical functional form
and a new CSP P2 = (NE,D′, C′) formed by ignoring the eliminated variables
in P1. For any free variable i ∈ N and any constraint cij ∈ C functional on
j, assume any value of Di has a support in Dj and this support can be found
in constant time. Any solution of P2 is extensible to a unique solution of P1 in
O(|N −NE|) time. Any solution of P1 can be obtained from a solution of P2.

Proof. Let (a1, a2, · · · , a|NE|) be a solution of (NE,D′, C′). Consider any elimi-
nated variable j ∈ N −NE. In C, there is only one constraint on j. Let it be cij
where i must be a free variable. By the assumption of the proposition, the value
of i in the solution has a unique support in j. This support will be assigned to j.
In this way, a unique solution for (N,D,C) is obtained. The complexity of this
extension is O(|N −NE|).

Let S be a solution of (N,D,C) and S′ the portion of S restricted to the
variables in NE. S′ is a solution of (NE,D′, C′) because C′ ⊆ C. The unique
extension of S′ to a solution of P1 is exactly S. �

Any CSP with functional constraints can be transformed into canonical func-
tional form by variable elimination using the algorithm in Fig. 2. Given a con-
straint cij functional on j, Line 1 of the algorithm substitutes i for j in all
constraints involving j. Note the arc consistency on cik, for all neighbor k of i,
is enforced by line 3.

algorithm Variable-Elimination(inout (N, D, C), out consistent) {
L ← N ;
while (There is cij ∈ C functional on j where i, j ∈ L and i = j){

// Eliminate variable j,
1. C ← {c′

ik | c′
ik ← (cjk ◦ cij) ∩ cik, cjk ∈ C, k = i} ∪ (C − {cjk ∈ C | k = i});

2. L ← L− {j};
3. Revise the domain of i wrt cik for every neighbour k of i;

if (Di is empty) then { consistent ← false; return }
}
consistent ← true;

}

Fig. 2. A variable elimination algorithm to transform a CSP into a canonical functional
form.

Theorem 1. Given a CSP (N,D,C), Variable-Elimination transforms the
problem into a canonical functional form in O(n2d2).

Proof. Assume Variable-Elimination transforms a CSP P1 = (N,D,C) into
a new problem P2 = (N,D′, C′). We show that P2 is of canonical functional form.
For any variable j ∈ N , if there is a constraint cij ∈ C′ functional on j, there
are two cases. Case 1: j /∈ L when the algorithm terminates. This means that
cij is the functional constraint that is used to substitute j in other constraints

612 Y. Zhang et al.

(Line 1). After substitution, cij is the unique constraint on j. Case 2: j ∈ L
when the algorithm terminates. Variable i must not be in L (otherwise, j will
be substituted by Line 1). This implies that i was substituted using cji. Thus,
cji is the only functional constraint on i in P2. Hence, cij is bi-functional and i
is not constrained by any other constraints.

Next, we show the complexity of Variable-Elimination. It eliminates any
variable in N at most once (Line 2). For each variable j and a constraint cij
functional on j, there are at most n − 2 other constraints on j. The variable j
in those constraints needs to be substituted. The complexity of the substitution
for each constraint is O(d2). The elimination of j (Line 1) takes O(nd2). There
are at most n − 1 variables to eliminate and thus the worst case complexity of
the algorithm is O(n2d2). �

It is worth noting that the variable elimination algorithm is able to globally solve
some CSPs containing non-functional constraints.
Example. Consider a simple example where there are three variables i, j, and k
whose domains are {1, 2, 3} and the constraints are i = j, i = k + 1, and j �= k.
Note that although the constraints are listed in an equational form, the actual
constraints are explicit and discrete, thus normal equational reasoning might
not be applicable. By eliminating j using cij , cik becomes {(2, 1), (3, 2)}, and
the domain of i becomes {2, 3}. The non-functional constraint cjk is gone. The
problem is in canonical functional form. A solution can be obtained by letting i
be 2 and consequently j = 2 and k = 1. �

By carefully choosing an ordering of the variables to eliminate, a faster algorithm
can be obtained. The intuition is that once a variable i is used to substitute for
other variables, i itself should not be substituted by any other variable later.
Example. Consider a CSP with functional constraints cij and cjk. Its constraint
graph is shown in Fig. 3(a) where a functional constraint is represented by an
arrow. If we eliminate k and then j, we first get cjl1 and cjl2 , and then get cil1
and cil2 . Note that j is first used to substitute for k and later is substituted by
i. If we eliminate j and then k, we first get cik, and then get cil1 and cil2 . In this
way, we reduce the number of compositions of constraints. �

..............
..............
..............
..............
..........

...

..

..........
..........
..........
..........
..........
..........
..........
..........
...
........
............ ..

..
...........
...........
...........
...........
...........
...........
...........
..
........
............ ..

..

..

i j

l1

l2

k

i1

i2 i3j1 j2

j3

(a) (b)

Fig. 3. (a) The constraint graph of a CSP with functional constraints cij and cjk. (b)
A directed graph.

Given a CSP P = (N,D,C), PF is used to denote its directed graph (V,E) where
V = N and E = {(i, j) | cij ∈ C and cij is functional on j}. Non-functional
constraints in C do not appear in PF . A subgraph of a directed graph is strongly
connected if for any two vertices of the subgraph, any one of them is reachable

Efficient Algorithms for Functional Constraints 613

from the other. A strongly connected component of a directed graph is a maximum
subgraph that is strongly connected. To describe our algorithm we need the
following notation.

Definition 4. Given a directed graph (V,E), a sequence of the nodes of V is
a functional elimination ordering if for any two nodes i and j, i before j in
the sequence implies that there is a path from i and j. A functional elimination
ordering of a CSP problem P is a functional elimination ordering of PF .

The functional elimination ordering is used to overcome the redundant compu-
tation shown in the example on Fig. 3(a). Given a directed graph G, a functional
elimination ordering can be found by: 1) finding all the strongly connected com-
ponents of G; 2) modifying G by taking every component as one vertex with
edges changed and/or added accordingly; 3) finding a topological ordering of
the nodes in the new graph; and 4) replacing any vertex v in the ordering by any
sequence of the vertices of the strongly connected component represented by v.

To illustrate the process, consider the example in Fig. 3(b) which can be
taken as PF for some CSP problem P . All strongly connected components are
{j1, j2, j3}, denoted by c1, and {i1, i2, i3}, denoted by c2. We construct the new
graph by replacing the components by vertices: ({c1, c2}, {(c1, c2)}). We have
the edge (c1, c2) because the two components are connected by (j2, i2). The
topological ordering of the new graph is 〈c1, c2〉. Now we can replace c1 by
any sequence of j’s and c2 by any sequence of i’s. For example, we can have a
functional elimination ordering 〈j3, j2, j1, i2, i3, i1〉.

The algorithm Linear-Elimination in Fig. 4 first finds a functional elimina-
tion ordering (Line 1). Line 4 and 6 are to process all the variables in O. Every
variable i of O is processed as follows: i will be used to substitute for all the vari-
ables reachable from i through constraints that are functional in C0 and still exist
in the current C. Those constraints are called qualified constraints. Specifically,
L initially holds the immediate reachable variables through qualified constraints
(Line 8). Line 9 is a loop to eliminate all variables reachable from i. The loop at
Line 11 is to eliminate j using i from the current C. In this loop, if a constraint
cjk is qualified (Line 14), k is reachable from i through qualified constraints.
Therefore, it is put into L (Line 15).

To illustrate the ideas underlying the algorithm, consider the example in
Fig. 3(b). Now, we assume the edges in the graph are the only constraints
in the problem. Assume the algorithm finds the ordering given earlier: O =
〈j3, j2, j1, i2, i3, i1〉. Next, it starts from j3. The qualified constraints leaving j3
are cj3j2 only. So, the immediate reachable variables through qualified constraints
are L = {j2}. Take and delete j2 from L. Substitute j3 for j2 in constraints cj2i2

and cj2j1 . As a result, constraints cj2i2 and cj2j1 are removed from C while
cj3j1 = cj3j1 ∩ (cj2j1 ◦ cj3j2) and new constraint cj3i2 = cj2i2 ◦ cj3j2 is introduced
to C. One can verify that both cj2j1 and cj2i2 are qualified. Hence, variables
j1 and i2 are reachable from j3 and thus are put into L. Assume j1 is selected
from L. Since there are no other constraints on j1, nothing is done. Variable i2
is then selected from L. By eliminating i2 using j3, ci2i1 and ci2i3 are removed
from C and cj3i1 and cj3i3 are added to C. Constraint ci2i1 is qualified, and thus

614 Y. Zhang et al.

algorithm Linear-Elimination(inout (N, D, C)) {
1. Find a functional elimination ordering O of the problem;
2. Let C0 be C; any cij in C0 is denoted by c0

ij ;
3. For each i ∈ N , it is marked as not eliminated ;
4. while (O is not empty) {

Take and delete the first variable i from O;
6. if (i is not eliminated) {
8. L ← {j | (i, j) ∈ C and c0

ij is functional};
9. while (L not empty) {

Take and delete j from L;
11. for any cjk ∈ C − {cji} { // Substitute i for j in cjk;

c′ik ← cjk ◦ cij ∩ cik;
C ← C ∪ {c′ik} − {cjk};

14. if (c0
jk is functional) then

15. L ← L ∪ {k};
}

16. Mark j as eliminated ;
} // loop on L

}
} // loop on O

} // end of algorithm

Fig. 4. A variable elimination algorithm of complexity O(ed2)

i1 is added to L. Note that ci2i3 is not qualified because it is not functional
on i3 in terms of the graph. We take out the only variable i1 in L. After i1 is
eliminated using j3, ci1i3 is removed from C, and constraint cj3i3 is updated to
be cj3i3 ∩ (ci1i3 ◦ cj3i1). Since ci1i3 is qualified, i3 is added to L. One can see
that although i3 was not reachable when i2 was eliminated, it finally becomes
reachable because of i1. In general, all variables in a strongly connected compo-
nent are reachable from the variable under processing if one of them is reachable.
Now, take i3 out of L, and nothing is done because there are no other constraints
incident on it. Every variable except j3 is marked as eliminated (Line 16), the
while loop on O (Line 4 and 6) terminates.

Theorem 2. Given a CSP problem, the worst case time complexity of Linear-
Elimination is O(ed2) where e is the number of constraints and d the size of
maximum domain in the problem.

Proof. To find a functional elimination ordering involves the identification of
strongly connected components and topological sorting. Each of two operations
takes linear time. Therefore, Line 1 of the algorithm takes O(n + e).

The while loop of Line 4 takes O(ed2). Assume that there is a unique iden-
tification number associated with each constraint in C. After some variable of a
constraint is substituted, the constraint’s identification number refers to the new
constraint. For any identification number α, let its first associated constraint be
cjk. Assuming j is substituted by some other variable i, we can show that i

Efficient Algorithms for Functional Constraints 615

will be never be substituted later in the algorithm. By the algorithm, i is se-
lected at Line 6. So, all variables before i in O have been processed. Since i is
not eliminated, it is not reachable from any variable before it (in terms of O)
through qualified constraints (due to loop of Line 9). Hence, there are two cases:
1) there is no constraint cmi of C such that c0mi is functional on i, 2) there is
at least one constraint cmi of C such that c0mi is functional on i. In the first
case, our algorithm will never substitute i by any other variable. By definition
of functional elimination ordering, case 2 implies that i belongs to a strongly
connected component whose variables have not been eliminated yet. Since all
variables in the component will be substituted by i, after the loop of Line 9,
there is no constraint cmi of C such that c0mi is functional on i. Hence, i will
never be substituted. In a similar fashion, if variable k is substituted by l, l will
never be substituted later by the algorithm. So, there are at most two substitu-
tions occurring to α. By definition, substitution involves a functional constraint,
its complexity is O(d2) in the worst case. Since there is a unique identification
number for each constraint, the time taken by while loop at Line 4 is O(ed2).

In summary, the worst case time complexity of the algorithm is O(ed2). �

To characterize the property of Linear-Elimination, we need the following
notation.

Definition 5. Given a problem P , let C0 be the constraints before Linear-
Elimination and C the constraints of the problem at any moment during the
algorithm. A constraint cij of C is trivially functional if it is functional and
satisfies the condition: c0ij is functional or there is a path i1(= i), i2, · · · , im(= j)
in C0 such that c0ikik+1

(k ∈ 1..m− 1) is functional on ik+1.

Theorem 3. Algorithm Linear-Elimination transforms a CSP (N,D,C) into
a canonical functional form if all newly produced functional constraints (due to
substitution) are trivially functional.

The proof of this result is straightforward and thus omitted here.

Corollary 1. For a CSP problem with non-functional constraints and bi-func-
tional constraints, the worst case time complexity of algorithm
Linear-Elimination is linear to the problem size.

This result follows the observation below. When the functional constraint in-
volved in a substitution is bi-functional, the complexity of the composition is
linear to the constraints involved. From the proof of Theorem 2, the complexity
of the algorithm is linear to the size of all constraints, i.e., the problem size.

Corollary 2. Consider a CSP with both functional and non-functional con-
straints. If there is a variable of the problem such that every variable of the
CSP is reachable from it in PF , the satisfiability of the problem can be decided
in O(ed2) using Linear-Elimination.

For a problem with the property given in the corollary, its canonical func-
tional form becomes a star graph. So, any value in the domain of the free

616 Y. Zhang et al.

variable is extensible to a solution if we add (arc) consistency enforcing dur-
ing Linear-Elimination. The problem is not satisfiable if a domain becomes
empty during the elimination process.

5 Experimental Results

We investigate to see the effectiveness of variable elimination on problem solving.
In our experiments, a problem is either directly solved by a general solver or
variable elimination is invoked before the solver.

Since there are no publicly available benchmarks on functional constraints,
we generate random problems 〈n, d, e, nf, t〉 where n is the number of variables,
d domain size, e the number of constraints, nf the number of functional con-
straints, and t the tightness of non-functional constraints. Tightness r is defined
as the percentage of allowed tuples over d2. Except the nf functional constraints,
all other constraints are non-functional. Each functional constraint is made to
have d allowed tuples. Our implementation allows other tightness for functional
constraints. However, we observed from the experiments that if we make the
number of allowed tuples less than d, the problems are easy (i.e., with very few
backtracks) to solve.

We selected meaningful problems from the ones generated to do benchmark-
ing. In the context of random problems, the tightness 1/d of functional con-
straints is rather tight. Therefore, when we increase nf, the “hardness” of the
problems drops correspondingly. In our experiments, we systematically examine
the problems with the following setting: n, d are 50, e varies from 100 to 710
with step size 122 (10% of all possible constraints), nf varies from 2 to 12, and
t varies from 0.2 to 1.0 with step size 0.05. When nf is small (e.g, 2), there are
so many hard problems that we can only scan a small portion of the problems
(we stop running when the time limit 4∗ 104s is reached). When nf is large (e.g.,
12), even for the most difficult problem instances, the number of backtracks is
small and thus they are simple. For example, when nf = 12, the most difficult
problems are with e = 710. The table below shows the hardness of the problems,
with nf = 12 and e = 710, in terms of number of backtracks (#bt) needed.
When t is from 0.2 to 0.65, #bt is 0. For the most difficult case of t being 0.8,
#bt is small (around 1000). On the other hand, when nf is small, one can expect
that the application of elimination may not make much difference.

t 0.2 – 0.65 0.7 0.75 0.8 0.85 0.9 – 0.95
#bt 0 5.7 22.9 1023 0.2 0

Due to the observations above, we evaluate the algorithm on non-trivial cases
(e.g., trivial cases include few backtracks or very small number of functional
constraints). We study the effectiveness of variable elimination for each nf on
the most difficult problems as we discovered in the exploration process above.
The results with nf varying from 6 to 12 are shown in Fig. 5. The results were
obtained on a DELL PowerEdge 1850 (two 3.6GHz Intel Xeon CPUs) in Linux.
We implement both the elimination algorithm and a general solver in C++. The

Efficient Algorithms for Functional Constraints 617

6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Functional Constraints

T
im

e(
s)

Without Elimination
Elimination

Fig. 5. Performance of the algorithms on random problems. When nf = 7, time limit
is reached by the solver without variable elimination.

solver uses the standard backtracking algorithm. During the search, a variable
with maximum degree is selected first with tie broken by lexicographical order
while the value of a variable is selected in a lexicographical order.

For the problem instances used in Figure 5, the time to transform the in-
stances into their canonical forms is negligible compared to the time solving the
problems. There are two reasons. First, the number of constraints involved in
the elimination is relatively small compared to the total number of constraints
in the problems. Second, the algorithm is as efficient as the optimal general arc
consistency algorithm used in the solver. Thirdly, the elimination is applied only
once before the backtracking search.

The results show that the variable elimination can significantly speed up prob-
lem solving by more than 5 times on difficult problems where a lot of backtracks
occur. As the number of functional constraints increases, one would assume that
the variable elimination should be more effective. However, we notice that as the
number of functional constraints increases, the random problems become sim-
pler, which may decrease the benefit of elimination. For example, when nf = 12
(see the table above), to solve the problems, the solver only needs about a thou-
sand backtracks. In this case, the variable elimination will not be able to save
much. We notice that when nf = 9, the variable elimination approach is slower.
There are two possible explanations. The first is that variable elimination changes
the topology of the problem, which may affect the effectiveness of the heuristics
of the general solver. The second is that we use only 10 problem instances per
configuration which may cause some unstable results. We have also manually
tried many configurations. The results show very similar trend to the one in
Fig. 5.

Remark. Views which are used in several existing CP systems (e.g., [9]) can
be thought of as an efficient way to enforce arc consistency on bi-functional con-
straints. We used our own solver rather than one with views due to the following

618 Y. Zhang et al.

reason. The percentage of functional constraints in our problem instances is less
than 2%. Improving the arc consistency efficiency on them won’t affect the overall
performance too much.

6 Variable Elimination and Non-binary Constraints

Non-binary constraints such as arithmetic or global constraints are common in
CP systems. We discuss how variable elimination of functional constraints can
be applied to these constraints.

Non-binary constraints are either extensional (defined explicitly) or inten-
sional (defined implicitly). To substitute a variable in an extensional non-binary
constraints, we can define the composition of a non-binary constraint with a bi-
nary constraint as a straightforward generalization of the composition operation
defined in Section 2.

For intentional constraints, there are usually particular propagators with spe-
cific algorithm for the constraint. We sketch below an approach which allows
variable elimination to be employed with generic propagators. Assume we have
a linear constraint c1: ax + by + cz < d and a constraint cwy functional on y.
To substitute y in c1, we simply modify c1 to be ax + bw + cz < d and mark
w as a shadow variable (w needs special treatment by the propagator, which
will be clear later). We call y the shadowed variable. Assume we also have cuw

functional on w. To eliminate w, c1 is further changed to ax + bu + cz < d.
Since w is a shadow variable, we generate a new constraint cuy using cuw and
cwy in a standard way as discussed in this paper. Now u becomes the shadow
variable while the shadowed variable is still y (variable w is gone). Assume we
need to make c1 arc consistency. First “synchronize the domains” of y and u
using cuy, i.e., enforce arc consistency on cuy. (Note that due to elimination,
cwy and cuw are no longer involved in constraint solving). Next, we enforce arc
consistency on c1. During the process, since u is a shadow variable, all domain
operations are on y instead of u. After making c1 arc consistent, synchronize
the domain of y and u again. (If the domain of u is changed, initiate constraint
propagation on constraints involving u.) This approach is rather generic: for
any intensional constraints, synchronize the domains of the shadow variables
and shadowed variables, apply whatever propagation methods on the shadowed
variables (and other non-shadow variables), synchronize the domains of shadow
variables and shadowed variables again. In fact, the synchronization of the do-
mains of the shadow and shadowed variables (e.g., u and y above) can be easily
implemented using the concept of views [9].

7 Related Work

Bi-functional constraints have been studied in the context of arc consistency
(AC) algorithms since Van Hentenryck et al. [11] proposed a worst case optimal
AC algorithm with O(ed), which is better than the time complexity (O(ed2)) of
optimal AC algorithms such as AC2001/3.1 [2] for arbitrary binary constraints.

Efficient Algorithms for Functional Constraints 619

Liu [8] proposed a fast AC algorithm for a special class of increasing bi-functional
constraints. Affane and Bennaceur [1] introduced a new type of consistency,
label-arc consistency, and showed that the bi-functional constraints with limited
extensions to other constraints can be (globally) solved, but no detailed analysis
of their algorithms is given. In [12], we proposed a variable elimination method to
solve bi-functional constraints in O(ed). Functional constraints are not discussed
in those works.

David introduced pivot consistency for binary functional constraints in [3].
Both pivot consistency and variable substitution help to reduce a CSP into a
special form. There are some important differences between pivot consistency
and variable substitution. First, the concept of pivot consistency, a special type
of directional path consistency, is quite complex. It is defined in terms of a
variable ordering, path (of length 2) consistency, and concepts in directed graphs.
Variable substitution is a much simpler concept as shown in the paper. For both
binary and non-binary CSPs, the concept of variable substitution is intuitive
and simple. Next, by the definition of pivot consistency, to make a CSP pivot
consistent, there must be a certain functional constraint on each of the non-
root variables. Variable substitution is more flexible. It can be applied whenever
there is a functional constraint in a problem. Finally, to reduce a problem, the
variable elimination algorithm takes O(ed2) while pivot consistency algorithm
takes O((n2 − r2)d2), where r is the number of root variables.

Another related approach is bucket elimination [4]. The idea in common be-
hind bucket elimination and variable substitution is to exclude the impact of
a variable on the whole problem. The difference between them lies in the way
variable elimination is performed. In each elimination step, substitution does not
increase the arity of the constraints while bucket elimination could generate con-
straints with higher arity (possibly exponential space complexity). The former
may generate more constraints than the latter, but it will not increase the total
number of constraints in the problem.

CLP [6] systems often make use of variable substitution and elimination. The
classic unification algorithm is a good example. A more complex example is
CLP(R) [5] which has constraints on finite trees and arithmetic. Variables in
arithmetic constraints are substituted out using a parametric normal form which
is applied during unification and also when solving arithmetic constraints. Our
approach is compatible with such CLP solvers which reduce the constraint store
to a normal form using variable substitution. We remark that any CLP language
or system which has finite domain constraints or CSP constraints will deal with
bi-functional constraints because of unification. Thus, a variable substitution ap-
proach will actually be more powerful than just simple finite domain propagation
on equations.

8 Conclusion

We have introduced a variable substitution method to reduce a problem with
both functional and non-functional constraints. Compared with the previous

620 Y. Zhang et al.

work on bi-functional and functional constraints, the new method is not only
conceptually simple and intuitive but also reflects the fundamental property
of functional constraints. Our experiments also show that variable elimination
can significantly improve the performance of a general solver in dealing with
functional constraints.

For a binary CSP with both functional and non-functional constraints, an al-
gorithm is presented to transform it into a canonical functional form in O(ed2).
This leads to a substantial simplification of the CSP with respect to the func-
tional constraints. In some cases, as one of our results (Corollary 2) shows, the
CSP is already solved. Otherwise, the canonical form can be solved by ignoring
the eliminated variables. For example, this means that search only needs to solve
a smaller problem than the one before variable substitution (or elimination).

References

1. Affane, M.S., Bennaceur, H.: A Labelling Arc Consistency Method for Functional
Constraints. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 16–30. Springer,
Heidelberg (1996)

2. Bessiere, C., Regin, J.C., Yap, R.H.C., Zhang, Y.: An Optimal Coarse-grained Arc
Consistency Algorithm. Artificial Intelligence 165(2), 165–185 (2005)

3. David, P.: Using Pivot Consistency to Decompose and Solve Functional CSPs. J.
of Artificial Intelligence Research 2, 447–474 (1995)

4. Dechter, R.: Bucket elimination: A Unifying Framework for Reasoning. Artificial
Intelligence 113, 41–85 (1999)

5. Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The CLP(R) Language and
System. ACM Trans. on Programming Languages and Systems 14(3), 339–395
(1992)

6. Jaffar, J., Maher, M.J.: Constraint Logic Programming. J. of Logic Program-
ming 19/20, 503–581 (1994)

7. Kirousis, L.M.: Fast Parallel Constraint Satisfaction. Artificial Intelligence 64, 147–
160 (1993)

8. Liu, B.: Increasing Functional Constraints Need to be Checked Only Once. In:
IJCAI 1995, pp. 119–125. Morgan Kaufmann, San Francisco (1995)

9. Schulte, C., Tack, G.: Views and Iterators for Generic Constraint Implementa-
tions. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005. LNCS,
vol. 3978, pp. 118–132. Springer, Heidelberg (2006); In: van Beek, P. (ed.) CP 2005.
LNCS, vol. 3709, pp. 817–821. Springer, Heidelberg (2005)

10. Stallman, R.M., Sussman, G.J.: Forward Reasoning and Dependency-directed
Backtracking in a System for Computer-aided Circuit Analysis. Artificial Intel-
ligence 9(2), 135–196 (1977)

11. Van Hentenryck, P., Deville, Y., Teng, C.M.: A Generic Arc-consistency Algorithm
and its Specializations. Artificial Intelligence 58, 291–321 (1992)

12. Zhang, Y., Yap, R.H.C., Jaffar, J.: Functional Elimination and 0/1/All Constraints.
In: AAAI 1999, pp. 275–281. AAAI Press, Menlo Park (1999)

Two WAM Implementations of Action Rules

Bart Demoen1 and Phuong-Lan Nguyen2

1 Department of Computer Science, K.U.Leuven, Belgium
2 Institut de Mathématiques Appliquées, UCO, Angers, France

Abstract. Two implementations of Action Rules are presented in the
context of a WAM-like Prolog system: one follows a meta-call based
approach, the other uses suspended WAM environments on the WAM
heap. Both are based on a program transformation that clarifies the se-
mantics of Action Rules. Their implementation is compared experimen-
tally to the TOAM-based implementation of Action Rules in B-Prolog.
The suspension based approach is faster at reactivating agents on the
instantiation event. The meta-call approach is easier to implement, per-
forms overall very good and much better for synchronous events, and it
is more flexible than the suspension based approaches.

1 Introduction

The first publication of an implementation of delayed goals in the context of
the WAM is by Carlsson [2]: a delayed goal is represented by a term on the
heap and attached to a variable. The term is meta-called later. This method was
originally only used for implementing freeze/2, and it has evolved into a more
generally useful feature using attributed variables, in particular it is used in the
implementation of (finite domain) constraint solvers.

In constraint solver programming, a constraint is often specified as a goal that
waits to be re-executed every time one of the involved variables changes, e.g., an
element of the domain is excluded, or the variable is fixed. It is important that
the goal - usually a propagator - can be executed quickly, i.e., that the context
switch from the normal execution to the propagator and back is cheap.

If the delayed goal needs to be executed on the instantiation of one variable,
the term is meta-called just once. In other cases - e.g., when a domain change
is the trigger - the goal possibly needs to be re-executed many times and the
meta-call approach meta-calls the same term many times. Implementing this
in the WAM is quite well understood and it requires no changes to the basic
WAM architecture. However, in the WAM, meta-calling a term involves filling
the argument registers, and most often, an environment for the called predicate
must be allocated. Both add to the cost of the context switch.

In B-Prolog the cost of the context switch is kept down by exploiting the over-
all architecture of the TOAM [9,10]. Generally speaking, the TOAM pushes the
execution state of predicates on the execution stack (including the information
on alternative clauses) and passes arguments to calls on the same stack. Zhou
used this mechanism for implementing freeze/2 in [11]: for a delayed goal (named

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 621–635, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

622 B. Demoen and P.-L. Nguyen

an agent), the implementation builds a suspension frame on the execution stack,
blocks it - i.e., protects it from being popped prematurely - and reuses it every
time the agent is reactivated. In this way, the setup of the goal which the meta-
call approach performs at every activation, is done only once. However, there are
some disadvantages to blocking frames on the execution stack, the most promi-
nent being that other frames can become unreachable while not on the top of
the stack and that in the absence of backtracking, the space occupied by these
frames cannot be recovered without a garbage collector for the execution stack.

In B-Prolog, suspended goals can be specified by Action Rules: the predeces-
sors of Action Rules were named delay clauses in [11]. Action Rules offer two
highly valuable features. First, with their powerful surface syntax, they allow
a compact and concise specification of a goal waiting to be re-executed on dif-
ferent conditions. Secondly, Action Rules can be effectively mapped to efficient
abstract machine code, at least in the TOAM. Indeed, the constraint solvers
of B-Prolog derive their high performance partly from translating constraints
to specialized Action Rules predicates [12]. The efficiency of the B-Prolog con-
straint solvers, as implemented with Action Rules, should be enough motivation
to explore the implementation of Action Rules in any Prolog system. However,
the perception exists that an efficient Action Rules implementation is reserved to
the TOAM as implemented in B-Prolog. The challenge to WAM implementors is
therefore clear: design an efficient WAM implementation of Action Rules, while
not changing the WAM in a fundamental way.

Two designs for implementing Action Rules in the WAM look attractive:
the first uses the meta-call approach to delaying goals and carefully applies a
number of optimizations so that the desired performance is obtained. The second
design uses suspension frames in the spirit of the TOAM, but in contrast with
the B-Prolog approach, the suspension frames are kept on the WAM heap, not
on the control stack. Similar optimizations are applied here as well. We have
implemented these two approaches in hProlog (see [5] for the origin of hProlog).
This allows us to compare these approaches experimentally in a meaningful way
with each other, and with B-Prolog. The experience reported here shows that the
TOAM does not have an inherent advantage over the WAM for implementing
Action Rules.

We first introduce some Action Rules terminology in Section 2. Section 3
explains Action Rules by means of a program transformation to Prolog: such
a transformation has not been described before. It is the starting point for an
efficient meta-call based implementation of Action Rules. Section 4 describes
the basics of how a WAM environment can be kept on the heap and used as a
suspension frame for re-entering the same clause more than once. In Section 5
we use suspension frames on the WAM heap for implementing Action Rules,
following a variant of the transformation in Section 3. Section 6 describes a
number of implementation details. Section 7 contains an empirical evaluation
and comparison of our implementations with B-Prolog. Section 8 argues why we
prefer the meta-call approach. Section 9 concludes.

Two WAM Implementations of Action Rules 623

We assume working knowledge of Prolog [3], the WAM [1,7], the TOAM [10],
and some acquaintance with Action Rules [12] and attributed variables (see for
instance the documentation of [8]).

2 Action Rules Terminology

The words event and agent are overloaded in the original Action Rules termi-
nology of [12]. Therefore, just for the sake of this paper, we will stick to the
meanings described hereafter. One rule in Action Rules has the form:

Head, Guard, {EventPats} => Body.

The Head looks like the head of a Prolog clause: instead of full unification, it
uses one-way unification, otherwise named matching. The Guard is a conjunc-
tion of guard goals. It functions like the guard in committed choice languages:
once a guard succeeds, execution commits to that rule. [12] refers to the con-
stituents between the {} as event pattern: EventPats is a comma separated list
of such event patterns each of which can lead to reactivation of the agent. The
Body looks like an ordinary Prolog clause body. We assume that the Head has
distinct variables as arguments: one can move the head matching to the guard.
B-Prolog puts restrictions on which guards are allowed, but such restrictions are
not relevant for this paper.

The principal functor of the head is an Action Rules predicate symbol. An
Action Rules predicate can be defined by more than one rule, but it cannot be
the head of an ordinary Prolog clause at the same time. An agent corresponds
to a call to an Action Rules predicate: it can be suspended and activated more
than once.

3 How Action Rules Work

Informally, the meaning of an Action Rules predicate, is as follows: if ins(X)
appears as the event pattern of the selected rule, the agent is reactivated when
X is instantiated, or, said differently, when the event ’X becomes instantiated’
occurs; if event(X,M) appears as the event pattern, the agent is reactivated every
time there is a call post event(X,Mess) and in the reactivated agent, M is replaced
by Mess; if generated appears in the event pattern, the agent’s body is executed
immediately when the agent is created. We treat only these three event patterns
explicitly in this paper, but extending our approach to other event patterns is
straightforward. An agent dies when a rule without event patterns is selected.

This short description is not detailed enough for building a complete imple-
mentation of Action Rules, and lacking a formal Action Rules semantics, we have
made a specification of the most important aspects of Action Rules by means
of a program transformation to Prolog with attributed variables1. Our specifi-
cation does not capture every aspect of Action Rules, let alone the full B-Prolog
1 We use SWI-Prolog [8] syntax, but any variant will do.

624 B. Demoen and P.-L. Nguyen

behavior, but it makes the essentials of Action Rules easier to understand and it
will be clear how to add the other features of the B-Prolog implementation. We
start by showing the transformation on an example in Section 3.1. Section 3.2
describes the transformation in general, while Section 3.3 fills out the remaining
details about events.

3.1 Transforming Action Rules to Prolog: An Example

Below is an Action Rules predicate p/2 with three rules:

1 p(X,Y), G1, {ins(X), ins(Y), event(X,M)} => B1(X,Y,M).

2 p(X,Y), G2, {ins(Y), generated} => B2(X,Y).

3 p(X,Y), G3 => B3(X,Y).

in which G and B denote a guard and a body. We transform it to Prolog as
follows:

4 p(X,Y) :- G1, !,

5 SuspGoal = p_agent(Message,Alive,X,Y),

6 register_events([ins(X), ins(Y), event(X,M)],SuspGoal).

7 p(X,Y) :- G2, !,

8 SuspGoal = p_agent(Message,Alive,X,Y),

9 register_events([ins(Y)],SuspGoal),

10 B2(X,Y).

11 p(X,Y) :- G3,

12 B3(X,Y).

13 p_agent(_,Alive,_,_) :- Alive == dead, !.

14 p_agent(M,_,X,Y) :- G1, !, B1(X,Y,M).

15 p_agent(_,_,X,Y) :- G2, !, B2(X,Y).

16 p_agent(_,Alive,X,Y) :- G3, Alive = dead, B3(X,Y).

The transformation generates two Prolog predicates: p/2 and p agent/4. The
three clauses for p/2 in lines 4..12 correspond to the three rules for p/2 in lines
1..3. If the rule corresponding to the clause has event patterns, a term SuspGoal
is created, and the call to register events/2 makes sure that this term is attached
to the relevant variables as specified by the event patterns of the rule. The latter
happens in lines 6 and 9. If the corresponding rule has no event patterns, or
generated is one of its event patterns, the body is executed. This happens in
lines 10 and 12.

Two WAM Implementations of Action Rules 625

The predicate p agent/4 has two extra arguments: the argument Alive repre-
sents the liveness of the agent; killing an agent is done by unifying this variable
with the atom dead. The argument Message is a placeholder for the message sent
in a post event(X,Message) goal and thus corresponds to the second argument
in an event pattern of the form event(X,Message).

p agent/4 is called when an event takes place that reactivates the agent. Its
first clause checks the liveness of the agent: if the agent is dead already, then
its reactivation just succeeds. The other clauses correspond to the rules of the
Action Rules predicate: they check the guard, commit to a clause and execute the
corresponding body. If the corresponding rule has no event patterns, the agent
is killed, as in line 16. Note that this unifies the second argument of SuspGoal
with the atom dead.

The two predicates p/2 and p agent/4 correspond to two phases in the life of
an agent. p/2 is executed on the initial call and can register events depending on
the event patterns of the selected rule: the agent is created, and then goes to sleep
while waiting for events. p agent/4 is executed when the agent is reactivated:
the event patterns are no longer needed. Reactivation of an agent happens by
meta-calling the term, constructed as SuspGoal, as is explained in Section 3.3.

3.2 General Transformation from Action Rules to Prolog

The general transformation of an Action Rules predicate p/n is shown. Let

p(X1,...,Xn), Guard_i, {EventPats_i} => Body_i.

be the ith rule. The transformation generates:

% code for p/n
% i-th clause corresponding to i-th rule
p(X1,...,Xn) :- Guard_i, !,

SuspGoal = p_agent(Message,Alive,X1,...,Xn),
register_events(EventPats_i,SuspGoal),
exec_body(EventPats_i,Body_i).

% code for the suspended p_agent/(n+2)
% first clause
p_agent(_,Alive,_,...,_) :- Alive == dead, !.

% (i+1)-th clause corresponding to i-th rule
p_agent(Message,Alive,X1,...,Xn) :- Guard_i, !,

kill(EventPats_i,Alive),
Body_i.

Note that the arguments to exec body/2, kill/2 and register events/2 are mani-
fest at transformation time, so their calls can be unfolded. We use {} for denoting

626 B. Demoen and P.-L. Nguyen

the absence of event patterns; syntactically, this is not accepted by B-Prolog.
The definitions of exec body/2 and kill/2 are:

exec_body(EventPats,Body) :-
((isin(generated,EventPats) ; EventPats == {}) ->

Body
;

true
).

kill(Es,Alive) :- Es == {} -> Alive = dead ; true.

3.3 Registering and Dealing with Events

The event pattern generated has no explicit post associated to it. We show the
details for the two other event patterns: ins/1 and event/2. Instantiation happens
asynchronously, i.e., the Prolog unification routine intercepts the instantiation
of a variable which has a goal waiting on its instantiation, and puts the goal in
a queue. Goals from this queue are executed as early as possible. Event/2 events
happen by explicitly calling the predicate post event/2.

Registering Events. For every event pattern in its first argument, the predi-
cate register events/2 calls register event/22:

register_events([],_).
register_events([E|Es],G) :- register_event(E,G), register_events(Es,G).

register_event(ins(X),G) :- attach_goal(X,ins1,G).
register_event(event(X,_),G) :- attach_goal(X,event2,G).
register_event(generated,_).

attach_goal(X,E,G) :-
(var(X) ->

(get_attr(X,E,Gs) ->
put_attr(X,E,[G|Gs])

;
put_attr(X,E,[G])

)
;

true
).

attach goal/3 builds a list of all the agents waiting on the same event.

2 According to the B-Prolog manual, the ins1 goal should be attached to all variables
in the term X in ins(X), but this does not affect the benchmarks.

Two WAM Implementations of Action Rules 627

Posting Events and Activating Agents. Post event/2 is implemented as:

post_event(X,Mes) :- get_attr(X,event2,Gs), !, send_message(Gs,Mes).
post_event(_,_).

send_message([],_).
send_message([G|Gs],Mes) :-

send_message(Gs,Mes),
G =.. [Name,_|Args],
NewG =.. [Name,Mes|Args],
call(NewG).

Posting a Herbrand event (corresponding to ins/1) consists in instantiating a
variable. If X has an ins1 attribute, and X is unified with a non-variable T, then
ins1:attr unify handler/2 is called with as first argument the ins1 attribute of X
and as second argument T. Remember that the ins1 attribute is a list of goal
terms. The handler is defined as3:

ins1:attr_unify_handler(Ins1AttrX,_) :- call_reverse_list(Ins1AttrX).

call_reverse_list([]).
call_reverse_list([G|Gs]) :- call_reverse_list(Gs), call(G).

Note that call reverse list/1 and send message/2 are left-recursive: in this way,
we respect the B-Prolog order of reactivating agents.

This concludes the transformation of Action Rules to Prolog: our implemen-
tations of Action Rules later on respect the implied semantics. Moreover, our
meta-call approach is really an optimized version of the transformation.

4 Suspension Frames on the WAM Heap

We start with an example: below is a declaration and a clause for foo/3, one
clause for p/0 and a query with its resulting output.

:- suspension(foo/3). p :- ?- p.
foo(X,Y,SuspTerm) :- foo(X,Y,SuspTerm), first(X,Y)

writeln(first(X,Y)), X = 1, next(1,Y)
yield(SuspTerm), resume(SuspTerm), next(1,2)
writeln(next(X,Y)), Y = 2,
leave. resume(SuspTerm).

The idea is that yield/1 transfers control back to the caller and returns a de-
scription of an execution environment in its argument. The predicate resume/1
uses this description to resume execution just after the call to yield/1. The pred-
icate leave/0 returns to the caller. With this informal explanation, the output
3 The shown handler deals only with the case of unification of a variable with a non-

variable: it can be extended easily to deal with the unification of two suspension
variables.

628 B. Demoen and P.-L. Nguyen

from the query ?- p can already be understood. A more detailed explanation
follows.

The declaration :- suspension(foo/3). tells the compiler that the code for the
(single) clause for foo/3 must start with the instruction alloc heap: it acts like the
WAM instruction allocate, except that it allocates the environment - named a
suspension frame - on the heap. No other changes to code generation are needed
for foo/3. Yield/1, resume/1 and leave/0 are new built-in predicates.

The goal yield(SuspTerm) performs two actions:

– SuspTerm is unified with a suspension term with arity four. Its first two
arguments are the current environment pointer, i.e., the pointer to the cur-
rent suspension frame on the heap, and a code pointer that points just after
the goal yield(SuspTerm), i.e., the point at which execution can be resumed
later; the other two arguments are used for holding a message and for indi-
cating whether the term represents a live agent: this anticipates the use of
suspension terms for implementing Action Rules.

– control returns to the caller of foo/3 without deallocating the suspension
frame.

foo(X,Y,SuspTerm) :−
 writeln(first(X,Y)),
 yield(SuspTerm),
 writeln(next(X,Y)),
 leave.

X

Y

SuspTerm

Suspension Frame Suspension Term

E

Alive

Message

$susp/4

P

Fig. 1. Just after the execution of yield(SuspTerm)

The situation regarding the suspension frame and the suspension term (both
on the heap) is depicted in Figure 1. The frame looks like an ordinary WAM
environment, but its E and CP fields are irrelevant while the agent is sleeping,
i.e., while no code in foo/3 is executed.

The goal resume(SuspTerm) installs the environment pointer from SuspTerm
in the WAM E register, and transfers control to the code pointed at by the code
argument in the suspension term. It also fills out appropriately the E and CP
fields in the suspension frame, for later use by leave. Resume can be called more
than once with the same SuspTerm.

The goal leave returns to the caller of foo/3 by using the E and CP fields in
the current environment, which is in fact a suspension frame; leave/0 does not
deallocate the suspension frame.

The names yield and resume were chosen because of the obvious connection
to coroutining. hProlog was extended with the new built-in predicates especially
for our Action Rules experiment.

Two WAM Implementations of Action Rules 629

5 Using Heap Suspension Frames for Implementing
Action Rules

This section is similar to Section 3: we start by redoing the example in Section
3.1, now using suspension frames on the heap. We skip Section 3.2 which gen-
eralizes the example: it should be clear how to do that. Section 5.2 is the heap
suspension frame analogue of Section 3.3.

5.1 The Example

We reuse the example from Section 3.1. The transformation results in the fol-
lowing code for the two predicates p/2 and p agent/3:

15 p(X,Y) :- G1, !,

16 register_events([ins(X), ins(Y), event(X,M)],SuspTerm),

17 p_agent(X,Y,SuspTerm).

18 p(X,Y) :- G2, !,

19 register_events([ins(Y)],SuspTerm),

20 p_agent(X,Y,SuspTerm),

21 B2(X,Y).

22 p(X,Y) :- G3,

23 B3(X,Y).

24 :- suspension(p_agent/3).

25 p_agent(X,Y,SuspTerm) :-

26 yield(SuspTerm),

27 (G1 -> pickup_message(SuspTerm,M), B1(X,Y,M), leave

28 ;

29 G2 -> B2(X,Y), leave

30 ;

31 G3, kill(SuspTerm), B3(X,Y), leave

32).

It should be clear how the three clauses in lines 15..23 correspond to the three
rules in line 1..3. Also, the three disjunctive branches of p agent in lines 27..31
correspond readily to those rules.

The goal pickup message(SuspTerm,M) unifies variableMwith the message slot
in the suspension term SuspTerm: this slot is set by the predicate set message/2
that is explained in Section 5.2. The goal kill(SuspTerm) sets the live slot in the
suspension term SuspTerm to dead: the built-in resume/1 checks this slot before
reactivating an agent. That is why p agent does not check for liveness itself.

5.2 Registering and Dealing with Events

Registering Events. The code is the same as in Section 3.3, but now at-
tach goal/3 builds a list of suspension terms.

630 B. Demoen and P.-L. Nguyen

Posting Events and Activating Agents. We need to redefine a number of
predicates so that they take into account the fact that the attributes now contain
a list of suspension terms. For the predicates dealing with the ins1 event, these
are:

ins1:attr_unify_handler(Ins1AttrX,_) :- resume_goals(Ins1AttrX).

resume_goals([]).
resume_goals([X|R]) :- resume_goals(R), resume(X).

Of the predicates dealing with the event2 event, only send message/2 needs
adapting - post event/2 remains the same:

send_message([],_).
send_message([S|Ss],M) :-

send_message(Ss,M),
set_message(S,M),
resume(S).

The idea is that at the reactivation of the agent the message is put in the
message slot of the suspension term by the new built-in set message/2. It is
subsequently picked up in the body of the agent by pickup message/2.

6 Making It Work

There are a few more issues to mention before the evaluation can take place.

The transformations. The transformations from Action Rules to Prolog de-
scribed in Sections 3 and 5, have served as an explanation vehicle, and as the
starting point for our implementations. However, as presented, the generated
code still can benefit from some well understood optimizations: inlining, special-
ization, moving side-effect free code blocks ... Our final implementation applies
such techniques. The most drastic change is that the two generated predicates
p and p agent for the suspension based method, are collapsed to one.

The representation of attributed variables. Our two implementations of Action
Rules and the one in B-Prolog are based on some form of attributed variables.
In B-Prolog those variables have several dedicated slots. We have applied that
specialization to hProlog as well: for the purpose of this experiment, we have
given hProlog attributed variables nine slots. The first slot is dedicated to the
ins/1 event pattern (used by attach goal(,ins1,)) and the second to event/2
(used by attach goal(,event2,)). The seven remaining slots are meant for five
different domain changes, a passive attribute and a finite domain: these are not
used during the benchmarks, but they are properly initialized.

Two WAM Implementations of Action Rules 631

Low Level Support The predicates yield/1, resume/1, leave/0 deal with the in-
ternals of the abstract machine, so they clearly must be implemented as low level
built-ins. We have done the same with pickup message/2 and set message/2. On
top of that, some more effort was needed to achieve the desired performance:

– the last goal in a suspension predicate is leave; just before it, there is often
a call instruction; a new instruction performs the action of both leave and
call: the reason is mainly tail-call optimization.

– the code G =.. [Name, |Args], NewG =.. [Name,Mes|Args], call(NewG) in
Section 3.3 was collapsed to event call(Mes,G); event call/2 is one more new
built-in predicate; in this case, a small implementation effort resulted in a
large performance gain.

– the code implementing the meta-call moves the arguments of a term to the
WAM argument registers; if p points just before the first argument of the
term, then this code would routinely be written as:

for (i = 1; i =< arity; i++) Areg[i] = p[i];

However, for performance it is better to unroll this, for instance to:

Areg[1] = p[1]; Areg[2] = p[2]; Areg[3] = p[3];
if (arity < 4) get_out_of_here;
Areg[4] = p[4]; Areg[5] = p[5]; Areg[6] = p[6];
...

One should experiment to find the good unrolling granularity.
– we have also introduced a new instruction at the abstract machine level,

that speeds up the reverse traversal of lists, as was needed in the predicates
call reverse list and send message/2 (Sections 3.3 and 5.2).

– the general attach goal/3 predicate was specialized for its second argument
to two built-ins attach ins1/2 and attach event2/2.

– like some other implementations of the WAM, hProlog uses a separate stack
for the choice points and the environments. With suspension frames on the
heap, the prev E field in an environment can point to the heap: code that
maintains the top of environment stack TOS was adapted for this; moreover,
the TOS is also pushed on the heap just before the suspension frame.

7 Evaluating the WAM Implementation of Action Rules

For the experiments, we have used B-Prolog 7.1b4.1 (the TOAM Jr. version [13])
and hProlog 2.9. The benchmarks were all run on a 1.8 GHz Pentium 4 CPU,
under Debian. Garbage collection was avoided by starting the Prolog systems
with enough initial memory. We always show timings relative to B-Prolog. B-
Prolog is always at 100, and lower is faster. For the traditional benchmark set
(not using Action Rules) hProlog 2.9 is about 10% faster than B-Prolog 7.1b4.1.

632 B. Demoen and P.-L. Nguyen

7.1 Original Benchmarks

Table 1 shows the results of running the benchmarks that were used in [11] to pro-
vide evidence for the qualities of the suspension mechanism in B-Prolog: it seems
only fitting to use the same set here. These benchmarks only use the ins/1 event
pattern. The benchmarks are versions of the well known naive reverse, nqueens,
sendmoremoney, and permutation sort, all adapted to use delayed goals: these
benchmarks come with the B-Prolog distribution. In order to obtain meaningful
timings, nrev was run on a list of length 500, nqueens computes all solutions for
an 11x11 board, and the sort benchmark was given a list of 19 integers.

Table 1. The benchmark set of [11]

bprolog meta-call suspension # goals # react
nrev 100 80 102 1 1

queens 100 88 111 10 4966
send 100 87 89 3 18412
sort 100 85 87 2 72827

Apart from the relative timings, Table 1 shows two characteristics of the
benchmarks. Column # goals is the number of agents suspended on each variable,
or equivalently, it is the length of the list built by attach goal (for send, 3 is
actually the maximal length and the average is 1.9). The last column shows the
average number of times an agent is reactivated: the difference between nrev and
the other benchmarks stems from the fact that only nrev is deterministic.

Table 1 shows that our implementation of suspension frames on the heap
performs similar to the B-Prolog suspensions on the execution stack. It also
shows that the meta-call approach performs very well.

The performance of the above benchmarks is not dominated enough by the
operations related to delaying or waking goals. We therefore set up an artificial
experiment that measures the operations in isolation as much as possible. The
intention is to cancel out intrinsic performance differences between B-Prolog and
hProlog as much as possible. This seems the best way to gain more insight in
the relative performance of the operations we are really interested in.

7.2 Artificial Benchmarks for ins/1 and event/2

Table 2 summarizes the measurements on some artificial benchmarks. The B-
Prolog agents have arity 7. Note that this means arity 9 for the term to be
created and meta-called in the meta-call/event2 entry . The benchmarks were
implemented in B-Prolog with Action Rules, and by using their translation to
our approaches. The columns represent the time needed to

– freeze: freezing a variable on a single goal; this measures agent creation.
– melt: melting a goal by instantiating a variable with a single goal suspended

on it; this measures single agent reactivation on the ins/1 event.

Two WAM Implementations of Action Rules 633

– conjfreeze: freezing one variable on 106 goals.
– conjmelt: melting a conjunction of 104 goals by instantiating a variable.
– event2: this corresponds to the cost of a goal post event(X,M) when 104

agents are waiting on X to receive an event/2 event.

Table 2. Some artificial benchmarks

freeze melt conjfreeze conjmelt event2
bprolog 100 100 100 100 100

meta-call 70 87 56 86 44
suspension 97 57 78 58 101

The frozen goal was always of the form p(X) :- q, r(X). (with trivial facts for
q/0 and r/n) so that in the meta-call approach an environment is allocated, and
some argument saving/restoring is needed. Otherwise the meta-call approach
would have been given an unfair advantage.

Table 2 shows that for both types of events, the meta-call approach is always
faster than B-Prolog, and often significantly so. This seems incompatible with the
idea that the TOAM has an inherent advantage over the WAM for suspending
and reactivating agents. hProlog suspensions on the other hand perform almost
equal to B-Prolog for event/2 events, and hProlog is much faster for instantiation
events. This shows that our implementation of suspension frames on the heap is
of a decent quality.

hProlog is the first system to implement both a meta-call approach to Action
Rules and a suspension frame approach. It is therefore interesting to see that
the hProlog suspension approach performs better than the hProlog meta-call
approach when goals are melted: this confirms the analysis of [11] experimentally.

8 Discussion

The outcome of the performance experiment does not make the choice between
the two WAM approaches for implementing Action Rules easy: on one hand, the
suspension based approach reacts faster to instantiation events, but the meta-
call approach is much faster on sending messages. The latter is very common in
constraint solvers, for all kinds of domain changes. Other considerations besides
performance must be taken into account. Here is a short account of what we
consider important.
– The memory foot-print is larger for the suspension approach than for the

meta-call approach: one needs the suspension term and the suspension frame
in the former case, and only the term to be meta-called in the latter case. We
have measured total memory consumption4 on some of the benchmarks of
Section 7.1. B-Prolog uses between 15% more and 7% less memory than our
suspension based method. The meta-call based method uses systematically
30% less than B-Prolog.

4 The sum of the memory usage in the control stacks plus the heap.

634 B. Demoen and P.-L. Nguyen

– The suspension approach makes it more difficult to support recursive acti-
vation of agents, as for instance in the following rule:

p(X,Y), {ins(X), ins(Y)} => foo(X), Y = 2, bla(X,Y).

On the query ?- p(X,Y), X = 1. the goal Y = 2 reactivates the running agent.
Also re-entering an Action Rules body through backtracking (which is not
even supported in B-Prolog) is cumbersome and has a performance cost. In
the meta-call approach, recursive activation of agents, as well as supporting
backtracking into the Action Rules body, comes at no implementation or
performance price.

– Clearly, the meta-call approach lends itself better to implementing custom
tailored scheduling of agents: the agent is just a term which can be inspected
and manipulated with the standard predicates. This is more difficult for
suspension frames, whether on the heap or on the control stack.

– A dead agent is semantically garbage, but it can still be in the conjunction
of agents attached to a variable: such a dead agent can be garbage collected,
and B-Prolog does so. This can be done in both of our approaches. Neither
approach seems to offer an advantage over the other on this issue.

Given the performance of the meta-call approach, its flexibility and its zero
impact on the rest of the WAM implementation, we have a clear preference for
the meta-call approach.

9 Conclusion

The basic suspension frame mechanism goes back to the first description of
coroutines in [4]. It has been applied and reinvented many times. Environments
on the WAM heap were used by Shen [6] in the DASWAM to implement and-
parallelism: code executing with a heap environment can be suspended at any
point, and resumed later from the same point once. In the case of Action Rules,
execution can be resumed many times from the same suspension point. Those
differences are not really important.

We are generally interested in understanding to what extent the TOAM gives
a performance advantage over the WAM, and in this particular case for imple-
menting Action Rules. Our results show that the WAM performs similar to the
TOAM when a similar technique is used, namely suspension frames. Whether
these frames are kept on the heap or on the control stack plays only a minor
role, but in the WAM one would prefer the heap because that requires smaller
changes to the abstract machine. However, it seems that a rather traditional
meta-call approach to implementing Action Rules performs very good and often
better. This is good news for WAM implementors, as a few small non-intrusive
additions to the WAM suffice to achieve excellent performance. The choice for
a meta-call approach to implementing Action Rules is justified further by the
ease with which one can cater for recursive activation of agents, agents with a
non-deterministic body, and custom build scheduling strategies.

Two WAM Implementations of Action Rules 635

[12] shows that Action Rules form a powerful tool for the constraint solver
programmer. The efficient implementation of Action Rules seemed reserved to
B-Prolog. This paper shows that also WAM based implementations can take
advantage of the expressive power of Action Rules. Hopefully, this will have a
positive impact on the future development of constraint solvers in WAM-based
Prolog systems.

Acknowledgements. We thank Neng-Fa Zhou for helping us understand Ac-
tion Rules. This work was partly done while the first author enjoyed the hospi-
tality of the Institut de Mathématiques Appliquées of the Université Catholique
de l’Ouest in Angers, France. We also thank Henk Vandecasteele letting us use
his hipP compiler.

References

1. Aı̈t-Kaci, H.: The WAM: a (real) tutorial. Technical Report 5, DEC Paris Research
Report (1990)

2. Carlsson, M.: Freeze, Indexing, and Other Implementation Issues in the WAM. In:
Lassez, J.-L. (ed.) Logic Programming: Proc. of the Fourth International Confer-
ence, vol. 1, pp. 40–58. MIT Press, Cambridge (1987)

3. Clocksin, W., Mellish, C.: Programming in Prolog. Springer, Heidelberg (1984)
4. Conway, M.E.: Design of a Separable Transition-Diagram Compiler. Communica-

tions of the ACM 6(7), 396–408 (1963)
5. Demoen, B., Nguyen, P.-L.: So many WAM variations, so little time. In: Lloyd,

J., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Palamidessi, C., Pereira, L.M.,
Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS, vol. 1861, pp. 1240–1254. Springer,
Heidelberg (2000)

6. Shen, K.: Overview of DASWAM: Exploitation of Dependent And-parallelism.
JLP 29(1-3), 245–293 (1996)

7. Warren, D.H.D.: An Abstract Prolog Instruction Set. Technical Report 309, SRI
(1983)

8. Wielemaker, J.: SWI-Prolog release 5.4.0 (2004), http://www.swi-prolog.org/
9. Zhou, N.-F.: Global optimizations in a Prolog compiler for the TOAM. Journal of

Logic Programming 15(4), 275–294 (1993)
10. Zhou, N.-F.: On the Scheme of Passing Arguments in Stack Frames for Prolog. In:

Proceedings of The International Conference on Logic Programming, pp. 159–174.
MIT Press, Cambridge (1994)

11. Zhou, N.-F.: A Novel Implementation Method for Delay. In: Joint Internatinal Con-
ference and Symposium on Logic Programming, pp. 97–111. MIT Press, Cambridge
(1996)

12. Zhou, N.-F.: Programming Finite-Domain Constraint Propagators in Action Rules.
Theory and Practice of Logic Programming (TPLP) 6(5), 483–508 (2006)

13. Zhou, N.-F.: A Register-Free Abstract Prolog Machine with Jumbo Instructions.
In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 455–457. Springer,
Heidelberg (2007)

http://www.swi-prolog.org/

Constraint-Level Advice for Shaving

Radoslaw Szymanek1 and Christophe Lecoutre2

1 Artificial Intelligence Laboratory, EPFL, Switzerland
radoslaw.szymanek@epfl.ch

2 CRIL-CNRS UMR 8188, Universite d’Artois, Lens, France
lecoutre@cril.fr

Abstract. This work concentrates on improving the robustness of con-
straint solvers by increasing the propagation strength of constraint mod-
els in a declarative and automatic manner. Our objective is to efficiently
identify and remove shavable values during search. A value is shavable if
as soon as it is assigned to its associated variable an inconsistency can
be detected, making it possible to refute it. We extend previous work
on shaving by using different techniques to decide if a given value is an
interesting candidate for the shaving process. More precisely, we exploit
the semantics of (global) constraints to suggest values, and reuse both
the successes and failures of shaving later in search to tune shaving fur-
ther. We illustrate our approach with two important global constraints,
namely alldifferent and sum, and present the results of an experimen-
tation obtained for three problem classes. The experimental results are
quite encouraging: we are able to significantly reduce the number of
search nodes (even by more than two orders of magnitude), and improve
the average execution time by one order of magnitude.

1 Introduction

Constraint Programming (CP) has become one of the dominant approaches to
model and solve real-world combinatorial problems [1]. However, while CP has
many success stories, it is believed that improving the usability of the technology
is a key factor in its future success [2]. This is largely due to the fact that using
constraints technology often requires considerable expertise in the use of its tools.
In this paper, we aim at improving CP usability by using constraints semantics
to augment propagation strength of the constraint model, without excessive
computational cost, through means of shaving.

A shavable value is a value which, if assigned to the variable it is associ-
ated with followed by constraint propagation, entails an inconsistency. Shaving
(introduced in the scheduling context [3,4]) can be defined as the attempt of
identifying and removing some shavable values. Shaving, as presented in [5],
has two different flavors. The first one assumes that shaving always pays off no
matter how many values are tested. Moreover, any shaved value will cause the
re-execution of shaving for all variables which may then be susceptible to shav-
ing again. Shaving applied in such a manner makes the problem Singleton Arc
Consistent (SAC) [6].

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 636–650, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Constraint-Level Advice for Shaving 637

In this work, we concentrate on a different flavor of shaving, which tries only
some values in the shaving process. By reducing the number of values being
evaluated, we hope to reduce the computational load without compromising too
much on the quality of pruning. In the ideal case, we would like to achieve SAC
by evaluating only values which are not SAC. The work presented in [5] points
out the need for good heuristics which choose the values used in shaving. Here,
we propose to use (global) constraints to suggest values to be used in the shaving
procedure. In this way, we can utilize the constraint semantics to achieve a higher
success ratio of shaving and an improved performance of search.

Our motivation is that any additional cost-effective propagation obtained
without explicit user involvement will improve the quality of CP based ap-
proaches especially when the user is not fully aware of the intricate relation-
ship between model and search. Although being different, this can be related (in
terms of objectives) to recent works about constraint acquisition [7,8]. Indeed,
learning so-called implied constraints is just another means to improve the prop-
agation capabilities of a constraint solver, without any expertise requirement on
the users.

Interestingly, the work presented in [9] also proposes some form of constraint
guided shaving. It is mainly implemented for global cardinality constraint (GCC)
and as a result of successful shaving attempts, implied constraints in the shape of
Among are added to the model. GCC is a generalization of alldifferent. Therefore,
this approach is also concerned with alldifferent. In the context of alldifferent,
this technique concentrates on values which, if successfully shaved, create Hall
intervals which can lead to strengthening alldifferent propagation. This approach
evaluates multiple values, therefore it is more costly in terms of finding values
and shaving effort. Unfortunately, there is little experimental results to support
the claim that shaving done in such a manner actually provides efficiency gains.
In addition, in case of GCC while shaving, cheaper/weaker propagator of GCC
is employed to reduce the cost of shaving as all values for cardinality variables
are tried to be shaved.

We concentrate on proposing shaving in such a manner so tweaking the level
of consistency strength is not required to recover costs, as well as we propose a
complete framework where the effects of past multiple shaving attempts across
multiple constraints are combined to improve future shaving attempts.

The remainder of this paper is organized as follows. After some preliminaries
in Section 2, Section 3 presents the shaving framework. An illustration of how
constraints can be used to propose values for shaving is presented in Section 4.
Section 5 presents a detailed empirical evaluation. We conclude in Section 6.

2 Preliminaries

A Constraint Network (CN) P is a pair (X ,C) where X is a finite set of n
variables and C a finite set of e constraints. Each variable X ∈ X has an
associated domain, denoted dom(X), that contains the set of values allowed for
X . Each constraint C ∈ C involves an ordered subset of variables of X and has

638 R. Szymanek and C. Lecoutre

an associated relation1, denoted rel(C), which is the set of tuples allowed for
this subset of variables. This subset of variables is the scope of C and is denoted
scp(C). The arity of a constraint is the number of variables in its scope. A binary
constraint has arity 2.

A solution to a CN is an assignment of a value to each variable such that
all the constraints are satisfied. A CN is said to be satisfiable iff it admits at
least one solution. The Constraint Satisfaction Problem (CSP) is the NP-hard
task of determining whether a given CN is satisfiable or not. A CSP instance
is defined by a CN which is solved either by finding a solution or by proving
unsatisfiability.

Usually, the domains of the variables of a given CN are reduced by removing
inconsistent values, i.e. values that cannot occur in any solution. In particu-
lar, it is possible to filter domains by considering some properties of constraint
networks. These properties are called domain-filtering consistencies [10,11]. By
exploiting consistencies, the problem can be simplified (and even, sometimes
solved) while preserving solutions.

Given a consistency φ, a CN P is said to be φ-consistent iff the property φ
holds on P . Enforcing a domain-filtering consistency φ on a CN means taking
into account inconsistent values (removing them from domains) identified by φ
in order to make the CN φ-consistent. The new obtained CN, denoted by φ(P),
is called the φ-closure2 of P . If there exists a variable with an empty domain in
φ(P) then P is clearly unsatisfiable, denoted by φ(P) = ⊥.

A pair (X, a) with X ∈ X and a ∈ dom(X) will be called a value (of P).
The set of values of P that can be built from a constraint C is values(C) =
{(X, a) | X ∈ scp(C) ∧ a ∈ dom(X)}. P |X=a denotes the CN obtained from P
after removing all values but a from dom(X). Shaving can then be defined as
the attempt of identifying and removing some shavable values.

Definition 1. Let P be a CN, and φ be a consistency. A value (X, a) of P is
φ-shavable iff φ(P |X=a) = ⊥.

An attempt to shave value a from the domain of variable X is then performed
in the following manner. First, variable X is assigned the value a. Second, the
consistency φ is enforced. If in the process of reaching the consistency fix-point,
one domain becomes empty, then it clearly indicates that assigning a to X does
not lead to any solution. Therefore, it is possible to remove a from the domain
of X . On the other hand, if assigning a to X does not entail a domain wipe-
out, then the effects of constraint propagation (while enforcing φ) as well as
the assignment of a to X must be retracted. The shaving attempt has failed.
Sometimes, when the context is clear or unimportant, we will omit φ to simply
refer to shavable values.

The most studied and employed consistency is generalized arc consistency
(GAC), simply called arc consistency (AC) when constraints are binary. For a

1 The introduction of rel(C) does not prevent us from exploiting intensional represen-
tation of constraints.

2 We assume here that φ(P) is unique. This is the case for usual consistencies [12].

Constraint-Level Advice for Shaving 639

formal definition, see e.g. [12]. Notice that a GAC-shavable value is a value that
is not singleton arc consistent (SAC).

Definition 2. Let P be a CN. A value (X, a) of P is singleton arc-consistent
(SAC) iff GAC(P |X=a) �= ⊥.

Consider a CN composed of three variables X1, X2, X3 such that dom(X1) =
{1, 3}, dom(X2) = {1, 2}, and dom(X3) = {2, 5}, and two constraints C1 :
alldifferent(X1, X2, X3) and C2 : X3 = X1 + X2. The first constraint imposes
that all variables must be assigned different values, whereas the second one
imposes that X3 is equal to the sum of X1 and X2. If value (X1, 1) is tested for
shaving then alldifferent and sum constraints will together discover inconsistency
(when enforcing GAC) leading to the removal of 1 from dom(X1). This successful
shaving attempt will cause further domain reductions making dom(X2) = {2}
and dom(X3) = {5}. On the other hand, if value (X1, 3) had been tested for
shaving, no inconsistency would have been detected. In other words, (X1, 1) is
shavable, whereas (X1, 3) is not.

Enforcing SAC on a given CN involves removing any value that is not single-
ton arc-consistent, i.e. any shavable value. This is a systematic approach which
requires to consider each value in turn. Even if there exists some sophisticated
approaches [13,14,15] to enforce SAC, this may be very time consuming. Main-
taining such a consistency during search seems quite counter-productive. This
is the reason why some limited forms of SAC have been devised such as bound
SAC and existential SAC [16]. In this paper, contrary to previous works, we
exploit the semantics of constraints to guide the shaving process.

3 Framework for Constraint-Guided Shaving

In this section, we introduce the principles of constraint-guided shaving, before
introducing a general algorithm and discussing some extensions.

3.1 Principles

Backtracking search is commonly employed for solving CSP instances. It corre-
sponds to a depth-first search in order to instantiate variables and a backtracking
mechanism when dead-ends occur.

With binary branching, at each step of the search, a pair (X, a) is selected
where X is an unassigned variable and a a value in dom(X), and two cases are
considered: the assignment X = a and the refutation X �= a. Classically, we
start by assigning variables before refuting values. We then explore a binary
tree where left children correspond to variable assignments and right children to
value refutations.

The motivations for the choice of binary branching (an alternative is d-way
branching) are numerous. First, binary branching is commonly used in industry
solvers. Second, there is a number of research work (e.g. [17]) which advocates the
use of a binary branching scheme. Roughly speaking, binary branching is more

640 R. Szymanek and C. Lecoutre

general as it does not prohibit switching to a different variable after exploring
only one variable-value pair.

With shaving, at each node, we not only enforce a given consistency φ as usual
to prune some portions of the search space3, but also make some attempts to
discover shavable values. This work incorporates a number of simple principles
or techniques to increase the success ratio of shaving as well as the impact of
shaved values on further pruning. The worst case scenario for shaving is trying
many different values and not being able to shave them. This incurs only cost
and does not give any benefit to the search. Besides, shaving in order to be
efficient must at least shave some values from variable domains. However, please
keep in mind that reducing the domains of the variables through shaving does
not necessarily improve the overall search efficiency. The shaved values could
have been removed with much smaller effort deeper in a search tree (even if it
may be repeated several times).

In order to control the shaving overhead and to increase the effects of shaved
values, we propose to exploit the semantics of constraints. More precisely, each
constraint is asked to select one value to be used in shaving. Each constraint
should aim at proposing one value which, if shaved, has the highest impact
on the immediate pruning strength of the constraint. Moreover, we hope that
increasing the pruning capabilities of the guiding constraints will in turn increase
the propagation of the other constraints.

Another principle that we adopt, to limit shaving overhead, is the restriction
of constraint advice for shaving only in search nodes which correspond to left
children. The argument for this restriction is quite simple: the equality constraint
(a variable assignment) added to reach the left child is usually much tighter than
the negation of this constraint (a value refutation) added to reach the right child.
Therefore, the difference between the root and the left child will most likely be
larger than the difference between the root and the right one. We speculate that
the left child has more chances to create new shaving capabilities than the child
on the right.

Finally, the last technique to improve the success ratio of shaving is the use
of a set (called recentlyUnshaved in the algorithm below) which records all
values for which shaving attempts have recently failed. If a constraint proposes
the value (X, a) which belongs to this set then (X, a) is skipped, but it is also
removed from the set. Therefore, if the value is proposed again later in the search
then it may be tried again.

3.2 Algorithm

The pseudo-code for binary search with shaving is depicted in Algorithm 1.
This is an algorithm with two embedded recursive calls. In this paper, we
use the terms search node, decision, wrong decision, and backtrack as defined
in [19]. This algorithm takes four parameters: P , leftChild, recentlyShaved,

3 For example, MAC [18] is the backtracking search algorithm that maintains (gener-
alized) arc consistency at each step of search. So, we have φ = (G)AC.

Constraint-Level Advice for Shaving 641

Algorithm 1. φ-ShavingSearch

Input:
P - the constraint network (X , C),
leftChild - the Boolean specifying if P corresponds to a left child

Input/Output:
recentlyShaved - the set of values that were recently shaved,
recentlyUnshaved - the set of values that recently failed to be shaved

Output :
true/false to specify if a solution to P was found

P ← φ(P)1

if P = ⊥ then2

return false3

if ∀X ∈ X , |dom(X)| = 1 then4

return true5

locallyShaved ← ∅6

if leftChild = true then7

foreach constraint C in C do8

(X, a) ← C.getV alueForShavingAttempt()9

if (X, a) ∈ recentlyUnshaved then10

recentlyUnshaved ← recentlyUnshaved \ {(X, a)}11

else12

if φ(P |X=a) = ⊥ then13

P ← φ(P |X �=a)14

if P = ⊥ then15

recentlyShaved ← recentlyShaved ∪ locallyShaved16

return false17

else18

locallyShaved ← locallyShaved ∪ {(X, a)}19

else20

recentlyUnshaved ← recentlyUnshaved ∪ {(X, a)}21

else22

foreach (X, a) ∈ recentlyShaved do23

if φ(P |X=a) = ⊥ then24

P ← φ(P |X �=a)25

if P = ⊥ then26

return false27

else28

recentlyShaved ← recentlyShaved \ {(X, a)}29

recentlyUnshaved ← recentlyUnshaved ∪ {(X, a)}30

(X, a) ← selectV ariableV alue()31

if φ-ShavingSearch(P |X=a, true, locallyShaved, recentlyUnshaved) then32

return true33

if φ-ShavingSearch(P |X �=a, false, locallyShaved, recentlyUnshaved) then34

return true35

recentlyShaved ← recentlyShaved ∪ locallyShaved36

return false37

642 R. Szymanek and C. Lecoutre

recentlyUnshaved that denote respectively the given constraint network, a Boo-
lean value specifying if the current search node is a left child (i.e. reached after as-
signing a variable), the set of values which were recently successfully shaved, and
the set of values which were recently attempted to be shaved without any success.
The two first parameters are handled in the input mode whereas the parameters
recentlyShaved and recentlyUnshaved are handled in the input/output mode.
This algorithm returns true if there is a solution to the given constraint network.

Initially, the consistency φ is enforced (see line 1). If a failure is detected (see
line 2), false is returned since no solution can be found. Otherwise, if all domains
of variables are singleton (see line 4), it means that a solution has been found.
Notice that we suppose here that φ is a consistency that is at least as strong
as backward checking, i.e. (at least) allows to detect any unsatisfied constraint
involving variables which have all a singleton domain. This is quite a reasonable
assumption.

If P corresponds to a constraint network reached on a left child (see lines 7
to 21), then we ask each constraint to propose one value for shaving attempt
(line 9), and take it into account except if we recently failed to shave it (lines
10 and 11). If adding constraint X = a and propagating (using consistency φ)
makes the problem inconsistent, then we can shave value a from the domain of
X and propagate this deletion. If this shaving makes the problem inconsistent
(lines 14 and 15), then the recentlyShaved set is updated and search is forced
to backtrack. If shaving value (X, a) does not entail inconsistency then we can
continue search and update the locallyShaved set (line 19). Finally, if the shaving
attempt was unsuccessful then the recentlyUnshaved set is updated (line 21).

If P corresponds to a constraint network reached on a right child (see lines
22 to 30), we simply check for shaving all values in recentlyShaved. Indeed, if
shaving guided by constraints is always performed after variable assignments,
one can note that the results of these shaving attempts may influence shaving
done in the remaining parts of the search (e.g. siblings). This is the reason why
we use the recentlyShaved set to perform shaving in right children. Each value
(X, a) from this set is then attempted to be shaved. If (X, a) is shavable and
removing it causes inconsistency then the search is forced to backtrack. On the
other hand, if the shaving attempt was unsuccessful, then both recentlyShaved
and recentlyUnshaved are updated (lines 29 and 30).

Here, we speculate that both children are similar enough to actually make it
useful to use shavable values from left child when entering the child on the right.
Moreover, if a value was successfully shaved in both children then this value is
added to the set of shavable values of the root node (effectively, by not executing
line 29 in the right child and executing line 36 upon exiting the parent of the
right child). Therefore, the values which were successfully shaved deep in the left
subtree will be tried in the right subtree. We restrict shaving speculation to only
right children, as upon entering the left child the shavable list does not contain a
value which could be used for speculation. The left child does not have a sibling
which was executed earlier and all values which were successfully shaved by the
parent node of the left child are still shaved.

Constraint-Level Advice for Shaving 643

To finish the description of the algorithm, we have to consider the recursive
calls. Lines 31 to 35 allows to select a variable and a value for branching (using
variable and value ordering heuristics) and to proceed to the left and right chil-
dren. Before backtracking from the current node (line 37) the set recentlyShaved
is updated (line 36) by adding to it all values which were successfully shaved in
this search node.

3.3 Extensions

Guiding constraints Even if the algorithm is presented in such a way that any
constraint participates to shaving, it may be more realistic to consider that only
a subset of the constraints of the network are solicited for shaving attempts.
For example, we may only consider (global) constraints whose semantics renders
easy or natural such an exploitation. We discuss this aspect in the next section.

Quick Shaving It is rather easy to further incorporate the quick shaving tech-
nique proposed in [5]. In order to simplify the presentation of this incorpora-
tion to Algorithm 1, we use a global Boolean variable leftChildWrongDecision
which is set to true only when the left child was a wrong decision. To achieve
this, we only need to insert the following instructions between lines 2 and 3:

if leftChild = true then
LeftChildWrongDecision ← true

When the left child led to a dead end immediately then the search proceeds
to the following instructions (inserted between lines 33 and 34) which implement
Quick shaving:

if leftChildWrongDecision then
locallyShaved ← locallyShaved ∪ {(X, a)}
recentlyUnshaved ← recentlyUnshaved \ {(X, a)}
leftChildWrongDecision ← false

In short, Quick shaving adds a value which led to a wrong decision to the
recentlyShaved set just before the search exits the parent node of the wrong
decision.

4 Constraint Guidance

We now discuss about constraint guidance for shaving. We concentrate on global
constraints such as sum and alldifferent since they are commonly used in many
problem classes.

We first need to introduce pruning events (see for example [20]) which can
be specifically treated to speed up constraint propagation. The bound event oc-
curs if the minimal or maximal value from the variable domain is removed. The
ground event occurs if all but one value are removed from the domain. If the
domain of a variable shrinks in another way then it qualifies as event any. It is

644 R. Szymanek and C. Lecoutre

often the case that the design of the constraint propagation algorithms makes it
impossible to infer any additional domain pruning in case of occurrence of the
event any. Therefore, we adapted our suggestion mechanisms within constraints
to prefer/suggest values which cause a bound or ground event if a value is suc-
cessfully shaved. This preference increases the chance of additional inferences
based on just shaved values.

4.1 Alldifferent

Our example uses the permutation constraint to demonstrate how the internal
data structures maintained by this global constraint can be used to propose val-
ues for shaving. A permutation constraint is applicable when the numbers of
variables and values are equal and we wish to ensure that each variable takes a
different value. Therefore, the permutation constraint can be regarded as a spe-
cial case of the alldifferent constraint [21]. A filtering algorithm for permutation
can be readily derived from the filtering algorithm for alldifferent. The alldif-
ferent constraint maintains an internal data structure called the value graph to
achieve generalized arc consistency (GAC) [21]. The value graph is a bipartite
graph in which the edges link variables to values in their current domain. An
example of the value graph is presented in Figure 1. This value graph can be
efficiently reused to identify values that can be assigned to a small number of
variables. In our example, thanks to the value graph an important observation
can be made. We can observe that all variables can be assigned at least three
different values, however value 1 can be assigned to only two variables. Based on
this knowledge, we can choose variable X1 and value 1 or variable X2 and value
1 for shaving, hoping that the chances of successful shave will increase.

1

2

3

4

X2

X1

X3

X4

Fig. 1. An example of a value graph

The suggestion mechanism of the alldifferent constraint considers all variables
within a constraint scope which have a domain consisting of two elements, as
well as all values which are in the domain of only two variables. For any entity ε
(either a variable or a value) such that |dom(ε)| = 2, it computes the following
metric m, where m = min(|dom(el1)|, |dom(el2)|), where dom(ε) = {el1, el2}.
We abuse a notation here by using dom(a) to specify the set of variables which
can be assigned to value a. The variable or value which has the highest value
for metric m is chosen to participate in the proposed variable-value pair for

Constraint-Level Advice for Shaving 645

shaving. For example as presented in Figure 1, 1 is the entity with the highest
value for metric m (trivially satisfied as there is only one variable/value with the
domain equal 2). Therefore value 1 is retained. dom(1) contains two variables
{X1, X2}. The variable X2 with larger domain is chosen for shaving. Therefore,
for the given example, the value (X2, 1) is proposed for shaving. If there are
multiple candidates among variables and values then the constraint chooses a
value which produces a ground or bound event when successfully shaved. If there
is no variable/value with domain consisting of two elements then alldifferent will
not propose any value for shaving. In the process of selection, the preferred value
is the one which, if shaved, greatly enhances the immediate propagation of the
proposing constraint.

4.2 Sum

The implementation of the sum constraint in most constraint systems is rather
simple. First, a propagator based on bound events is used as it provides decent
propagation at low cost. It takes lower and upper bounds for all variables and
checks for each bound value if there exists an assignment to other variables
which satisfies the constraint. If such an assignment does not exist then the
bound is tightened. This is the approach implemented in the solver used in the
experiments.

The guiding function within the sum constraint analyzes the domains of the
variables in its scope and comes up with a value within a domain of a variable
which, if removed, causes the maximum amount of pruning in the other variables.
The likely candidates are the domains like {1, 10..20} (resp. {1..10, 20}), where
there is a large gap between the smallest (resp. the largest) element in the domain
and the one which follows (resp. precedes). In this example, removing element 1
(20) from the domain will significantly tighten the bounds of a variable, probably
causing some domain reductions in other variables.

Sum constraint computes for every variable X within constraint scope the
following metrics, dmin and dmax. Given dom(X) = {v1, v2, ..., vl−1, vl} then
dmin = v2 − v1 and dmax = vl − vl−1. The variable Xi, for which we have
m = max(dmin(Xi), dmax(Xi)) maximized and greater than 1, is chosen for
shaving. If dmin(xi) is greater than dmax(xi) then the value (Xi, v1) is proposed
for shaving, otherwise it is value (Xi, vl).

5 Experimental Results

In order to demonstrate the practical interest of the approach introduced in
this paper, we have conducted an experimentation using different shaving ap-
proaches. We have used four metrics to compare the different approaches. They
respectively correspond to the number of search nodes (# Nodes), the number of
values tested for shaving (# Tests), the success shaving ratio which corresponds
to the percentage of values which were shaved, and the execution time (CPU)
given in seconds. For all metrics, except for the shaving ratio, we computed both
average and median values (denoted by Avg and Med).

646 R. Szymanek and C. Lecoutre

All experiments were performed on laptop with Intel Core Duo 2.0 GHz
processor and 1GB of RAM running Linux Kubuntu 6.10. We have used in
experiments the Java-based JaCoP solver version 2.3, which is available for free
for non-commercial purposes [22]. We have considered three problem classes,
namely Quasigroup Completion Problems (QCP), Nontransitive Dice Problems
(NTD), and Magic Squares Problems (MSP). The different approaches are:

– NoShaving: JaCoP alone,
– QShaving: JaCoP embedding the quick shaving technique,
– GShaving: JaCoP embedding our constraint-guided shaving technique,
– GQShaving: JaCoP embedding both the quick shaving and the constraint-

guided shaving techniques.

We will show that in all problem classes, we can obtain a reduction in the
number of search nodes. This reduction in all problem classes translates to a
time reduction. We will show that different shaving approaches complement
each other.

5.1 Nontransitive Dice Problems

NTD(d,s) represents a problem involving dices. Here, d denotes the number of
dice and s denotes the number of faces on each die. All faces are assumed to be
different, so there is no possibility of a draw when two dice are rolled. In short,
the solution to this problem assigns to each face of each die a unique value.
Moreover, we are looking for an assignment of dice faces, such that for each
die we can pick up another die and reach the maximum probability of winning
with the first chosen die. The optimal solution for NTD(3,6) with the winning
probability 21/36 is presented in Figure 2. The arrows represent the winning
relation (e.g. the die on the left is winning over the die in the middle). The
optimization (maximization of the minimal winning probability) is achieved by
restarts with stepwise increase of the maximal probability. As soon as for a given
probability no solution exists, the previous solution is proved to be optimal. By
arranging experiments in such a way, we ensure that each search solves the same
series of sub-problems and each search finds and proves the optimal solution.

The model of this problem is not trivial since it contains dual viewpoints,
symmetry breaking constraints, and global constraints such as sum and alld-
ifferent. In the process of experimentation with different search heuristics, we

1 9 2 14

15

16

6 7 8

11

12

13

3 4 5 10

17

18

Fig. 2. NTD(3, 6) and one of the optimal solutions

Constraint-Level Advice for Shaving 647

Table 1. Experimental results for Nontransitive Dice Problem

Nodes # Tests Shaving CPU [s]
Approach #Solved Avg Med Avg Med Ratio Avg Med

NoShaving 22 9, 935, 361 92, 915 0 0 − 667 8.57
GShaving 26 1, 191, 156 7, 650 54, 302 440 49 104 3.50
QShaving 26 583, 125 5, 932 105, 578 1, 117 43 70 3.02

GQShaving 26 217, 398 4, 381 51, 706 1, 072 43 32 3.11

found the best one for JaCoP alone. This heuristic orders the face variables by
taking them one by one from each die. The face variables taken from each die are
ordered in the fashion which maximizes constraint propagation. In addition, this
heuristic uses middle value ordering which starts with values from the middle of
the domain.

Table 1 presents results for 26 problem instances, namely NTD(3, {4, 5, 6, 7,
8, 9, 10}), NTD(4, {4, 5, 6, 7, 8, 9, 10}), NTD(5, {4, 5, 6, 7, 8}), NTD(6, {4, 5,
6, 7}), and NTD(7, {4, 5, 6}). JaCoP alone (NoShaving) was not able to solve 4
problems with a generous backtrack limit of 10 millions backtracks. Both shaving
techniques run alone (QShaving and GShaving) already obtain substantial time
gains when solving the same problem set. However, it is when both shaving
techniques are combined that a 20 times reduction of average execution time is
obtained. These experimental results clearly show that we are able to improve
the pruning strength of the constraint model by using shaving techniques.

5.2 Quasigroup Completion Problems

A quasigroup is a set Q with a binary operation � : Q×Q→ Q, such that for all a
and b in Q there exist unique elements in Q such that a�x = b and y�a = b. The
cardinality of the set, n = |Q|, is called the order of the quasigroup. A quasigroup
can be viewed as an n × n multiplication table defining a Latin square, which
must be filled with unique integers on each row and column. The Quasigroup
Completion Problem (qcp) is the problem of completing a partially filled Latin
square. We will concentrate on one of many possible constraint models which uses
alldifferent global constraint to ensure uniqueness of elements across columns
and rows. In our work, we use a generalized arc consistency (GAC) version of
the alldifferent constraint. One of the best variable orderings, given the fact that
the model consists only of global constraints, is based on the minimal domain
size. We have used as value ordering heuristic the one which chooses the minimal
value from the current domain. The QCP problems were generated using Carla
Gomes generator. We have generated 3000 problems for QCP of order 25 at
difficulty phase transition for sat balanced QCP. The generator can produce
unsat instances for this type of QCP problems therefore we retained only the
sat instances which gave the total number of instances equal to 1214.

Table 2 presents experimental results for this problem class. JaCoP alone
(NoShaving) had a 10 times increased search node limit yet it still could not
solve 9% of the problems for which more than 1000 seconds on average were

648 R. Szymanek and C. Lecoutre

Table 2. Experimental results for QCP of order 25

Nodes # Tests Shaving CPU [s]
Approach #Solved Avg Med Avg Med Ratio Avg Med

NoShaving 1, 103 437, 321 123, 070 0 0 − 264.59 74.44
QShaving 1189 212, 372 47, 236 88, 931 19, 238 32 167.90 38.33
GShaving 1, 214 12, 972 3, 113 92, 737 22, 280 18 92.86 24.20

GQShaving 1, 214 12, 681 3, 051 94, 006 22, 520 18 61.49 17.23

not sufficient to solve them. We were initially running experiments without any
node limit. Unfortunately, we were not able to get results for some instances
even within days therefore we had to revert to a node limit and present approx-
imate results (i.e. results given for NoShaving and QShaving must be consid-
ered as lower bounds of real values). QShaving was given the same node limit
as NoShaving. All remaining shaving approaches were given only one tenth of
search nodes limit given to the heuristic without shaving.

The guided shaving (GShaving, GQShaving) compares favorably against No-
Shaving and QShaving. First, it solves all the problems in a significant smaller
numbers of search nodes even if we count shaving attempts as search nodes.
Assuming that unsolved instances are solved at the node limit we can still see
significant reduction in median time. We run QShaving with a node limit equal
to NoShaving method, because if given the same node limit as other shaving
approaches it would not be able to solve 25% of the problems. QShaving takes
on average more than 16 times more nodes and 80% more time when compared
to GShaving results. Moreover, QShaving still despite 10-fold increase of node
limit can not solve 2% of problems making it also less robust than GShaving. It is
interesting to see that guided shaving significantly improves the quality of quick
shaving since all problems are solved. On the other hand, quick shaving changes
the distribution of shaving attempts (there are more of them in the lower parts
of the search tree) as well as makes shaving attempts more compatible with
constraint consistency mechanisms (reuse of previous work is more likely, the
consistency function of alldifferent is highly incremental), resulting in further
reduction of time even if all other metrics are similar.

5.3 MagicSquares Problems

An order n magic square is a n×n matrix containing the numbers 1 to n2, with
each row, column and the main diagonals summing up to the same number.
The constraint model of this problem consists of one alldifferent constraint and
2n + 2 sum constraints. Therefore, the guiding for this problem class is mostly
performed by sum constraints.

Table 3 presents experimental results for this problem class. We have used the
variable ordering heuristic that selects the smallest domain first and the value
ordering heuristic which starts with the values from the middle of the domain.
The difficulty of the problems increases very fast. Therefore, only instances with
small n (n starting at 4) were solved. For this problem class, we can observe a

Constraint-Level Advice for Shaving 649

Table 3. Experimental results for MagicSquares Problems

Nodes # Tests Shaving CPU [s]
Approach #Solved Avg Med Avg Med Ratio Avg Med

NoShaving 6 321, 112 9, 052 0 0 − 43.43 3.06
QShaving 6 56, 751 8, 182 8, 496 920 40 10.12 3.09
GShaving 6 18, 443 5, 047 8, 936 2, 258 56 6.55 3.70

GQShaving 6 14, 338 4, 765 9, 903 2, 667 53 5.69 2.83

reduction in terms of the average number of search nodes as well as the aver-
age execution time. Clearly, guided shaving allows again to improve the search
robustness: it is about one order of magnitude faster than the classical search
algorithm (NoShaving) and two times faster than quick shaving (QShaving).

6 Conclusions

We have presented a shaving framework, which uses advice from (global) con-
straints. The underlying principle of constraint-guided shaving is to ask each
constraint suggesting one value which is more likely to be shaved as well as cause
more propagation when shaved. We have discussed how it can be implemented
for two important global constraints, namely alldifferent and sum. Interestingly
enough, we have also shown that the past successes and failures can be exploited
to improve shaving performance.

Constraints provide reliable guidance which always allows pruning some por-
tions of the search space while, most of the time, giving significant reduction
of execution time (one order of magnitude). Indeed, the practical results that
we have obtained on different series of problems show that using constraints for
guiding shaving increases dramatically the robustness and the efficiency of the
search algorithm, not only in terms of search nodes but also in terms of cpu time.
We have also shown that our approach is complementary to Quick shaving.

References

1. Wallace, M.: Practical applications of constraint programming. Journal of Con-
straints 1, 139–168 (1996)

2. Puget, J.: The next challenge for CP: Ease of use. In: Wallace, M. (ed.) CP 2004.
LNCS, vol. 3258, pp. 5–8. Springer, Heidelberg (2004)

3. Carlier, J., Pinson, E.: Adjustments of heads and tails for the job-shop problem.
European Journal of Operational Research 78, 146–161 (1994)

4. Martin, P., Shmoys, D.: A new approach to computing optimal schedules for the
job-shop scheduling problem. In: Cunningham, W.H., Queyranne, M., McCormick,
S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 389–403. Springer, Heidelberg (1996)

5. Lhomme, O.: Quick shaving. In: Proceedings of AAAI 2005, pp. 411–415 (2005)
6. Debruyne, R., Bessiere, C.: Some practical filtering techniques for the constraint

satisfaction problem. In: Proceedings of IJCAI 1997, pp. 412–417 (1997)

650 R. Szymanek and C. Lecoutre

7. Hnich, B., Richardson, J., Flener, P.: Towards automatic generation and evaluation
of implied constraints. Technical Report 2003-014, Uppsala Universitet (2003)

8. Bessiere, C., Coletta, R., Petit, T.: Learning implied global constraints. In: Pro-
ceedings of IJCAI 2007, pp. 50–55 (2007)

9. Regin, J.: Combination of among and cardinality constraints. In: Barták, R., Mi-
lano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 288–303. Springer, Heidelberg
(2005)

10. Debruyne, R., Bessiere, C.: Domain filtering consistencies. Journal of Artificial
Intelligence Research 14, 205–230 (2001)

11. Bessiere, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary
constraints. Artificial Intelligence (to appear, 2008)

12. Bessiere, C.: Constraint propagation. In: Handbook of Constraint Programming.
Elsevier, Amsterdam (2006)

13. Bartak, R., Erben, R.: A new algorithm for singleton arc consistency. In: Proceed-
ings of FLAIRS 2004 (2004)

14. Bessiere, C., Debruyne, R.: Optimal and suboptimal singleton arc consistency al-
gorithms. Proceedings of IJCAI 2005, 54–59 (2005)

15. Lecoutre, C., Cardon, S.: A greedy approach to establish singleton arc consistency.
In: Proceedings of IJCAI 2005, pp. 199–204 (2005)

16. Lecoutre, C., Prosser, P.: Maintaining singleton arc consistency. In: Proceedings of
CPAI 2006 workshop held with CP 2006, pp. 47–61 (2006)

17. Hwang, J., Mitchell, D.: 2-way vs d-way branching for CSP. In: van Beek, P. (ed.)
CP 2005. LNCS, vol. 3709, pp. 343–357. Springer, Heidelberg (2005)

18. Sabin, D., Freuder, E.: Contradicting conventional wisdom in constraint satisfac-
tion. In: Proceedings of CP 1994, pp. 10–20 (1994)

19. Bessiere, C., Zanuttini, B., Fernandez, C.: Measuring search trees. In: Proceedings
of ECAI 2004 workshop on Modelling and Solving Problems with Constraints, pp.
31–40 (2004)

20. Schulte, C., Carlsson, M.: Finite domain constraint programming systems. In:
Handbook of Constraint Programming, pp. 495–526. Elsevier, Amsterdam (2006)

21. Regin, J.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings
of AAAI 1994, pp. 362–367 (1994)

22. Kuchcinski, K.: Constraints-driven scheduling and resource assignment. ACM
Transactions on Design Automation of Electronic Systems 8, 355–383 (2003)

A High-Level Implementation of
Non-deterministic, Unrestricted, Independent

And-Parallelism�

Amadeo Casas1, Manuel Carro2, and Manuel V. Hermenegildo1,2

1 Depts. of Comp. Science and Electr. and Comp. Eng., Univ. of New Mexico, USA
2 School of Comp. Science, Univ. Politécnica de Madrid, Spain and IMDEA-Software

amadeo@cs.unm.edu, mcarro@fi.upm.es,
herme@fi.upm.es, herme@cs.unm.edu

Abstract. The growing popularity of multicore architectures has re-
newed interest in language-based approaches to the exploitation of par-
allelism. Logic programming has proved an interesting framework to this
end, and there are parallel implementations which have achieved signifi-
cant speedups, but at the cost of a quite sophisticated low-level machin-
ery. This machinery has been found challenging to code and, specially,
to maintain and expand. In this paper, we follow a different approach
which adopts a higher level view by raising some of the core components
of the implementation to the level of the source language. We briefly
present an implementation model for independent and-parallelism which
fully supports non-determinism through backtracking and provides flex-
ible solutions for some of the main problems found in previous and-
parallel implementations. Our proposal is able to optimize the execution
for the case of deterministic programs and to exploit unrestricted and-
parallelism, which allows exposing more parallelism among clause literals
than fork-join-based proposals. We present performance results for an
implementation, including data for benchmarks where and-parallelism is
exploited in non-deterministic programs.

Keywords: And-Parallelism, High-level Implementation, Prolog.

1 Introduction

New multicore technology is challenging developers to create applications that
take full advantage of the power provided by these processors. The path of single-
core microprocessors following Moore’s Law has reached a point where very high
levels of power (and, as a result, heat dissipation) are required to raise clock
speeds. Multicore systems seem to be the main architectural solution path taken
� This work was funded in part by EU FP6 FET project IST-15905 MOBIUS,

FP7 grant 215483 S-Cube, Spanish MEC project TIN2005-09207-C03 MERIT-
COMVERS, ITEA2/PROFIT FIT-340005-2007-14 ES PASS, and by Madrid Re-
gional Government project S-0505/TIC/0407 PROMESAS. M. Hermenegildo and
A. Casas were also funded in part by the Prince of Asturias Chair in IST at UNM.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 651–666, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

652 A. Casas, M. Carro, and M.V. Hermenegildo

by manufacturers for offering potential increases in performance without running
into these problems. However, applications that are not parallelized, will show
little or no improvement in performance as new generations with more processors
are developed. Thus, much effort is currently being put and progress being made
towards alleviating the hard task of producing parallel programs. This includes
the design of new languages that provide better support for the exploitation
of parallelism, libraries that offer improved support for parallel execution, and
parallelizing compilers, capable of helping in the parallelization process.

In particular, declarative languages (and logic programming languages among
them), have been traditionally considered an interesting target for exploiting
parallelism. Their high-level nature allows a coding style closer to the prob-
lem which preserves more of the original parallelism. Their separation between
control and the declarative meaning, together with relatively simple semantics,
makes logic programming a formally simpler framework which, however, allows
studying and addressing most of the challenges present in the parallelization of
imperative languages [12].

There are two main forms of parallelism in logic programming [10,9]. Or-
parallelism (Aurora [19] and MUSE [2]) refers to the execution of different
branches in parallel, while And-parallelism executes simultaneously some goals
in the resolvent. The latter can be exploited independently of whether there is
implicit search or not. Two main forms of and-parallelism have been studied.
Independent and-parallelism (IAP) arises between two goals when the execution
of one of them does not influence the execution of the other. For pure goals a
sufficient (and a-priori) condition for this is the absence of variable sharing at
run-time among these goals. “Dependent” and-parallelism (DAP) is found when
the literals executed in parallel share variables at run-time, and they compete
to bind them. In this paper we will focus on independent and-parallelism.

Systems like &-Prolog [14], DDAS [25] and others have exploited and-para-
llelism, while certain combinations of both and- and or-parallelism have been
exploited by e.g. &ACE [23], AKL [17], and Andorra-I [24]. Many of these sys-
tems adopted similar implementation ideas. This often included a parallelizing
compiler to automatically transform the original program into a semantically-
equivalent parallel version of it and a run-time system to exploit the potential
increase in performance provided by the uncovered parallelism. These systems
have been shown very effective at exploiting parallelism efficiently and obtaining
significant speedups [14,22]. However, most of them are based on quite complex,
low-level machinery (which included an extension of the WAM instructions, and
new data structures and stack frames in the stack set of each agent), which
makes implementation and maintenance inherently hard.

In [8], we proposed a high-level implementation that raised some of the main
components of the implementation to the source level, and was able to exploit
the flexibility provided by unrestricted and-parallelism (i.e., not limited to fork-
join operations). However, [8] provided a solution which is only valid for the
parallel execution of goals which have exactly one solution each, thus avoiding
some of the hardest implementation problems. While it can be argued that a

Non-deterministic, Unrestricted, Independent And-Parallelism 653

large part of application execution is indeed single-solution, on one hand this
cannot always be determined a priori, and on the other there are also cases of
parallelism among non-deterministic goals, and thus a system must offer a com-
plete implementation, capable of coping with parallel non-deterministic goals, in
order to be realistic. Other recent related work includes [20] which proposes a set
of high-level multithreading primitives. This work (as, e.g., also [6]) focuses more
on providing a flexible multithreading interface, rather than on performance.

In this paper, we present a high-level implementation that is able to exploit
unrestricted IAP over non-deterministic parallel goals, while maintaining the
optimizations of previous solutions for non-failing deterministic parallel goals.
Our proposal provides solutions for the trapped-goal and garbage-slot problems,
and is able to cancel the execution of a parallel goal when needed.

2 Decomposing And-Parallelism

Independent and-parallelism has traditionally been expressed using the (re-
stricted, i.e., fork-join) &/2 operator as the lowest-level construct to express
parallelism between goals. However, our intention is to support unrestricted and-
parallelism, which has been shown capable of exploiting more of the parallelism
intrinsic in programs [7]. To this end, we will use more flexible primitives [5]:

– G &> H schedules the goal G for parallel execution and continues with the
code after G &> H. H is a handler which contains (or points to) the state of
G, and will be used for communicating the executing state between agents.

– H <& waits for the goal associated with H to finish. After H <& succeeds,
all the bindings that G could possibly generate are ready. Note also that,
assuming goal independence between G and the calls performed while G was
being executed, no binding conflicts will arise.

With the previous definitions, the &/21 operator can be expressed as:
A & B :- A &> H, call(B), H <&. (1)

The particular order of literals is for performance, since when running the com-
mon tail-recursive case p:-q&p, p should spawn parallel q’s with no delay. [13]

Also, note that &>/2 and <&/1 are not intended to replace &/2 at the language
level, due to its expressiveness and conciseness, in case no extra parallelism can
be exploited with them (i.e., we leave the door open to more optimized imple-
mentations of &/2 than what the definition above suggests). The &>/2 and <&/1
primitives are not dependent on any particular architecture, and were in fact first
implemented in a distributed-memory setting [5]. However, as the implementa-
tion we propose now addresses shared-memory multiprocessors, the bindings
made by G while executing will be immediately visible, and goal independence
makes it possible to work out a solution with the no-slowdown property.

G &> H ideally takes a negligible amount of time to execute, although the
precise moment in which G actually starts depends on the availability of resources
1 The meta-call is expanded at compile-time to avoid extra overhead in the execution.

654 A. Casas, M. Carro, and M.V. Hermenegildo

(primarily, free agents or processors). On the other hand, H <& suspends until
the associated goal finitely fails or returns an answer. Actual backtracking is
performed at H <&, and the memory reserved by the handler is released when
G &> H is reached on backtracking. If G &> H is reached on backtracking but
H <& was not reached on forward execution, this means that some of the goals
between these two points has failed without a solution, and the execution of goal
G (whatever its state) is to be cancelled. Section 3 explains further the design
and implementation of these operators.

3 Shared-Memory Implementation

Our shared-memory implementation for unrestricted IAP is based on the multi-
sequential, marker model introduced by &-Prolog and adopted by many and-
parallel systems, both for IAP [14,23] and DAP [25]. It has some general sim-
ilarities with that model, such as the concept of agent, which corresponds to
a thread associated to a particular stack set, mostly a Warren Abstract Ma-
chine [26,1], and the ring of stack sets which interconnects all the agents. For
simplicity, each thread will be always associated to the same stack set.

However, there exist significant differences between our proposal and the &-
Prolog run-time model, which we will present in the following sections.

3.1 Goal Stacks vs. Goal Lists

In our model, each agent is extended with a goal list, implemented as a doubly-
linked list in C, whose functionality is similar to that of the goal stack in the
&-Prolog run-time model. The goal list entries store pointers to those goals
which have been prepared for parallel execution, and thus agents that are idle
can search for parallel goals to execute by consulting the goal lists of the rest
of the agents. A list is used instead of the traditional stack due to the greater
flexibility needed in order to deal with the unrestricted nature of the &>/2 and
<&/1 operators (instead of, or in addition to &/2): goals can be joined in any order
—not necessarily the inverse to the order in which they were published— and,
in the case of goal cancellation, arbitrary goal entries inside the list may have to
be removed. For instance, the conjunction (g1&g2&. . .&gn) can be executed as

(g1&>H1, g2&>H2, . . . , gn, . . . , H2<&, H1<&)

as per Equation (1), but in fact any order for the joins would be equally correct.

3.2 Parcall Frames vs. Handlers

Parcall frames in the &-Prolog run-time model are additional (environment)
stack frames used for the coordination and synchronization of the parallel ex-
ecution. In &-Prolog a parcall frame is created as soon as a parallel call is
made, and it has a slot for each of the literals g1,g2 . . . gn in the parallel call
g1&g2&. . .&gn, in order to keep track of the execution of each of these goals.

In most WAM implementations the handling of environments is relatively
brittle and introducing different elements in the environment stack complicates

Non-deterministic, Unrestricted, Independent And-Parallelism 655

things. As an alternative to parcall stack frames, our proposal makes use of
heap structures, created by and accessible from source-level code that we call
handlers, as already mentioned in Section 2.2 Each handler is associated to a
particular parallel goal and is used to synchronize the publishing agent and the
agent which picks up the goal. Handlers store information such as, e.g., pointers
to the parallel goal and its location in the goal list (to remove it from there in case
the goal is not taken by any other agent), a field to mark the goal as deterministic
or not, the state of the execution, and pointers to both the publishing and the
executing agents to release their execution when so needed.

3.3 Markers vs. (Prolog) Choice Points

Markers are used in the &-Prolog run-time model to set boundaries between
different sections in the stack, each of them corresponding to the segment of
execution of a parallel goal. This separation of segments in the stack is used
to provide a solution to the trapped goal problem [15]. Markers are also used
in &-Prolog to implement storage recovery mechanisms during backtracking of
parallel goals, in order to solve the garbage slot problem [15].

Our proposal to avoid the use of new stack frames to implement markers is
the creation of normal choice points, and in a simple way by creating alternatives
(through predicates with more than one clause) directly in the source-level code
of the scheduler (see Section 3.4). This is done whenever a parallel goal is to
be executed (see Figure 1(e)). In addition to that, pointers to the choice points
that mark the beginning and end of the goal execution will be stored in the
handler associated to that goal, in order to delimit the segment of execution
and make them accessible during backwards execution. This is also done in part
at the source level. Section 3.4 provides further explanation of how backwards
execution over parallel goals is performed using these choice points.

3.4 Implementation

Figure 1 presents a sketch of our high-level implementation of the scheduler
for unrestricted IAP. The implementation divides the responsibilities between
different layers. The user-level parallelism primitives &>/2 and <&/1 (and thus
&/2) are at the top of the Prolog level. The algorithms for goal publishing, goal
searching, and forward and backwards execution are implemented in Prolog,
with some support from low-level primitives designed to provide, e.g., locking,
untrailing, and management of segments of executions. Primitives related to
forward execution of parallel goals were already presented in [8].

In our implementation, agents are created with a small stack (which can grow
on demand) and they wait for some work to be available. They do not contin-
uously search for new tasks to be performed, in order to avoid active waiting.3

Several high-level primitives are provided for the creation of a particular number
2 A related approach (but combined with the choice-point stack) was used in ACE [23].
3 We took this decision because it gave slightly better speedups in our experiments

and it is in general good usage of a multiuser system.

656 A. Casas, M. Carro, and M.V. Hermenegildo

Goal &> Handler :-
add_goal(Goal,nondet,Handler),
undo(cancellation(Handler)),
release_some_suspended_thread.

(a) Non-deterministic goal publishing.

Handler <& :-
enter_mutex_self,
(

goal_available(Handler) ->
exit_mutex_self,
retrieve_goal(Handler,Goal),
call(Goal)

;
check_if_finished_or_failed(Handler)

).
Handler <& :-

add_goal(Handler),
release_some_suspended_thread,
fail.

(b) Goal join and speculation.

check_if_finished_or_failed(Handler) :-
(

goal_finished(Handler) ->
exit_mutex_self,
sending_event(Handler)

;
(

goal_failed(Handler) ->
exit_mutex_self,
fail

;
suspend,
check_if_finished_or_failed(Handler)

)
).

(c) Checking status of goal execution.

sending_event(_).
sending_event(Handler) :-

enter_mutex_self,
enter_mutex_remote(Handler),
set_goal_tobacktrack(Handler),
add_event(Handler),
release_remote(Handler),
exit_mutex_remote(Handler),
check_if_finished_or_failed(Handler).

(d) Sending event to executing agent.

call_handler(Handler) :-
retrieve_goal(Handler,Goal),
save_init_execution(Handler),
call(Goal),
save_end_execution(Handler),
enter_mutex(Handler),
set_goal_finished(Handler),
release(Handler),
exit_mutex(Handler).

call_handler(Handler) :-
enter_mutex(Handler),
set_goal_failed(Handler),
release(Handler),
metacut_garbage_slots(Handler),
exit_mutex(Handler),
fail.

(e) High-level markers definition.

agent :-
enter_mutex_self,
work,
agent.

agent :- agent.

work :-
(

read_event(Handler) ->
(

more_solutions(Handler) ->
move_execution_top(Handler)

;
move_pointers_down(Handler)

),
exit_mutex_self,
fail

;
(

find_goal(H) ->
exit_mutex_self,
call_handler(H)

;
suspend,
work

)
).

(f) Agent code.

Fig. 1. High-level solution for unrestricted IAP

of agents. When an agent is created, it executes the code shown in Figure 1(f),
and during normal execution it will start working on the execution of some goal,
or will sleep because there is no task to perform. An agent searches for parallel
goals by using a work-stealing scheduling algorithm based on those in [11,14].

Figure 1(a) presents the code for &>/2, which publishes a goal for parallel exe-
cution. A pointer to the parallel goal is added to the goal list,and a signal is sent
to one of the agents that are currently waiting for some task to do. This agent
will resume its execution, pick up the goal, and execute it. In addition, when

Non-deterministic, Unrestricted, Independent And-Parallelism 657

&>/2 is reached in backwards execution, the memory reserved by the handler is
released. Also, if the goal was taken by another agent and the goal execution was
not finished yet, cancellation/1 (which raises a per-agent flag which is peri-
odically polled by every agent) asks the executing agent to abort the execution
of the goal. This increases the overall performance of the system by avoiding
unnecessary work, as we will show in Section 4. Moreover, in order to be able
to execute this operation in the presence of cuts in the code of the clause, it is
invoked via the undo/1 predicate.

Figure 1(b) presents the implementation of <&/1. First, the publishing agent
needs to check whether the goal was picked up by some other agent or not. If
it was not taken then the publishing agent will remove it from the goal list and
execute it locally (using call/1), and then it will continue executing scheduler
code. If the goal was taken by some other agent then its status will be checked
(i.e., to know whether the goal execution has already finished or failed) as shown
in Figure 1(c). If the goal execution fails then the parallel goal will be added
to the goal list of the publishing agent, so it can be reexecuted by some other
agent. This is a form of speculative execution, since the reexecution of that literal
may not be needed for the actual computation. However, it increases the actual
parallelism in the system. It should be noted that the goal execution will be
canceled if the corresponding &>/2 is reached on backtracking.

If the goal execution succeeds and <&/1 is reached on backtracking, then
backwards execution needs to be performed. If the goal was not taken by some
other agent then backwards execution is trivially performed. If it was picked up
by some other agent then the publishing agent sends a signal to the executing
agent with a request for a new solution for that goal. The executing agent will
serve the signal as soon as it is able. In order to enable this communication, each
agent has an event queue from which the agent pops events consisting of pointers
to handlers associated to the goals to be backtracked over. The primitives which
perform this communication are add event/1, which pushes a new pointer to
a handler in the event queue of the agent which executed the associated goal,
and read event/1, which either removes the item in the event queue to perform
backwards execution over the parallel goal associated to it, or fails if the event
queue is empty. Figure 1(d) presents the source code to push the corresponding
event to the executing agent, releasing its execution if it was suspended.

When an agent pops an event (Figure 1(f)), backwards execution over a par-
allel goal needs to be performed. If the segment of execution is at the top of its
stack, then the agent will invoke fail/0 and a new solution will be obtained.
However, it might be the case that the segment of execution of the parallel goal
is trapped, i.e., it is currently not at the top of the stack. In this case, there are
two possible scenarios. If the goal is known not to have additional solutions,4

then the segment where the goal lies does not need to be expanded and the
pointers to the top of the segment in the handler are simply made to point to
the beginning of the segment. The trail section corresponding to that segment

4 For example, because it did not push any choice point or because it has been marked
as deterministic during compilation, or by the user [4,16].

658 A. Casas, M. Carro, and M.V. Hermenegildo

a
Ha

Hb
b b

a

Agent 1 Agent 2

Ha

Hb

Agent 1 Agent 2

cc

?− a(X) &> Ha, b(Y) &> Hb, c(Z), Hb <&, Ha <&, fail.

b

a

c

Hb <&
Ha <&

a(X) &> Ha, b(Y) &> Hb

Fig. 2. Copying trapped goal onto the top of the stack

is used to undo the bindings. After this, the stack and trail pointers are restored
to their previous values —i.e., they point to the top of the corresponding stacks.

If there may be more solutions for that goal, then a mechanism is needed to
untrap its segment of execution. Several solutions have been proposed to solve
this problem. A first approach consists of avoiding it altogether by carefully
selecting goals to be executed so that they cannot cause trapped goals (which
would dramatically reduce the amount of exploited parallelism). Another solu-
tion is to create a new, independent stack set for every goal taken, which would
probably be memory-inefficient or impose an extra overhead in memory man-
agement. Our proposal is a variant of the solution adopted by several parallel
systems (e.g., &-Prolog, ACE, DASWAM, . . .), which essentially try to continue
the goal execution on top of the stack. However, in our case, and for simplicity,
when a trapped goal is to be backtracked over, its execution segment is copied on
top of the stack, where it can expand freely. The garbage slot created is marked
as such, and can be recovered when everything between this garbage slot and
the top of the stack turns into garbage (or on backtracking). Most implemen-
tations of garbage collectors do not recover dead choice points, and thus the
garbage collection algorithm needs to be changed to work with parallel execu-
tion and cross-agent pointers. Improved garbage collectors could use the pointers
to boundaries of every live segment stored in the handlers.

Figure 1(e) shows how the limits of the segment of execution of the paral-
lel goal are stored in the handler, so their values can be accessed in backwards
execution, via the save init execution/1 and save end execution/1 prim-
itives, which actually have similar behavior to that of the input markers and
end markers in the &-Prolog model. Note that the choice point created by the
predicate call handler/1 is in fact the input marker of the parallel execution,
but again defined in the source language. Finally, when the goal execution fails,
the metacut garbage slots/1 primitive will pop from the stack those discarded
segments of the stack that are right underneath the segment of execution.

Figure 2 shows an example of this solution for the trapped goal and garbage slot
problems. We assume that variables X, Y, and Z are independent. When the literals
a/1 and b/1 are taken and executed by the second agent, the pointers that define
the actual segment of execution of both literals are stored in the corresponding
handler. Thus, when Ha <& is reached in backtracking, the segment of execution

Non-deterministic, Unrestricted, Independent And-Parallelism 659

push_goal/3

release_some_suspended_agent/0

Published

Cancelled

set_goal_failed/1

release/1

Failed

Finished

set_goal_finished/1

release/1

execution finishedfail

execution failed

Remotely Executing

call_handler/1

cancellation/1

execution cancelledLocally Executing

call/1

execution failed

execution finished

read event

goal foundgoal available

speculative execution

Fig. 3. State diagram of a parallel goal

of literal a/1 is trapped, and it is copied on top of the stack in order to have enough
space to expand and obtain a new solution for the goal a/1. The handler associated
to the literal b/1will in addition mark the garbage slot left by the literal a/1, which
will be freed when the execution of the literal b/1 fails.

Figure 3 presents a diagram which shows the different states in which a parallel
goal can be according to the code in Figure 1. First, a goal is published to be
executed in parallel by adding a pointer to it in the goal list and releasing the
execution of an agent that is currently idle. When performing the goal join, if
the goal is still available it will be executed locally. If the goal was picked up by
some other agent, it will be executed remotely. A goal execution can be cancelled
if the outcome of the execution is not needed for the actual computation. If the
goal execution is not cancelled and succeeds, it may be backtracked over with
the communication between agents performed via pushing and popping events.
If it fails, the goal will be published again for parallel execution.

4 Performance Evaluation

We will now present some performance results obtained with our implementation
for a selection of both deterministic and non-deterministic benchmarks (see Ta-
ble 1), parallelized with unrestricted independent and-parallelism. Our proposal
has been implemented on the Ciao multiparadigm system [3]. All the benchmarks
were automatically parallelized [21,7] using CiaoPP [16] and starting from their
sequential code. The performance results were obtained by averaging ten runs
on a state-of-the-art multiprocessor, a Sun Fire T2000 with 8 cores (4 threads
each) and 8 Gb of memory running in 32-bit compatibility mode.

Table 2 presents the speedups obtained for some deterministic benchmarks
parallelized using unrestricted IAP. The speedups were obtained with respect
to the execution time of the sequential version of the benchmarks. Thus, the

660 A. Casas, M. Carro, and M.V. Hermenegildo

Table 1. Benchmarks executed with unrestricted IAP

AIAKL Simplified AKL abstract inter-
preter.

Ann Annotator for and-parallelism.
Boyer Simplified version of Boyer-

Moore theorem prover.
Chat-80 Question parser of Chat-80.
Deriv Symbolic derivation.
FFT Fast Fourier Transform.
Fibonacci Doubly recursive Fibonacci.
Hamming Calculates Hamming num-

bers.
Hanoi Solves Hanoi puzzle.

MMatrix Matrix multip. (50×50).
Numbers Obtains a number from a

list of others.
Palindrome Generates a palindrome of

214 elements.
Progeom Constructs a perfect differ-

ence set of order n.
Queens The n-queens problem.
QueensT Solves the n-queens prob-

lem T times.
QuickSort Sorts a 10,000 element list.
Takeuchi Computes Takeuchi.

columns tagged 1 measure the slowdown coming from executing a parallel pro-
gram in a single processor. Rows tagged with the ’&!’ symbol measure the exe-
cution of the benchmarks with some optimizations for the case of deterministic
parallel goals, on our previous, determinism-only model and implementation [8].
Rows tagged with the ’&’ symbol measure the speedups obtained with all the
mechanisms required by the implementation presented in Section 3. The differ-
ence in speedups between both parallel versions is of little significance in most
cases, and only in very few cases (for example, Boyer and Fibonacci) the differ-
ence is relevant. Note that determinism can either be annotated by hand or, in
many cases, automatically detected [4,16]. In any case, reasonably good speedups
are obtained, despite the fact that the proposal suffers from the overhead added
by the source-level coded scheduler etc., but which, in return, offers other advan-
tages such as significantly reduced development (and maintenance) time, more
flexibility, simpler and faster experimentation, etc.

Table 3 presents the speedups obtained for some non-deterministic bench-
marks. Some of them do not obtain any speedup when executed in parallel due
to the very fine granularity of the parallel goals and the high-level nature of
our implementation. However, super-linear speedups can be achieved in other
benchmarks (e.g., Chat-80), thanks to the implementation of goal cancellation.

A fact that limits the system performance is the expansion of the agent stack
sets when running out of space. Stack sets are initially created small and they
dynamically grow as needed. This fits the behavior of a naive user who lets the
system run and adjust itself; a more seasoned user could create the stack sets with
a size which appropriate for a particular application. Due to the work-stealing
strategy adopted and the shared-memory nature of our implementation, there
may be cross-agent pointers. The approach we have taken to ensure a correct
stack set expansion is to suspend the execution of all the agents. The stack set
which is short on space is then expanded, the pointers pointing to that stack set
(from any agent) are updated, and the execution of the agents finally resumes.5

5 We acknowledge that a smarter algorithm could be implemented, but this topic is
out of the scope of this paper and a subject for further work.

Non-deterministic, Unrestricted, Independent And-Parallelism 661

Table 2. Speedups obtained for deterministic unrestricted IAP benchmarks

Benchmark Op.
Number of agents

Seq. 1 2 3 4 5 6 7 8

AIAKL
&! 1.00 0.99 1.82 1.82 1.82 1.83 1.83 1.83 1.82
& 1.00 0.93 1.70 1.71 1.72 1.74 1.75 1.72 1.72

Ann &! 1.00 0.96 1.84 2.72 3.56 4.38 5.16 5.88 6.64
& 1.00 0.96 1.85 2.72 3.57 4.35 5.14 5.87 6.61

Boyer &! 1.00 0.92 1.76 2.58 3.16 3.39 4.01 4.31 4.55
& 1.00 0.90 1.21 1.83 2.06 2.26 2.30 2.39 2.56

Deriv
&! 1.00 0.83 1.59 2.38 3.07 3.78 4.49 4.98 5.49
& 1.00 0.84 1.60 2.34 2.99 3.73 4.43 4.56 4.85

FFT
&! 1.00 0.98 1.73 2.06 2.67 2.78 2.95 2.96 3.11
& 1.00 0.98 1.72 1.97 2.65 2.67 2.75 2.93 2.97

Fibonacci &! 1.00 0.98 1.91 2.84 3.73 4.62 5.51 6.41 7.35
& 1.00 0.98 1.58 2.04 2.53 3.28 4.06 4.61 5.46

Hamming &! 1.00 0.92 1.04 1.43 1.65 1.65 1.65 1.65 1.65
& 1.00 0.92 1.02 1.41 1.63 1.62 1.62 1.62 1.62

Hanoi
&! 1.00 0.95 1.76 2.47 3.09 3.39 3.65 3.87 4.10
& 1.00 0.96 1.77 1.91 2.84 3.13 3.54 3.76 4.02

HanoiDL
&! 1.00 0.73 1.44 2.08 2.77 3.37 4.04 4.58 5.19
& 1.00 0.74 1.43 1.89 1.87 2.73 3.07 3.59 3.87

MMatrix
&! 1.00 0.77 1.51 2.31 3.02 3.76 4.52 5.21 5.72
& 1.00 0.77 1.48 2.16 2.88 3.51 4.05 4.57 4.96

Palindrome &! 1.00 0.95 1.77 2.36 2.95 3.33 3.62 3.94 4.15
& 1.00 0.96 1.78 2.14 2.56 3.11 3.30 3.74 3.90

QuickSort
&! 1.00 0.97 1.74 2.26 2.91 3.16 3.39 3.49 3.54
& 1.00 0.97 1.71 2.17 2.43 2.60 2.93 3.06 3.19

QuickSortDL
&! 1.00 0.95 1.69 2.30 2.81 3.10 3.25 3.47 3.60
& 1.00 0.95 1.68 2.14 2.39 2.56 2.92 2.94 3.19

Takeuchi
&! 1.00 0.86 1.17 2.24 2.97 3.29 3.75 4.28 5.69
& 1.00 0.86 0.89 1.69 2.23 3.00 3.34 3.36 4.29

Table 3. Speedups obtained for non-deterministic unrestricted IAP benchmarks

Benchmark
Number of agents

Seq. 1 2 3 4 5 6 7 8
Chat-80 1.00 2.31 4.49 5.42 6.91 9.79 9.95 11.10 17.29
Numbers 1.00 1.84 1.79 1.79 1.79 1.79 1.79 1.78 1.78
Progeom 1.00 0.99 0.96 0.97 0.98 0.98 0.98 0.98 0.98
Queens 1.00 0.99 0.94 0.94 0.94 0.94 0.94 0.94 0.94

QueensT 1.00 0.99 1.90 2.41 3.18 4.71 4.61 4.58 4.57

662 A. Casas, M. Carro, and M.V. Hermenegildo

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30

S
pe

ed
up

Number of agents

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

(a) Boyer

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30

S
pe

ed
up

Number of agents

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

(b) FFT

 0

 5

 10

 15

 20

 5 10 15 20 25 30

S
pe

ed
up

Number of agents

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

(c) Fibonacci

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30

S
pe

ed
up

Number of agents

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

(d) QuickSort

Fig. 4. Speedups for some selected benchmarks with stack set expansion

Table 4. Behavior of Queens(8) with different numbers of agents

Benchmark
Queens, 2 agents Queens, 4 agents Queens, 8 agents

No Gr No Gr No Gr
1 N 1 N 1 N 1 N 1 N 1 N

G &> H 11,810 171,858 9 290 11,810 171,858 9 290 11,810 171,858 9 290

Taken
x 6,649 97,798 9 290 6,860 99,373 9 290 6,476 96,056 9 290
σ 9.35 45.04 0.00 0.00 16.15 65.02 0.00 0.00 13.49 59.04 0.00 0.00

LBack
x 858 14,319 0.00 0.00 618 10,905 0.00 0.00 755 12,786 0.00 0.00
σ 1.03 1.25 0.00 0.00 14.93 99.89 0.00 0.00 5.79 23.59 0.00 0.00

RBack
Top x 1,838 29,725 2 234 2,345 38,420 2 234 2,208 36,261 2 234

σ 0.46 2.14 0.00 0.00 15.14 98.66 0.00 0.00 6.34 26.53 0.00 0.00

Tp
x 0 0 0 0 0 0 0 0 0 0 0 0
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

That scheme indeed affects the performance of the execution. Figure 4 presents
the speedups obtained by executing ten times some selected benchmarks with 2,
4, 8, 16 and 32 agents. By joining together the points corresponding to the n-th
execution with a given number of processors, we can construct a profile of how
the speedup evolves as the system executes several times the same program. The
first executions suffer from stack expansions but, after some runs, the stack set
of each agent reaches an appropriate size, the number of expansions diminishes,
and thus the performance results stabilize. Note also that, for the case of more

Non-deterministic, Unrestricted, Independent And-Parallelism 663

Table 5. Behavior of Progeom(5) with different numbers of agents

Benchmark
Progeom, 2 agents Progeom, 4 agents Progeom, 8 agents

No Gr No Gr No Gr
1 N 1 N 1 N 1 N 1 N 1 N

G &> H 215 154,260 1 60 215 154,260 1 60 215 154,260 1 60

Taken x 100 72,375 0 1 91 65,643 0 1 55 75,113 0 1
σ 1.85 248.69 0.00 0.80 1.36 414.68 0.00 0.70 3.49 192.25 0.00 0.78

LBack
x 1 738 0 29 3 2,131 0 29 9 364 0 29
σ 0.46 52.03 0.00 0.80 1.10 83.78 0.00 0.70 0.80 26.82 0.00 0.78

RBack
Top

x 10 6,530 0 1 8 5,131 0 1 2 6,907 0 1
σ 0.57 52.08 0.00 0.80 1.10 84.26 0.00 0.70 0.80 27.02 0.00 0.78

Tp x 0 0 0 0 0 0 0 0 0 0 0 0
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6. Behavior of Fibonacci(25) with different numbers of agents

Benchmark
Fibonacci, 2 agents Fibonacci, 4 agents Fibonacci, 8 agents

No Gr No Gr No Gr
1 N 1 N 1 N 1 N 1 N 1 N

G &> H 121,392 121,392 1,596 1,596 121,392 121,392 1,596 1,596 121,392 121,392 1,596 1,596

Taken x 1 1 1 1 5 5 5 5 37 37 31 31
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.97 3.97 2.39 2.39

LBack
x 121,391 121,391 1,595 1,595 121,387 121,387 1,591 1,591 121,355 121,355 1,565 1,565
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.97 3.97 2.39 2.39

RBack
Top

x 1 1 1 1 5 5 5 5 18 18 16 16
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.40 2.40 0.98 0.98

Tp
x 0 0 0 0 0 0 0 0 19 19 15 15
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.86 2.86 1.68 1.68

than 8 agents, the limitations in the hardware of the multiprocessor machine6

used also affect the actual performance of the execution.
Tables 4 to 6 present data from the execution of some of the non-deterministic,

and-parallel benchmarks. They present data from executions with 2, 4, and 8
agents, using or not granularity control [18] (resp., Gr and No), and in cases where
only one solution (1) or all solutions (N) are requested. The first row in the table
(G &> H) contains the number of parallel goals. The second row (Taken) presents
the number of parallel goals picked up by some other agent (x stands for the
average and σ for the standard deviation in ten runs). The third row (LBack)
represents the number of times that backtracking over parallel goals took place
locally because the goal was not picked up by some other agent.7 The fourth
row (RBack) shows the number of times a parallel goal was backtracked over
remotely. Top and Tp count, respectively, how many times remote backtracking
was performed at the top of the stack and on a trapped goal. A conclusion from
these results is that, while the amount of remote backtracking is quite high,
the number of trapped goals is low. Therefore the overhead of copying trapped

6 Mainly, the availability of a reduced number of integer units and a single FP unit. In
our experiments, completely independent computations do not show linear speedup
from 8 processors onwards.

7 The backtracking measured for Fibonacci in Table 6 corresponds to the stack un-
winding performed when failing after the execution is finished.

664 A. Casas, M. Carro, and M.V. Hermenegildo

segments to the top of the stack should not be very high in comparison with the
rest of the execution.

We expect to see a similar behavior in most non-deterministic parallel pro-
grams where parallel goals are of fine granularity or very likely to fail: these
two behaviors make the piling up of segments corresponding to the execution of
loosely related parallel goals in the same stack relatively uncommon, which in-
deed reduces the chances to suffer from trapped goal and garbage slot problems.

5 Conclusions

We have presented a high-level implementation of unrestricted, independent and-
parallelism that can execute both deterministic and non-deterministic programs
in parallel. The approach helps taming the implementation complexity of pre-
vious solutions by raising many of the main implementation components to the
source level. This makes the system easier to code, maintain, and expand. Our
evaluation of actual parallel executions shows that quite useful speedups can be
obtained with the approach, including for benchmarks which perform backtrack-
ing over non-deterministic parallel goals In several cases, super-linear speedups
were obtained thanks to the backtracking model implemented.

We believe that the results obtainable with this approach will improve further
as the speed of the source language continues to increase. Recent compilation
technology and implementation advances provide hope that it will eventually
be possible to recover most of the efficiency lost due to expressing the parallel
machinery using the high-level language. In the meantime, performance can also
be improved by, once the components of the system are stabilized, selectively
lowering again the implementation of those flagged as bottlenecks, if the benefits
surpass the added complexity and reduced flexibility. Performance can also be
improved, e.g., by exploiting the fact that smarter schedulers are, in principle,
easier to write than with other approaches.

References

1. Ait-Kaci, H.: Warren’s Abstract Machine, A Tutorial Reconstruction. MIT Press,
Cambridge (1991)

2. Ali, K.A.M., Karlsson, R.: The Muse Or-Parallel Prolog Model and its Perfor-
mance. In: 1990 North American Conference on Logic Programming, pp. 757–776.
MIT Press, Cambridge (1990)

3. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-Garćıa, P., Puebla,
G. (eds.): The Ciao System. Ref. Manual (v1.13). Technical report, C. S. School,
UPM (2006), http://www.ciaohome.org

4. Bueno, F., López-Garćıa, P., Puebla, G., Hermenegildo, M.: A Tutorial on Pro-
gram Development and Optimization using the Ciao Preprocessor. Technical Re-
port CLIP2/06, Technical University of Madrid (UPM), Facultad de Informática,
28660 Boadilla del Monte, Madrid, Spain (January 2006)

5. Cabeza, D., Hermenegildo, M.: Implementing Distributed Concurrent Constraint
Execution in the CIAO System. In: Proc. of the AGP 1996 Joint Conference on
Declarative Programming, pp. 67–78 (July 1996)

http://www.ciaohome.org

Non-deterministic, Unrestricted, Independent And-Parallelism 665

6. Carro, M., Hermenegildo, M.: Concurrency in Prolog Using Threads and a Shared
Database. In: 1999 International Conference on Logic Programming, pp. 320–334.
MIT Press, Cambridge (November 1999)

7. Casas, A., Carro, M., Hermenegildo, M.: Annotation Algorithms for Unrestricted
Independent And-Parallelism in Logic Programs. In: King, A. (ed.) LOPSTR 2007.
LNCS, vol. 4915, pp. 138–153. Springer, Heidelberg (2008)

8. Casas, A., Carro, M., Hermenegildo, M.: Towards a High-Level Implementation
of Execution Primitives for Non-restricted, Independent And-parallelism. In: Hu-
dak, P., Warren, D.S. (eds.) PADL 2008. LNCS, vol. 4902, pp. 230–247. Springer,
Heidelberg (2008)

9. Conery, J.S.: The And/Or Process Model for Parallel Interpretation of Logic Pro-
grams. Ph.D thesis, The University of California At Irvine, Technical Report 204
(1983)

10. Gupta, G., Pontelli, E., Ali, K., Carlsson, M., Hermenegildo, M.: Parallel Execution
of Prolog Programs: a Survey. ACM Transactions on Programming Languages and
Systems 23(4), 472–602 (2001)

11. Hermenegildo, M.: An Abstract Machine for Restricted AND-parallel Execution
of Logic Programs. In: Shapiro, E. (ed.) ICLP 1986. LNCS, vol. 225, pp. 25–40.
Springer, Heidelberg (1986)

12. Hermenegildo, M.: Parallelizing Irregular and Pointer-Based Computations Auto-
matically: Perspectives from Logic and Constraint Programming. Parallel Com-
puting 26(13–14), 1685–1708 (2000)

13. Hermenegildo, M., Carro, M.: Relating Data–Parallelism and (And–) Parallelism
in Logic Programs. The Computer Languages Journal 22(2/3), 143–163 (1996)

14. Hermenegildo, M., Greene, K.: The &-Prolog System: Exploiting Independent And-
Parallelism. New Generation Computing 9(3,4), 233–257 (1991)

15. Hermenegildo, M., Nasr, R.I.: Efficient Management of Backtracking in AND-
parallelism. In: Shapiro, E. (ed.) ICLP 1986. LNCS, vol. 225, pp. 40–55. Springer,
Heidelberg (1986)

16. Hermenegildo, M., Puebla, G., Bueno, F., López Garćıa, P.: Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming 58(1–2), 115–140
(2005)

17. Janson, S.: AKL. A Multiparadigm Programming Language. Ph.D thesis, Uppsala
University (1994)

18. López-Garćıa, P., Hermenegildo, M., Debray, S.K.: A Methodology for Granularity
Based Control of Parallelism in Logic Programs. J. of Symbolic Computation,
Special Issue on Parallel Symbolic Computation 21, 715–734 (1996)

19. Lusk, E., Butler, R., Disz, T., Olson, R., Stevens, R., Warren, D.H.D., Calderwood,
A., Szeredi, P., Brand, P., Carlsson, M., Ciepielewski, A., Hausman, B., Haridi, S.:
The Aurora Or-parallel Prolog System. New Generation Computing 7(2/3), 243–
271 (1988)

20. Moura, P., Crocker, P., Nunes, P.: High-level multi-threading programming in
logtalk. In: Warren, D.S., Hudak, P. (eds.) PADL 2008. LNCS, vol. 4902, pp.
265–281. Springer, Heidelberg (2008)

21. Muthukumar, K., Bueno, F., Garćıa de la Banda, M., Hermenegildo, M.: Auto-
matic Compile-time Parallelization of Logic Programs for Restricted, Goal-level,
Independent And-parallelism. Journal of Logic Programming 38(2), 165–218 (1999)

666 A. Casas, M. Carro, and M.V. Hermenegildo

22. Pontelli, E., Gupta, G.: Efficient Backtracking in And-Parallel Implementations of
Non-Deterministic Languages. In: Lai, T. (ed.) Proc. of the International Confer-
ence on Parallel Processing, pp. 338–345. IEEE Computer Society, Los Alamitos
(1998)

23. Pontelli, E., Gupta, G., Hermenegildo, M.: &ACE: A High-Performance Paral-
lel Prolog System. In: International Parallel Processing Symposium, pp. 564–572.
IEEE Computer Society Technical Committee on Parallel Processing, IEEE Com-
puter Society (April 1995)

24. de Morais Santos-Costa, V.M.: Compile-Time Analysis for the Parallel Execution
of Logic Programs in Andorra-I. Ph.D thesis, University of Bristol (August. 1993)

25. Shen, K.: Overview of DASWAM: Exploitation of Dependent And-parallelism.
Journal of Logic Programming 29(1–3), 245–293 (1996)

26. Warren, D.H.D.: An Abstract Prolog Instruction Set. TR 309, SRI International
(1983)

Inference with Logic Programs with Annotated
Disjunctions under the Well Founded Semantics

Fabrizio Riguzzi

ENDIF, Università di Ferrara, Via Saragat, 1, 44100 Ferrara, Italy
fabrizio.riguzzi@unife.it

Abstract. Logic Programs with Annotated Disjunctions (LPADs) allow
to express probabilistic information in logic programming. The semantics
of an LPAD is given in terms of well founded models of the normal logic
programs obtained by selecting one disjunct from each ground LPAD
clause. The paper presents SLGAD resolution that computes the (con-
ditional) probability of a ground query from an LPAD and is based on
SLG resolution for normal logic programs. SLGAD is evaluated on classi-
cal benchmarks for well founded semantics inference algorithms, namely
the stalemate game and the ancestor relation. SLGAD is compared with
Cilog2 and SLDNFAD, an algorithm based on SLDNF, on the programs
that are modularly acyclic. The results show that SLGAD deals correctly
with cyclic programs and, even if it is more expensive than SLDNFAD
on problems where SLDNFAD succeeds, is faster than Cilog2 when the
query is true in an exponential number of instances.

Topics: Probabilistic Logic Programming, Well Founded Semantics,
Logic Programs with Annotated Disjunctions, SLG resolution.

1 Introduction

The combination of logic and probability is a long standing problem in phi-
losophy and artificial intelligence. Recently, the work on this topic has thrived
leading to the proposal of novel languages that combine relational and statistical
aspects. Each of these languages has a different semantics that makes it suitable
for different domains.

When we are reasoning about actions and effects and we have causal indepen-
dence among different causes for the same effect, Logic Programs with Annotated
Disjunctions (LPADs) [1] seem particularly suitable. They extend logic programs
by allowing program clauses to be disjunctive and by annotating each atom in
the head with a probability. A clause can be causally interpreted in the follow-
ing way: the truth of the body causes the truth of one of the atoms in the head
non-deterministically chosen on the basis of the annotations. The semantics of
LPADs is given in terms of the well founded model of the normal logic programs
obtained by selecting one head for each disjunctive clause.

[2] showed that acyclic LPADs can be converted to Independent Choice Logic
(ICL) [3] programs. Thus inference can be performed by using the Cilog2

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 667–671, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

668 F. Riguzzi

system [4]. An algorithm for performing inference directly with LPADs was
proposed in [5]. The algorithm, that will be called SLDNFAD in the follow-
ing, is an extension of SLDNF derivation and uses Binary Decision Diagrams.
Both Cilog2 and SLDNFAD are complete and correct for programs for which
the Clark’s completion semantics and the well founded semantics coincide, as
for acyclic and modularly acyclic programs [6], but can go into a loop for cyclic
programs.

In this paper we present the SLGAD top-down procedure for performing in-
ference with possibly (modularly) cyclic LPADs. SLGAD is based on the SLG
procedure [7] for normal logic programs and extends it in a minimal way.

SLGAD is evaluated on classical benchmarks for well founded semantics in-
ference algorithms, namely the stalemate game and the ancestor relation. In
both cases, extensional databases encoding linear, cyclic or tree-shaped rela-
tions are considered. SLGAD is compared with Cilog2 and SLDNFAD on the
modularly acyclic programs. The results show that SLGAD is able to deal with
cyclic programs and, while being more expensive than SLDNFAD on problems
where SLDNFAD succeeds, is faster than Cilog2 when the query is true in an
exponential number of instances.

2 Preliminaries

A Logic Program with Annotated Disjunctions [1] T consists of a finite set of
formulas of the form (H1 : α1) ∨ (H2 : α2) ∨ . . . ∨ (Hn : αn) : −B1, B2, . . . Bm

called annotated disjunctive clauses. In such a clause the Hi are logical atoms,
the Bi are logical literals and the αi are real numbers in the interval [0, 1] such
that

∑n
i=1 αi ≤ 1. The head of LPAD clauses implicitly contains an extra atom

null that does not appear in the body of any clause and whose annotation is
1−

∑n
i=1 αi.

In order to define the semantics of a non-ground T , we must generate the
grounding T ′ of T . By choosing a head atom for each ground clause of an LPAD
we get a normal logic program called an instance of the LPAD. A probability
distribution is defined over the space of instances by assuming independence
among the choices made for each clause.

A choice κ is a set of triples (C, θ, i) where C ∈ T , θ is a substitution that
grounds C and i ∈ {1, . . . , |head(C)|}. (C, θ, i) means that, for ground clause Cθ,
the head Hi : αi was chosen. A choice κ is consistent if (C, θ, i) ∈ κ, (C, θ, j) ∈
κ⇒ i = j, i.e. only one head is selected for a ground clause. A consistent choice is
a selection σ if for each clause Cθ in the grounding T ′ of T there is a triple (C, θ, i)
in σ. We denote the set of all selections of a program T by ST . A consistent choice
κ identifies a normal logic program Tκ = {(Hi(C) : −body(C))θ|(C, θ, i) ∈ κ}
that is called a sub-instance of T . If σ is a selection, Tσ is called an instance.

The probability of a consistent choice κ is the product of the probabilities
of the individual choices made, i.e. Pκ =

∏
(C,θ,i)∈κ αi(C). The probability of

instance Tσ is Pσ. The semantics of the instances of an LPAD is given by the
well founded semantics (WFS). Given a normal program T , we call WFM(T) its

Inference with Logic Programs with Annotated Disjunctions 669

well founded partial model. For each instance Tσ, we require that WFM(Tσ) is
two-valued, since we want to model uncertainty solely by means of disjunctions.
We call sound such a program.

The probability of a formula χ is given by the sum of the probabilities of the in-
stances where the formula is true according to the WFS: PT (χ) =

∑
Tσ |=WF Sχ Pσ

.

3 SLGAD Resolution Algorithm

In this section we present Linear resolution with Selection function for Gen-
eral logic programs with Annotated Disjunctions (SLGAD) that extends SLG
resolution [8,7] for dealing with LPADs.

SLG uses X-clauses to represent resolvents with delayed literals: an X-clause
X is a clause of the form A : −D|B where A is an atom, D is a sequence of
ground negative literals and (possibly unground) atoms and B is a sequence of
literals. Literals in D are called delayed literals. If B is empty, an X-clause is
called an X-answer clause. An ordinary program clause is seen as a X-clause
with an empty set of delayed literals.

SLG is based on the operation of SLG resolution and SLG factoring on X-
clauses. In particular, SLG resolution is performed between an X-clause A : −|A
and a program clause or between an X-clause and an X-answer.

In SLGAD, X-clauses are replaced by XD-clauses: an XD-clause G is a quadru-
ple (X,C, θ, i) where X is an X-clause, C is a clause of T , θ is a substitution for
the variables of C and i ∈ {1, . . . , |head(C)|}. Let X be A : −D|B: if B is empty,
the XD-clause is called an XD-answer clause. With XD-clauses we keep track
not only of the current resolvent but also of the clauses and head that originated
it.

In SLGAD, SLG resolution between an X-clause A : −|A and a program
clause is replaced by SLGAD goal resolution and SLG resolution between an X-
clause and an X-answer is replaced by SLGAD answer resolution. SLG factoring
is replaced by SLGAD factoring.

We report here the definition for SLGAD goal resolution. Let A be a subgoal
and let C be a clause of T such that A is unifiable with an atom Hi in the head
of C. Let C′ be a variant of C with variables renamed so that A and C′ have no
variables in common. We say that A is SLGAD goal resolvable with C and the
XD-clause ((A : −|body(C′))θ, C′, θ, i) is the SLGAD goal resolvent of A with C
on head Hi, where θ is the most general unifier of A and H ′

i.
SLGAD answer resolution and SLGAD factoring differ from SLG answer res-

olution and SLG factoring because they produce an XD-clause that contains
the clause and head index of the starting XD-clause while the substitution is
updated. We refer to [9] for the details of these operators.

With respect to SLG, SLGAD keeps an extra global variable that is a choice
κ to record all the clauses used in the SLGAD derivation together with the
head selected. This extra global variable is updated by ADD CLAUSE that is
the only procedure of SLGAD not present in SLG. ADD CLAUSE is called
when an answer for a subgoal has been found and generates different derivation

670 F. Riguzzi

branches for different choices of atoms in the head of the ground clause Cθ that
contains the answer in the head. ADD CLAUSE first checks whether the clause
Cθ already appears in the current choice κ with a head index different from i: if
so, it fails the derivation. Otherwise, it non-deterministically selects a head index
j from {1, . . . , |head(C)|}: if j = i this means that the subgoal in the head is
derivable in the sub-instance represented by κ, so the calling procedure can add
the answer to the table. If j �= i, then the table is not altered. In backtracking, all
elements of {1, . . . , |head(C)|} are selected. Since an answer ia added to the table
only when an XD-clause is reduced to an answer and eventually all XD-clauses
for successful derivations will reduce to answers, it is sufficient to consider the
available choices only at this point.

With this approach, SLGAD is able to exploit all the techniques used by SLG
to avoid loops: the delaying of literals, the use of a global stack of subgoals, the
recording of the “depth” of each subgoal and the tracking, for each subgoal A, of
the deepest subgoal in the stack that may depend on A positively or negatively.
For the full details of the algorithm, we refer the reader to [9].

SLGAD is sound and complete with respect to the LPAD semantics and the
proof is is based on the theorem of partial correctness of SLG [8,10]: SLG is
sound and complete given an arbitrary but fixed computation rule when it does
not flounder.

4 Experiments

We tested SLGAD on some synthetic problems that were used as benchmarks for
SLG [7,11]: win, ranc and lanc. win is an implementation of the stalemate game
and contains the clause win(X) : 0.8 : −move(X,Y),¬win(Y). ranc and lanc
model the ancestor relation with right and left recursion respectively. Various
definitions of move are considered: a linear and acyclic relation, containing the
tuples (1, 2), . . . , (N − 1, N), a linear and cyclic relation, containing the tuples
(1, 2), . . . , (N − 1, N), (N, 1), and a tree relation, that represents a complete
binary tree of heightN , containing 2N+1+1 tuples. For win, all the move relations
are used, while for ranc and lanc only the linear ones.

SLDAG was compared with Cilog2 and SLDNFAD. Cilog2 [4] computes prob-
abilities by identifying consistent choices on which the query is true, then it
makes them mutually incompatible with an iterative algorithm. SLDNFAD [5]
extends SLDNF in order to store choices and computes the probability with an
algorithm based on Binary Decision Diagrams. For SLGAD and SLDNFAD we
used the implementations in Yap Prolog available in the cplint suite1. SLGAD
code is based on the SLG system. For Cilog2 we ported the code available on
the web to Yap.

The computation time of the queries win(1) and ancestor(1,N)were record-
ed as a function of N for win, ranc and lanc respectively. win has an exponential
number of instances where the query is true and the experimental results show
the combinatorial explosion. On the ancestor datasets, the proof tree has only
1 http://www.ing.unife.it/software/cplint/

Inference with Logic Programs with Annotated Disjunctions 671

one branch with a number of nodes proportional to N . However, the execution
time of SLGAD increases roughly as O(N logN) because each derivation step
requires a lookup and an insert in the table T that take logarithmic time.

Cilog2 and SLDNFAD are applied only to the problems that are modularly
acyclic and right recursive, i.e. win with linear and tree move and ranc with linear
move, because on the other problems they would go into a loop. In win all the
algorithms show the combinatorial explosion, with SLGAD performing better
than Cilog2 and worse than SLDNFAD. On ranc with linear move, SLGAD
takes longer than Cilog2 and SLDNFAD: the execution times for N = 20, 000
are 4726.8, 8.3 and 1165.4 seconds respectively. Thus the added complexity of
avoiding cycles has a computational cost. However, this cost is unavoidable when
we are not sure whether the program under analysis is (modularly) acyclic or not.

Acknowledgments. This work has been partially supported by the FIRB
project TOCAI.IT: Tecnologie orientate alla conoscenza per aggregazioni di im-
prese in Internet.

References

1. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp.
431–445. Springer, Heidelberg (2004)

2. Vennekens, J., Verbaeten, S.: Logic programs with annotated disjunctions. Tech-
nical Report CW386, K. U. Leuven (2003),
http://www.cs.kuleuven.ac.be/∼joost/techrep.ps

3. Poole, D.: The Independent Choice Logic for modelling multiple agents under un-
certainty. Artif. Intell. 94(1-2), 7–56 (1997)

4. Poole, D.: Abducing through negation as failure: stable models within the inde-
pendent choice logic. J. Log. Program. 44(1-3), 5–35 (2000)

5. Riguzzi, F.: A top down interpreter for LPAD and CP–logic. In: Basili, R.,
Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 109–120. Springer,
Heidelberg (2007)

6. Ross, K.A.: Modular acyclicity and tail recursion in logic programs. In: Symposium
on Principles of Database Systems, pp. 92–101. ACM Press, New York (1991)

7. Chen, W., Swift, T., Warren, D.S.: Efficient top-down computation of queries under
the well-founded semantics. J. Log. Program. 24(3), 161–199 (1995)

8. Chen, W., Warren, D.S.: Query evaluation under the well founded semantics. In:
Symposium on Principles of Database Systems, pp. 168–179. ACM Press, New
York (1993)

9. Riguzzi, F.: The SLGAD procedure for inference opn logic programs with anno-
tated disjunctions. Technical Report CS-2008-01, University of Ferrara (2008),
http://www.unife.it/dipartimento/ingegneria/informazione/informatica/
rapporti-tecnici-1/cs-2008-01.pdf/view

10. Chen, W., Warren, D.: Towards effective evaluation of general logic programs.
Technical report, State University of New York, Stony Brook (1993)

11. Castro, L.F., Swift, T., Warren, D.S.: Suspending and resuming computations
in engines for SLG evaluation. In: Krishnamurthi, S., Ramakrishnan, C.R. (eds.)
PADL 2002. LNCS, vol. 2257, pp. 332–350. Springer, Heidelberg (2002)

http://www.cs.kuleuven.ac.be/~joost/techrep.ps
http://www.unife.it/dipartimento/ingegneria/informazione/informatica/rapporti-tecnici-1/cs-2008-01.pdf/view
http://www.unife.it/dipartimento/ingegneria/informazione/informatica/rapporti-tecnici-1/cs-2008-01.pdf/view

Safe Formulas in the General Theory
of Stable Models (Preliminary Report)

Joohyung Lee1, Vladimir Lifschitz2, and Ravi Palla1

1 School of Computing and Informatics, Arizona State University, USA
2 Department of Computer Sciences, University of Texas at Austin, USA

{joolee,Ravi.Palla}@asu.edu, vl@cs.utexas.edu

Abstract. Safe first-order formulas generalize the concept of a safe rule,
which plays an important role in the design of answer set solvers. We
show that any safe sentence is equivalent, in a certain sense, to the re-
sult of its grounding—to the variable-free sentence obtained from it by
replacing all quantifiers with multiple conjunctions and disjunctions. It
follows that a safe sentence and the result of its grounding have the
same stable models, and that stable models of a safe sentence can be
characterized by a formula of a simple syntactic form.

1 Introduction

The definition of a stable model proposed in [1] is more general than the original
definition from [2]: it applies to models of arbitrary first-order sentences. Logic
programs referred to in the 1988 definition are identified in this theory with
first-order formulas of a special form. For instance, the rule

p(x) ← not q(x) (1)

is treated as alternative notation for the sentence

∀x(¬q(x) → p(x)). (2)

In this example, stable models are the interpretations of the unary predicate
constants p and q (in the sense of first-order logic) that make p identically true
and q identically false.

This general definition of a stable model involves a syntactic transformation
of formulas, which is similar to the circumscription operator [3]—it turns a first-
order sentence into a stronger second-order sentence. There is an important
difference, however, between stable models and models of circumscription. Two
sentences may be equivalent (that is, have the same models), but have different
stable models. For instance, formula (2) is equivalent to

∀x(¬p(x) → q(x)),

but the stable models of these two formulas are not the same. The equivalent
transformations of formulas that preserve their stable models are studied in [4].

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 672–676, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Safe Formulas in the General Theory of Stable Models 673

They are represented there by a subsystem of classical logic called SQHT=

(“static quantified logic of here-and-there with equality”). This deductive system
includes all axioms and inference rules of intuitionistic logic with equality, the
decidable equality axiom

x = y ∨ x �= y (3)

and two other axiom schemas, but it does not include the general law of the
excluded middle F ∨ ¬F .

In [5], the new approach to stable models is used to define the semantics
of an answer set programming language with choice rules and counting, called
RASPL-1. The meaning of a RASPL-1 program is defined in terms of the stable
models of a first-order sentence associated with the program, which is called its
“FOL-representation.” For instance, the FOL-representation of the RASPL-1
rule

p← {x : q(x)} 1 (4)

is the formula

¬∃xy(q(x) ∧ q(y) ∧ x �= y) → p. (5)

In this note, we continue one line of research from [5], the study of safe sen-
tences and their stable models. The definition of a safe sentence, reproduced in
the next section, is related to some ideas of [6].1 It extends the familiar con-
cept of a safe rule, which plays an important role in the design of answer set
solvers [7, Section 2.1]. For instance, rule (1) is not safe, and for this reason it
is not allowed in the input of any of the existing systems for computing stable
models. Rule (4) is safe, and we expect that it will be accepted by a future
implementation of RASPL-1.

According to Proposition 1 below, stable models of a safe sentence (without
function symbols) have what can be called the “small predicate property”: the
relation represented by any of its predicate constants can hold for a tuple of ar-
guments only if each member of the tuple is represented by an object constant.
We show, furthermore, that any safe sentence is equivalent, in a certain sense,
to the result of its grounding—to the variable-free sentence obtained from it by
replacing all quantifiers with multiple conjunctions and disjunctions (Proposi-
tion 2). We derive from these two facts that a safe sentence and the result of its
grounding have the same stable models (Proposition 3). This theorem leads us
to the conclusion that stable models of a safe sentence can be characterized by a
sentence of a simple syntactic structure—not just first-order, but universal and,
moreover, “almost variable-free” (Proposition 4).

1 Topor and Sonenberg [6] defined the notion of “allowed” formulas, similar to the
notion of safe formulas, in a much more limited setting of stratified deductive data-
bases. (That paper was written before the invention of the stable model semantics.)
The definitions are not equivalent to each other. For example, ∃x(¬p(x)→ q) is safe
but not allowed; ∃x(¬p(x)→ q(x)) is allowed but not safe.

674 J. Lee, V. Lifschitz, and R. Palla

2 Review: Safe Sentences

We consider first-order formulas that may contain object constants and equality
but no function constants of arity > 0. ¬F is shorthand for F → ⊥, F ↔ G is
shorthand for (F → G) ∧ (G→ F), and � is shorthand for ⊥ → ⊥. A sentence
is a formula without free variables.

Recall that a traditional rule—an implication of the form

(L1 ∧ · · · ∧ Ln) → A, (6)

not containing equality, where L1, . . . , Ln are literals and A is an atom—is con-
sidered safe if every variable occurring in it occurs in one of the positive literals
in the antecedent. The definition of a safe formula from [5], reproduced below,
generalizes this condition to arbitrary sentences in prenex form. The assumption
that the formula is in prenex form is not a significant limitation in the general
theory of stable models, because all steps involved in the standard process of con-
verting a formula to prenex form are equivalent transformations in SQHT= [8].

To every quantifier-free formula F we assign a set RV(F) of its restricted
variables as follows:

– For an atomic formula F ,
• if F is an equality between two variables then RV(F) = ∅;
• otherwise, RV(F) is the set of all variables occurring in F ;

– RV(⊥) = ∅;
– RV(F ∧G) = RV(F) ∪ RV(G);
– RV(F ∨G) = RV(F) ∩ RV(G);
– RV(F → G) = ∅.

It is clear, for instance, that a variable is restricted in the antecedent of (6) iff
it occurs in one of the positive literals among L1, . . . , Ln.

Consider a sentence F in prenex form: Q1x1 · · ·QnxnM (each Qi is ∀ or ∃;
x1, . . . , xn are distinct variables; the matrix M is quantifier-free). We say that F
is safe if every occurrence of each of the variables xi in M is contained in a
subformula G→ H that satisfies two conditions:

(a) the subformula is positive in M if Qi is ∀, and negative in M if Qi is ∃;
(b) xi is restricted in G.

3 Properties of Safe Sentences

We assume that the reader is familiar with the definition of the stable model
operator SM from [1]. Proposition 1 below shows that all stable models of a safe
sentence have the small predicate property: the relation represented by any of
its predicate constants pi can hold for a tuple of arguments only if each member
of the tuple is represented by an object constant occurring in F . To make this
idea precise, we will use the following notation: for any finite set c of object
constants, inc(x1, . . . , xm) stands for the formula

Safe Formulas in the General Theory of Stable Models 675

∧
1≤j≤m

∨
c∈c

xj = c.

The small predicate property can be expressed by the conjunction of the sen-
tences

∀x(pi(x) → inc(x))

for all predicate constants pi occurring in F , where x is a list of distinct variables.
We will denote this sentence by SPPc. By c(F) we denote the set of all object
constants occurring in F .

Proposition 1. For any safe sentence F , SM[F] entails SPPc(F).

Corollary 1. For any safe sentence F that does not contain object constants,
SM[F] entails the formulas ∀x¬pi(x) for all predicate constants pi of arity > 0.

Indeed, SPP∅ is equivalent to the conjunction of all these formulas.
The process of grounding replaces quantifiers by multiple conjunctions and

disjunctions. To make this idea precise, we define, for any sentence F in prenex
form and any nonempty finite set c of object constants, the variable-free formula
Groundc[F] as follows. If F is quantifier-free then Groundc[F] = F . Otherwise,

Groundc[∀xF (x)] =
∧
c∈c

Groundc[F (c)],

Groundc[∃xF (x)] =
∨
c∈c

Groundc[F (c)].

As in [4], by INT= we denote intuitionistic predicate logic with equality, and
DE stands for the decidable equality axiom (3). The importance of the logical
system INT= + DE is determined by the fact that it is a part of SQHT=, so
that the provability of a sentence F ↔ G in this system implies that SM[F] is
equivalent to SM[G].

Proposition 2. For any safe sentence F and any nonempty finite set c of object
constants containing c(F), the equivalence

Groundc[F] ↔ F

is derivable from SPPc in INT= + DE.

Using Proposition 2 we can prove that the variable-free formula obtained by
grounding a safe sentence F has the same stable models as F :

Proposition 3. For any safe sentence F and any nonempty finite set c of object
constants containing c(F), SM[Groundc[F]] is equivalent to SM[F].

In general, the second-order definition of a stable model cannot be expressed
in first-order logic. The following theorem shows, however, that in the case of
a safe sentence, stable models can be characterized by a very simple first-order
formula, almost variable-free:

Proposition 4. For every safe sentence F there exists a variable-free formula G
such that SM[F] is equivalent to G ∧ SPPc(F).

676 J. Lee, V. Lifschitz, and R. Palla

4 Conclusion

In this paper we investigated properties of stable models of safe formulas in a
semantically general situation, not limited to Herbrand models, and established
a few positive results. We saw, in particular, that grounding a safe sentence
preserves its stable models even in this general case, and that the stable models
of a safe sentence can be characterized in first-order logic. We hope that these
theorems will help us in future work on non-Herbrand answer set programming.

Acknowledgements

We are grateful to Paolo Ferraris and the anonymous referees for useful comments
on the draft of this paper. The first and the third author were partially supported
by the National Science Foundation under Grant IIS-0839821. The second author
was partially supported by the National Science Foundation under Grant IIS-
0712113.

References

1. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proceed-
ings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 372–379
(2007)

2. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming
Conference and Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)

3. McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artificial In-
telligence 13, 27–39, 171–172 (1980)

4. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR
2007. LNCS, vol. 4483. Springer, Heidelberg (2007)

5. Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in
answer set programming. In: Proceedings of the AAAI Conference on Artificial
Intelligence, AAAI (to appear, 2008)

6. Topor, R.W., Sonenberg, E.A.: On domain independent databases. In: Minker, J.
(ed.) Foundations of Deductive Databases and Logic Programming, pp. 217–240.
Morgan Kaufmann, San Mateo (1988)

7. Leone, N., Faber, W., Pfeifer, G., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic 7, 499–562 (2006)

8. Lee, J., Palla, R.: Yet another proof of the strong equivalence between propositional
theories and logic programs. In: Working Notes of the Workshop on Correspondence
and Equivalence for Nonmonotonic Theories (2007)

Non-determinism and Probabilities in Timed
Concurrent Constraint Programming�

Jorge A. Pérez1 and Camilo Rueda2,3

1 Dept. of Computer Science, University of Bologna, Italy
2 Dept. of Science and Engineering of Computing, Universidad Javeriana - Cali, Colombia

3 IRCAM, Paris, France

Abstract. A timed concurrent constraint process calculus with probabilistic and
non-deterministic choices is proposed. We outline the rationale of an operational
semantics for the calculus. The semantics ensures consistent interactions between
both kinds of choices and is indispensable for the definition of logic-based verifi-
cation capabilities over system specifications.

Motivation. Concurrent constraint programming (CCP) [1] is a model for concurrency
in which systems are described by constraints, pieces of partial information that might
include explicit quantitative parameters (such as, e.g., x ≤ 42). Processes interact in a
shared store; they either add new constraints or synchronize on the already available in-
formation. Notably, processes in CCP can be seen, at the same time, as computing agents
and logic formulas. This not only constitutes a rather elegant approach for verification;
it is fair to say that CCP provides a unified framework for system analysis.

In CCP, however, we find that properly taking into account some phenomena is cum-
bersome. Particularly challenging is the case of uncertain behavior. In areas such as,
e.g., computer music [2] and systems biology [3], the uncertainty underlying interac-
tions goes way beyond what can be modeled using partial information only. Crucially,
many systems featuring uncertain behavior can be described probabilistically. In fact,
probability distributions provide intuitive specifications of alternative behaviors and
ease the integration of statistic and empirical data into models.

We are interested in the analysis of reactive systems. As such, we restrict ourselves
to the realm of timed CCP. More precisely, we aim at a timed CCP approach for systems
featuring both probabilistic and non-deterministic behavior. Probabilistic behavior in
CCP might both enhance the accuracy of specifications (since, e.g., more empirical in-
formation could be considered) and give more significance to verification (as provable
properties would involve explicit quantitative information). As for non-determinism,
it allows to define compositional models and to abstract away from unimportant de-
tails. Also, it is fundamental to faithfully represent the interactions of a system with
its environment. Sometimes in literature non-determinism has been represented using
probabilistic choices. We do not endorse such an approach: replacing non-deterministic
choices with probabilistic ones entails making strong assumptions on interactions and/or

� Research partially supported by the COLCIENCIAS project REACT (No. 1251-330-18902)
and by the INRIA Équipe Associée FORCES.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 677–681, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

678 J.A. Pérez and C. Rueda

conditions that are usually very hard or impossible to predict. Rather, we prefer the idea
of specifying probabilistic systems within non-deterministic environments. As a com-
pelling example of this idea, consider the analysis of security protocols as in [4]. There,
the reactive system (the protocol) can be well described probabilistically, whereas the
changing environment (the protocol users) is non-deterministic, as the frequency of the
interactions is inherently unpredictable. Similar scenarios arise in very different areas
such as interactive music improvisation [2].

Here we propose pntcc, a probabilistic, non-deterministic extension of tcc [5]. To
the best of our knowledge, pntcc is the first timed CCP calculus featuring both kinds
of choices. The semantic treatment associated with the interaction of non-determinism
and probabilities is more complex than the required by each kind of choice in isolation.
pntcc is endowed with an operational semantics based on a probabilistic automaton
[6]: it separates the choices made probabilistically by the process from those made
non-deterministically under the influence of a scheduler. As a result, the observable
behavior of a system given by the semantics —what the environment perceives from its
execution— is purely probabilistic; non-determinism is regarded as unobservable.

The observable behavior sets the ground for performing model checking processes.
In fact, the rationale given by the language and the support provided by the semantics
make it possible a natural relation between pntcc and the probabilistic logic PCTL [7].
The relation is based on the fact that the observable behavior of a process can be inter-
preted as the discrete time Markov chain (DTMC) defining satisfaction in PCTL. Since
formulas in PCTL explicitly include a time bound and a probability, model checking
for timed CCP process specifications with quantitative information becomes possible.

This approach to process verification is what distinguishes our proposal from similar
CCP calculi with explicit time (e.g. [8]), which rely on proof systems. We are not aware
of other explicitly timed CCP calculi with quantitative parameters in both models and
properties, and with the possibility of model-checking procedures. Moreover, since we
advocate a rationale in which verification is an orthogonal concern, we can safely rely
on the developed field of probabilistic model checking for this.

All in all, by relying on well-established techniques from logic and concurrency
theory, we provide the initial foundations for a timed CCP-based framework for the
analysis of reactive systems.

Related Work. In [9], CCP and tcc are extended with stochastic choices rather than
with probabilistic ones. The untimed CCP language in [10] replaces non-determinis-
tic choices with probabilistic ones; hence, the associated semantics could be seen as a
particular case of ours. In [11] it is shown how to extract model checking structures
directly from tcc programs. A similar approach is used in sCCP [12], a stochastic
CCP language in which discrete and continuous time can be treated only implicitly. (In
contrast, pntcc features explicit discrete time.) Model-checking in sCCP relies on an
encoding into the input language of a probabilistic model checker. Our approach for
model checking has to be different —more involved— than those in [11] and [12]: be-
cause of non-determinism, we need an additional semantic support to be able to derive
a DTMC, and in turn, to perform a model checking process.

The Language and Its Semantics. Here we describe the syntax and operational se-
mantics for pntcc. We begin by introducing some notions of (timed) CCP-based calculi.

Non-determinism and Probabilities in Timed Concurrent Constraint Programming 679

A constraint system formalizes the interdependencies between constraints. It is given
by a pair (Σ,∆) where Σ is a signature of function and predicate symbols, and ∆ is
a decidable theory over Σ. Given a constraint system (Σ,∆), let L be its underlying
first-order language, with variables x, y, . . ., and the set of logic symbols ¬,∧,∨,⇒, ∃,
∀, true and false. The set of constraints (with elements c, d, . . .) are formulas over
L. We say that c entails d in ∆, written c |= d, iff c⇒ d is true in all models of ∆. The
relation |= is assumed to be decidable.

Time is assumed to be divided into units. In a given time unit, a process P gets an
input (a constraint) c from the environment, it executes with this input as the initial store
and when it reaches its resting point it outputs the resulting store d to the environment.
The resting point determines a residual process Q to be executed in the next time unit.
Information is not automatically transferred from one time unit to another.

Syntax. Processes in pntcc are built from constraints some underlying constraint sys-
tem by the following syntax:

P, Q ::= skip | tell(c) | �
i∈I

when ci do Pi |�
i∈I

when ci do (Pi, ai) | P ‖ Q | local x in P

| next (P) | unless c next (P) | !P

The upper line describes untimed CCP processes, whose action takes place during a
single time unit. skip does nothing. tell(c) adds constraint c to the current store, thus
making it available to other processes. In CCP, a positive ask when c do P checks if the
current store is strong enough to entail the guard c; if so, it behaves like P . In pntcc,
given a finite set of indices I , process

∑
i∈I when ci do Pi generalizes positive asks

as a non-deterministic choice: a process Pj (j ∈ I) whose guard cj is entailed from
the current store is scheduled for execution; the chosen process precludes the others.
Process P ‖ Q describes the concurrent operation of P and Q, possibly “communicat-
ing” via the common store. Hiding on a variable x is enforced by process local x in P :
it behaves like P , except that all the information on the x produced by P can only be
seen by P and the information on x produced by other processes cannot be seen by P .
In the probabilistic choice

⊕
i∈I when ci do (Pi, ai), I is a finite set of indices, and

for every ai ∈ R(0,1],
∑

i∈I ai = 1. Each ai represents the probability of scheduling
process Pi for execution. The collection of all ai thus represents a probability distri-
bution. The guards that can be entailed from the current store determine a subset of
enabled processes, which are used to determine an eventual normalization of the ais.
In the current time unit, the summation probabilistically chooses one of the enabled
process according to the distribution defined by the (possibly normalized) ais. The cho-
sen alternative, if any, precludes the others. If no choice is possible then the summation
is precluded. We sometimes use “⊕” to denote binary probabilistic sums.

Constructs in the lower line allow processes to have effect along the time units.
next (P) schedules P for execution in the next time unit; it is thus a one-unit de-
lay. Process unless c next (P) is similar: P will be activated only if c cannot be in-
ferred from the current store. It behaves like a (weak) time-out, waiting one time unit
for a piece of information c to be present and if it is not, triggering activity in the
next time unit. The replication operator ! represents infinite behavior: !P represents
P ‖ next (P) ‖ next2P ‖ . . ., i.e. unboundedly many copies of P but one at a time.

680 J.A. Pérez and C. Rueda

Probabilistic Eventuality. By exploiting the encoding of recursion in [8], pntcc al-
lows to define a parametric form of probabilistic eventuality. This operator may come
in handy to express the influence the passage of time has on the eventual execution
of a process. It integrates the partial information on process occurrence as probability
distributions:

STARf (P, r) def= (P, r) ⊕ (next STARf (P, f(r)), 1 − r).

We assume STARf (P, r) is defined over a sufficiently large (yet finite) subset of the
reals in (0, 1]. It depends on two parameters, r and f . The first stands for the current
probability of executing P : the closer to 1 r is, the greater the probability of executing
P will be. Conversely, 1−r denotes the probability of delayingP ’s execution. Function
f governs the execution of P by modifying r in each recursive call.

Semantics. An informal description of an operational semantics for pntcc follows. We
consider configurations of the form 〈P, c〉, where P is a process and c is a constraint
representing a store.

The semantics considers two transition relations: one internal —meant to be hidden
to the environment—, and an observable one that serves as an “interface” between the
process and its environment. Internal transitions describe activity within a time unit,
considering both non-deterministic and probabilistic behavior. Similarly to [13], inter-
nal transitions are defined over a probabilistic automaton [6]. Roughly, a probabilistic
automaton differs from an ordinary one only in the transition relation, which allows
non-deterministic choices to take place before performing the probabilistic choice that
determines the state to be reached. In our case, the states of the automaton correspond
to configurations. Every sequence of internal transitions is influenced by a particular
scheduler, which solves the non-deterministic choices. By confining non-determinism
to internal computations we obtain that only probabilistic behavior can be observed
along time. An observable transition defines the smallest account of observable behav-
ior. It assumes a sequence of internal transitions leading to a state where no further com-

putation is possible (quiescence). It is denoted by P
〈c,d,a〉

======⇒Sj R, with the following
intuitive meaning: in one time unit, under the influence of scheduler Sj , configuration
〈P, c〉 can evolve to configuration 〈R, d〉 with probability a. The explicit reference to
the scheduler becomes relevant when one considers that what can be observed from a
process execution might differ depending on the particular scheduler.

Observable Behavior for Verification. We conclude by sketching the relation be-
tween pntcc processes and the temporal logic PCTL [7]. We claim that the observable
behavior of a pntcc process corresponds to the discrete time Markov chain upon which
satisfaction in PCTL is defined.

Informally speaking, PCTL allows to reason about properties such as “after a re-
quest, a task will be accomplished within 5 minutes with a probability of at least 95%”.
Such statements, so-called soft deadlines, explicitly define both a probability and a time
bound. Unlike hard deadlines, soft deadlines are meant to characterize systems in which
a failure does not imply catastrophic consequences. For space reasons, we omit details
of PCTL syntax and semantics; see [7] for an in-depth description.

Non-determinism and Probabilities in Timed Concurrent Constraint Programming 681

Formulas in PCTL are interpreted over models that are discrete time Markov chains
(DTMCs). A DTMC is composed of a finite set of states, a transition probability func-
tion, and a labeling function assigning atomic propositions to states. In a DTMC each
transition is considered to require one time unit. To go from the observable behavior
of a process to the DTMC underlying satisfaction in PCTL, all that is required is to
give structure to the derivatives that can be observed from a process execution along
time. The set of such derivatives, called alternatives, gives a one-step account of all
the possibilities for observable behavior. They allow to articulate the notion of observ-
able sequences, the description of one of the possible computations starting in a given
configuration, along the time units.

The observable sequences originating in a given process represent the confinement of
non-deterministic behavior to the scheduler used over internal evolutions. This rôle of
schedulers allows to interpret the observable behavior of a process as a DTMC. Indeed,
given a process P , it is not difficult to think of a correspondence between states and
all the possible configurations reachable from 〈P, true〉 through observable sequences.
The transitions of the DTMC can be obtained from the alternatives of each derivative
of P . Notice that, in this setting, an observable sequence would then correspond to a
particular path of the DTMC. Finally, we can assume a labeling function that relates
states with the store of the given configuration.

References

1. Saraswat, V.: Concurrent Constraint Programming. The MIT Press, Cambridge (1993)
2. Rueda, C., Assayag, G., Dubnov, S.: A Concurrent Constraints Factor Oracle Model for

Music Improvisation. In: CLEI 2006 (2006)
3. Gutiérrez, J., Pérez, J.A., Rueda, C., Valencia, F.D.: Timed concurrent constraint programming

for analysing biological systems. Electr. Notes Theor. Comput. Sci. 171(2), 117–137 (2007)
4. Palamidessi, C.: Probabilistic and nondeterministic aspects of anonymity. Electr. Notes

Theor. Comput. Sci. 155, 33–42 (2006)
5. Saraswat, V.A., Jagadeesan, R., Gupta, V.: Foundations of timed concurrent constraint pro-

gramming. In: LICS, pp. 71–80. IEEE Computer Society, Los Alamitos (1994)
6. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD

thesis, MIT (1995)
7. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Com-

put. 6(5), 512–535 (1994)
8. Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint programming:

Denotation, logic and applications. Nord. J. Comput. 9(1), 145–188 (2002)
9. Gupta, V., Jagadeesan, R., Saraswat, V.A.: Probabilistic concurrent constraint programming.

In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 243–257.
Springer, Heidelberg (1997)

10. Pierro, A.D., Wiklicky, H.: An operational semantics for probabilistic concurrent constraint
programming. In: ICCL, pp. 174–183 (1998)

11. Falaschi, M., Policriti, A., Villanueva, A.: Modeling concurrent systems specified in a tem-
poral concurrent constraint language-i. Electr. Notes Theor. Comput. Sci. 48 (2001)

12. Bortolussi, L.: Constraint-based approaches to stochastic dynamics of biological systems.
PhD thesis, University of Udine (2007)

13. Herescu, O.M., Palamidessi, C.: Probabilistic asynchronous pi-calculus. In: Tiuryn, J. (ed.)
FOSSACS 2000. LNCS, vol. 1784, pp. 146–160. Springer, Heidelberg (2000)

Stochastic Behavior and Explicit Discrete Time in
Concurrent Constraint Programming�

Jesús Aranda1,2, Jorge A. Pérez3, Camilo Rueda4,5, and Frank D. Valencia6

1 INRIA Futurs and LIX, Ecole Polytechnique, France
2 Escuela de Ingenierı́a de Sistemas y Computación, Universidad del Valle, Colombia

3 Dept. of Computer Science, University of Bologna, Italy
4 Dept. of Science and Engineering of Computing, Universidad Javeriana - Cali, Colombia

5 IRCAM, Paris, France
6 CNRS and LIX, Ecole Polytechnique, France

Abstract. We address the inclusion of stochastic information into an explicitly
timed concurrent constraint process language. An operational semantics is pro-
posed as a preliminary result. Our approach finds applications in biology, among
other areas.

Motivation. The study of quantitative information within languages for concurrency
has recently gained a lot of momentum. In many applications, quantitative information
becomes crucial when refining models with empirical data, and is of the essence for
verification purposes. Two main models of quantitative information can be singled out
from the vast literature on the subject. Given a computation that can perform different,
competing actions, a probabilistic model provides a probability distribution over such
actions. In contrast, a stochastic model relates each action to a random variable which
determines its duration: given a set of competing actions, the fastest action (i.e. the one
with the shortest duration) is executed. Consequently, notions not considered in a prob-
abilistic model (e.g. speed) are fundamental in a stochastic setting. Not surprisingly,
areas in which time is essential (e.g. systems biology, performance modeling) have
found in languages featuring stochastic information adequate frameworks for analysis.

Concurrent constraint programming (CCP) [1] is a declarative model for concur-
rency with strong ties to logic. In CCP, systems are described by pieces of partial in-
formation called constraints. Processes interact in a shared store; they either add new
constraints or synchronize on the already available information. Timed concurrent con-
straint programming (tcc) [2] is a declarative framework for reactive systems. In tcc,
time is explicitly represented as discrete time units in which computation takes place;
tcc provides constructs to control process execution along such units. In the light of
stochastic models for quantitative information, the explicit time in tcc poses a legiti-
mate question, that of determining to what extent the notions of stochastic duration and

� Research partially supported by the COLCIENCIAS project REACT (No. 1251-330-18902)
and the INRIA Équipe Associée FORCES. The work of Jesús Aranda has been supported
by COLCIENCIAS (Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnologı́a
“Francisco José de Caldas”), INRIA Futurs and ÉGIDE (Centre français pour l’accueil et les
échanges internationaux).

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 682–686, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Stochastic Behavior and Explicit Discrete Time in CCP 683

of discrete time unit can be harmoniously conciliated within a CCP-based framework.
The question is relevant because it can give clues on clean semantic foundations for
quantitative information in CCP, which in turn, should contribute to the development
of more effective reasoning techniques over reactive systems in many emerging appli-
cations. In this paper, we outline preliminary results on an operational semantics for a
tcc language with explicit stochastic durations.

More into details, the proposed semantics aims at an explicit account of stochastical-
ly derived events using the description power of timed CCP calculi. This is a feature that
in other CCP calculi (e.g. [3]) is handled at best implicitly. We define stochastic events
in terms of the time units provided by the calculus: this provides great flexibility for
modeling and, as mentioned before, it allows for a clean semantics. Most importantly,
by considering stochastic information and adhering to explicit discrete time, it is possi-
ble to reason about processes using quantitative logics (both discrete and continuous),
while retaining the simplicity of calculi such as ntcc [4] for deriving qualitative reason-
ing techniques (such as denotational semantics and proof systems). We consider exist-
ing qualitative reasoning techniques have a great potential for guiding/complementing
the use of (usually costly) quantitative ones. Such an approach for applying qualitative
techniques has shown to be useful in the biological context [5].

This work is part of a larger research programme aimed at developing robust CCP-
based techniques for analyzing complex applications and systems in computer music,
security and biology. As such, it is our objective to formalize stochastic information in
tcc in such a way that resulting languages and techniques (i) remain generic enough so
to fit well in the target applications, and (ii) be amenable to efficient implementations,
in the form of e.g. simulators and model-checkers.

Description. We consider a variant of tcc in which certain processes are annotated
with a function λ, which represents the stochastic information in the language (see
below). Annotated processes are tell, when and unless. With a slight abuse of notation,
in tell and unless processes λ also stands for the constant value 1. We annotate unless
as we see it as a counterpart of when processes. A careful definition of unless in the
stochastic context, however, is yet to be completely determined. We do not discard
that different applications (e.g. biological systems and computer music) need different
unless definitions.

P, Q ::= tellλ(c) |when c do (P, λ) |P ‖ Q | local x in P | !P | iP | unlessλ c next (P)

Operational Semantics. We use the same notion of discrete time as in ntcc and tcc.
We assume that there are discrete time units of uniform size, each of them having its
own constraint store. At each time unit, some stimuli are received from the environment;
the process then executes with such stimuli as input. At the end of the time unit, some
output is produced in the form of responses to the environment, and a residual process
to be executed in the next time unit is scheduled. Information does not automatically
transfer from one time unit to the following.

The operational semantics, given in Table 1, is defined over process-store configu-
rations. We use γ, γ′ to range over configurations, and assume a structural congruence
relation ≡ to identify processes with minor syntactic differences. The rules of the se-
mantics carry both a probability value (denoted p) and a global rate value (denoted r).

684 J. Aranda et al.

Table 1. Operational semantics: internal transition rules

IMMTELL
〈tell1(d), c〉 −→1,max 〈skip, c ∧ d〉

IMMREP
〈P, c〉 −→1,max 〈P ′, c′〉

〈! P, c〉 −→1,max 〈P ‖ i! P, c′〉

IMMUNLESS
〈unless1 c next (P), d〉 −→1,max 〈skip, d〉

if d |= c IMMINT
〈P, c〉 −→1,max 〈P ′, c′〉

〈P ‖ Q, c〉 −→1,max 〈P ′ ‖ Q, c′〉

STOTELL
〈tellλ(d), c〉 −→1,λ(c) 〈δm(tell(d)), c〉

with m = ∆(1, λ(c))

STOCHOICE
〈
�

i∈I when ci do (Pi, λi), c〉 −→p,r 〈δm(Pj), c〉
if c |= cj

with r =
�

i∈{j | c|=cj} λi(c); p = λj(c)/r; m = ∆(p, r).

STOINT
〈P, c〉 −→p1,r1 〈P ′, c〉 〈Q, c〉 −→p2,r2 〈Q′, c〉

〈P ‖ Q, c〉 −→p′,r′ 〈P ′ ‖ Q′, c〉
with p′ = p1 × p2; r′ = r1 + r2.

STOUNLESS
〈unlessλ c next (P), d〉 −→p,r 〈δm(unless c next (P)), d〉

with m = ∆(p, r).

STOREP
〈P, c〉 −→p,r 〈δm(P), c′〉

〈! P, c〉 −→p,r 〈δm(P) ‖ i! P, c′〉
NEXT

〈P, c〉 −→p,r 〈P ′, c〉
〈P ‖ iQ, c〉 −→p,r 〈P ′ ‖ iQ, c〉

LOCAL
〈P, c ∧ ∃xd〉 −→p,r 〈P ′, c′〉

〈(local x, c)P, d〉 −→p,r 〈(local x, c)P ′, d ∧ ∃xc′〉
STRCONG

γ1 −→p, r γ2

γ′
1 −→p, r γ′

2
ifγi ≡ γ′

i (i ∈ {1, 2})

They decree two kinds of process execution, immediate (probability value equal to 1
and rate value max), and stochastic. In this sense, processes can be either immediate or
stochastic. The idea of the semantics is to schedule immediate processes first, and then
move to stochastic processes, whose execution involves a certain duration.

Rules for immediate execution resemble analogous rules in tcc and ntcc. The rule
IMMTELL adds a constraint to the store as soon as possible. The rule IMMREP specifies
that process !P produces a copy P at the current time unit and then persists in the
next time unit. There is no risk of infinite behavior within a time unit. In the Rule
IMMUNLESS, process P is precluded if c is entailed by the current store d. The rule
IMMINT allows for compositional extension.

Rules for stochastic executions consider the aforementioned function λ. Using the
current store as parameter, λ describes how the global rate of the whole process varies.
We use δm(P) to denote a delay process P with duration m: P will be executed at the
m-th time unit from the current one. Given probability and rate values for a process,
function ∆ determines its duration. The duration can be thus seen as an exponentially
distributed random variable that depends on a probability and a rate.

The rule STOTELL defines stochastic tell actions. The rule STOCHOICE defines a
choice over a number of guarded processes. Only those enabled processes, i.e., those
whose guards entail from the current store, are considered. The rule STOINT defines
the simultaneous occurrence of stochastic actions. As usual, the probability value is
calculated assuming independence of the actions. Notice that the current store is not
affected by stochastic actions; their influence is only noticeable in the following time
units. The rules STOUNLESS and STOREP define unless and stochastic replicated ac-
tions, resp. The rule NEXT extends stochastic actions to next processes. In the rule
LOCAL, local in P behaves like P , except that all the information on x produced by P

Stochastic Behavior and Explicit Discrete Time in CCP 685

can only be seen by P and the information on x produced by other processes cannot be
seen by P . Notation (localx, c)P expresses that c is the local information produced by
process localx inP . The rule STRCONG is self-explanatory.

These rules define behavior within a time unit; internal behavior takes place until
reaching a configuration where no further computation is possible (quiescence). We
need to define the residual process to be executed in the following time unit. We start
by conjecturing that each quiescent configuration γ has a “standard” form:

γ ≡ 〈
∏
j∈J

.Pj ‖
∏
k∈K

unless ck next (Qk) ‖
∏
i∈I

δmi(Pi), d〉.

In the following definition we useA to denote the set of delayed processes in a quiescent
configuration.

Definition 1 (Future function). Given a quiescent configuration γ, its residual process
is given by function F :

F (γ) =
∏
j∈J

Pj ‖
∏
k∈K

Qk ‖ F ′(A)

where function F ′ is defined as

F ′(δm1(P1) ‖ . . . ‖ δmn(Pn)) = G(δm1(P1)) ‖ . . . ‖ G(δmn(Pn))

and where G is defined as

G(δm(P)) =
{
δm−1(P) if m > 1
P if m = 1.

Unlike other languages like the stochastic π-calculus [6] or sCCP [3], it is worth
noticing that in our semantics stochastic actions can evolve simultaneously; there is
no a predefined order for execution. This way, for instance, tellλ1(c1) ‖ tellλ2(c2)
evolves into δm1(tell(c1)) ‖ δm2(tell(c2)) and in the next unit time, the configuration
is δm1−1(tell(c1)) ‖ δm2−1(tell(c2)) (assuming m1,m2 > 0). This allows to naturally
represent the evolution of different components in parallel.

Discussion. Since variables in tcc are logic (i.e. they can be defined at most once in
each time unit), a potential source of inconsistencies is the simultaneous execution of
several stochastic actions involving the same variables. This could represent a limitation
in modeling. Consider for instance the kind of systems in which it is required to deal
with quantities of elements of a certain type (as in biological reactions). In such sys-
tems, variables could be part of several actions, which would represent the changes over
the elements in consideration. An inconsistency caused by two actions simultaneously
altering the value of the same variable is clearly an undesirable feature. Therefore, there
is the need for enhancing the semantics with a mechanism that imposes some kind of
order over those actions related with potential inconsistencies. This would also presup-
pose modifications over rules calculating duration of stochastic actions, as concurrent
actions would be simulated in a specific order. The formal definition of such a consis-
tency mechanism is part of ongoing work.

686 J. Aranda et al.

Applications in Biology. We think that our language and semantics have applications
in the biological domain. This is supported by the fact that CCP-based calculi have
shown to be convenient for modelling, simulating and verifying several kinds of bio-
logical systems [7,8,3]. In [3], stochastic concurrent constraint programming (sCCP)
is used to model biochemical reactions and gene regulatory networks. Functional rates
in sCCP give considerable flexibility to formulate reactions. However, sCCP does not
include an explicit notion of time and does not exploit the logic nature of CCP for ver-
ification. Also, sCCP lacks a means of expressing absence of information, which has
proven most useful in the biological context [8]. The explicitly timed ccp language ntcc
[4] provides both a proof system and a means of representing absence of information.
In fact, ntcc was used in [7,8] to model different biological systems using two kinds
of partial information: behavioral (e.g. the unknown relative speeds on which a system
evolves) and quantitative (e.g. the set of possible values that a variable can take). It
must be noticed that ntcc does not allow for stochastic or probabilistic information.

Based on the above, we think that the extension to tcc here proposed could serve
several purposes in the biological context. The most immediate use is the definition of
enhanced models of systems already modeled in ntcc (the Sodium-Potassium pump,
regulation and mutation processes in genetic regulatory networks). Also, although it is
not evident that every sCCP process can be translated into our language (the tell oper-
ator in sCCP has continuation), we are confident we can model most of the biological
systems described in [3]. We also plan to analyse the model in [9], which describes the
cycle of Rho GTP-binding proteins in the context of phagocytosis.

References

1. Saraswat, V.: Concurrent Constraint Programming. The MIT Press, Cambridge (1993)
2. Saraswat, V.A., Jagadeesan, R., Gupta, V.: Foundations of timed concurrent constraint pro-

gramming. In: LICS, pp. 71–80. IEEE Computer Society, Los Alamitos (1994)
3. Bortolussi, L.: Constraint-based approaches to stochastic dynamics of biological systems. PhD

thesis, University of Udine (2007)
4. Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint programming:

Denotation, logic and applications. Nord. J. Comput. 9(1), 145–188 (2002)
5. Fages, F., Soliman, S.: Formal cell biology in biocham. In: Bernardo, M., Degano, P., Zavat-

taro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 54–80. Springer, Heidelberg (2008)
6. Priami, C.: Stochastic pi-calculus. Comput. J. 38(7), 578–589 (1995)
7. Gutiérrez, J., Pérez, J.A., Rueda, C., Valencia, F.D.: Timed concurrent constraint programming

for analysing biological systems. Electr. Notes Theor. Comput. Sci. 171(2), 117–137 (2007)
8. Arbeláez, A., Gutiérrez, J., Pérez, J.A.: Timed Concurrent Constraint Programming in Systems

Biology. Newsletter of the ALP 19(4) (2006)
9. Cardelli, L., Gardner, P., Kahramanogullari, O.: A process model of rho gtp-binding proteins

in the context of phagocytosis. Electr. Notes Theor. Comput. Sci. 194(3), 87–102 (2008)

TopLog: ILP Using a Logic Program Declarative
Bias

Stephen H. Muggleton, José C. A. Santos, and Alireza Tamaddoni-Nezhad

Department of Computing, Imperial College, London
{shm,jcs06,atn}@doc.ic.ac.uk

Abstract. This paper introduces a new Inductive Logic Programming
(ILP) framework called Top Directed Hypothesis Derivation (TDHD).
In this framework each hypothesised clause must be derivable from a
given logic program called top theory (�). The top theory can be viewed
as a declarative bias which defines the hypothesis space. This replaces
the metalogical mode statements which are used in many ILP systems.
Firstly we present a theoretical framework for TDHD and show that
standard SLD derivation can be used to efficiently derive hypotheses from
�. Secondly, we present a prototype implementation of TDHD within a
new ILP system called TopLog. Thirdly, we show that the accuracy and
efficiency of TopLog, on several benchmark datasets, is competitive with
a state of the art ILP system like Aleph.

1 Introduction

In this paper we introduce a new approach to providing declarative bias called
Top-Directed Hypothesis Derivation (TDHD). The approach extends the use
of the ⊥ clause in Mode-Directed Inverse Entailment (MDIE) [1]. In Inverse
Entailment ⊥ is constructed for a single, arbitrarily chosen training example.
Refinement graph search is then constrained by the requirement that all hy-
pothesised clauses considered must subsume ⊥. In TDHD we further restrict the
search associated with each training example by requiring that each hypothesised
clause must also be entailed by a given logic program, �.

The � theory can be viewed as a form of first-order declarative bias which
defines the hypothesis space, since each hypothesised clause must be derivable
from �. The use of the � theory in TopLog is also comparable to grammar-based
declarative biases [2]. However, compared with a grammar-based declarative
bias, � has all the expressive power of a logic program, and can be efficiently
reasoned with using standard logic programming techniques.

The SPECTRE system [3] employs an approach related to the use of �.
SPECTRE also relies on an overly general logic program as a starting point.
However, unlike the TopLog system described in this paper, SPECTRE proceeds
by successively unfolding clauses in the initial theory. TDHD is also related to
Explanation-Based Generalisation (EBG) [4]. However, like SPECTRE, EBG
does not make the key MDHD distinction between the � theory and background
knowledge. Moreover, EBG is viewed as a form of deductive learning, while the
clauses generated by TDHD represent inductive hypotheses.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 687–692, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

688 S.H. Muggleton, J.C.A. Santos, and A. Tamaddoni-Nezhad

2 Theoretical Framework

MDIE was introduced in [1] as the basis for Progol. The input to an MDIE system
is the vector SMDIE = 〈M,B,E〉 where M is a set of mode statements, B is a
logic program representing the background knowledge and E is set of examples.
M can be viewed as a set of metalogical statements used to define the hypothesis
language LM . The aim of the system is to find consistent hypothesised clauses
H such that for each clause h ∈ H there is at least one positive example e ∈ E
such that B, h |= e.

The input to an TDHD system is the vector STDHD = 〈NT,�, B,E〉 where
NT is a set of “non-terminal” predicate symbols, � is a logic program rep-
resenting the declarative bias over the hypothesis space, B is a logic program
representing the background knowledge and E is a set of examples.

The following three conditions hold for clauses in �: (a) each clause in �
must contain at least one occurrence of an element of NT while clauses in B
and E must not contain any occurrences of elements of NT , (b) any predicate
appearing in the head of some clause in � must not occur in the body of any
clause in B and (c) the head of the first clause in � is the target predicate and
the head predicates for other clauses in � must be in NT .

The aim of a TDHD system is to find a set of consistent hypothesised clauses
H , containing no occurrence of NT , such that for each clause h ∈ H there is at
least one positive example e ∈ E such that the following two conditions hold:
(1) � |= h and (2) B, h |= e.

Theorem 1. Given STDHD = 〈NT,�, B,E〉 assumptions (1) and (2) hold only
if for each positive example e ∈ E there exists an SLD refutation R of ¬e from
�, B, such that R can be re-ordered to give R′ = DhRe where Dh is an SLD
derivation of a hypothesis h for which (1) and (2) hold.

According to Theorem 1, implicit hypotheses can be extracted from the refu-
tations of a positive example e ∈ E. Let us now consider a simple example.

Example 1. Let STDHD = 〈NT,�, B,E〉 where NT , B , e and � are as follows:

NT = {$body}
B = b1 = pet(lassy) ←
e = nice(lassy) ←

� =

⎧⎨⎩
�1 : nice(X) ← $body(X)
�2 : $body(X) ← pet(X)
�3 : $body(X) ← friend(X)

Given the linear refutation R = 〈¬e,�1,�2, b1〉, we now construct the re-ordered
refutation R′ = DhRe where Dh = 〈�1,�2〉 derives the clause h = nice(X) ←
pet(X) for which (1) and (2) hold.

3 System Description

TopLog is a prototype ILP system developed by the authors to implement the
TDHD described in section 2. It is fully implemented in Prolog and is ensured

TopLog: ILP Using a Logic Program Declarative Bias 689

to run at least in YAP, SWI and Sicstus Prolog. It is publicly available at
http://www.doc.ic.ac.uk/∼jcs06 and may be freely used for academic purposes.

3.1 From Mode Declarations to � Theory

As the user of TopLog may not be familiar with specifying a search bias in
the form of a logic program, TopLog has a module to build a general � theory
automatically from user specified mode declarations. In this way input compati-
bility is ensured with existing ILP systems. Below is a simplified example of user
specified mode declarations and the automatically constructed � theory.

modeh(mammal(+animal)).
modeb(has milk(+animal)).
modeb(has eggs(+animal)).

� =

����
���

�1 : mammal(X) ← $body(X).
�2 : $body(X) ← .%emptybody
�3 : $body(X)← has milk(X),$body(X).
�4 : $body(X)← has eggs(X),$body(X).

Fig. 1. Mode declarations and a � theory automatically constructed from it

The above illustrated � theory is extremely simplified. The actual implemen-
tation has stricter control rules like: variables may only bind with others of the
same type, a newly added literal must have its input variables already bound.

It is worth pointing out that the user could directly write a � theory specific
for the problem, potentially restricting the search better than the generic �
theory built automatically from the mode declarations.

3.2 TopLog Learning Algorithm

The TopLog learning algorithm consists of three major steps: 1) hypotheses
derivation for each positive example, 2) coverage computation for all unique
hypotheses, H , derived in previous step, 3) construct the final theory, T , as the
subset of H that maximizes a given score function (e.g. compression).

Hypotheses derivation. Contrary to MDIE ILP systems, there is no construc-
tion of the bottom clause but rather an example guided generalization, deriving
all hypotheses that entail a given example w.r.t. the background knowledge, B.

This procedure consists of two steps. Firstly an example is proved from B and
the � theory. That is, the � theory is executed having the example matching
the head of its start clause (i.e. �1). This execution yields a proof consisting
of a sequence of clauses from the � theory and B. For instance, using the �
theory from figure 1 and B = b1 = has milk(dog) to derive refutations for
example e = mammal(dog), the following two refutations would be yielded:
r1 = 〈¬e,�1,�2〉 and r2 = 〈¬e,�1,�3, b1,�2〉. Secondly, Theorem 1 is applied
to r1 and r2 deriving, respectively, the clauses h1 = mammal(X) from 〈�1,�2〉
and h2 = mammal(X) ← has milk(X) from 〈�1,�3,�2〉.

Coverage computation. Each h ∈ H is individually tested with all the ex-
amples (positives and negatives) to compute its coverage (i.e. the examples it
entails). Positive examples used to derive h are not tested for entailment as it is
guaranteed by the hypothesis derivation procedure that h entails them.

690 S.H. Muggleton, J.C.A. Santos, and A. Tamaddoni-Nezhad

Constructing the final theory. The final theory to be constructed, T , is a
subsetH ′ ofH that maximizes a given score function (e.g. compression, coverage,
accuracy). Each h ∈ H has associated the set of examples from which it was
derived, Egh, and the set of examples which it entails, Ech.

The compression score function (the default) evaluates T as the weighted
sum of the examples it covers (positive examples have weights > 0 and negative
examples < 0) minus number of literals in T . This is the minimum description
length principle and is analogous to Progol’s and Aleph’s compression measure.
T is constructed using a greedy approach where at each step the hypothesis, if
any, that maximizes current T ′ score is added to the next round.

Efficient cross-validation. Prior to N fold cross-validation (CV) all possible
hypotheses are derived and their coverage is computed on all examples. This is
the most time consuming step. Then, examples are randomly assigned a fold and
N theories are built each using a distinct combination of N − 1 folds as training
and one fold as testing.

Hypotheses generated exclusively from examples in the test set are not eligible
for the theory construction step. Also, the merit of a hypothesis is evaluated
only taking into account the hypothesis coverage on examples belonging to the
training folds. At the end of cross-validation, N fold average training and test
accuracies and standard deviations are reported.

It is not possible to do efficient cross-validation with Aleph or Progol as no
relationship exists between hypotheses and the examples that generated it.

4 Experimental Evaluation

Materials & Methods. We used four datasets: mutagenesis [5], carcinogenesis
[6], alzheimers-amine [7] and DSSTox [8] as they are well known to the ILP com-
munity. TopLog was compared with the state of the art MDIE ILP system Aleph
[9]. Both were executed on YAP Prolog 5.1.3. The experiments were performed
on a Core 2 Duo @ 2.13 GHz with 2Gb RAM.

Aleph and TopLog were executed with similar settings to ensure a fair test.
Clause length=4 (in DSSTox=10), noise=100%, evaluation function=
compression and search nodes per example=1000. Aleph was called both with
induce and induce max settings. In induce (the default), after finding a com-
pressive clause for an example, it retracts all positive examples covered by that
clause while induce max, as TopLog, does not.

Results. In the table below, time is the CPU seconds the ILP systems took to
build a model in the training data and for ten folds (CV column). We distinguish
between the two to highlight the benefits of TopLog’s efficient cross validation.
The accuracy column has the average (over the ten folds) percentage of correct
predictions made by the ILP models with the respective standard deviation.

In the induce max setting TopLog is clearly faster than Aleph. In the induce
setting the speed advantage for training is dataset dependent but considering
only CV then TopLog is again clearly faster. Although this may seem a side

TopLog: ILP Using a Logic Program Declarative Bias 691

Table 1. Accuracy and time comparison between Aleph and TopLog

Aleph with induce Aleph with induce max TopLog
Times Times Times

Dataset CV Accuracy Train CV CV Accuracy Train CV CV Accuracy Train CV
Mutagenesis 77.2%±9.2% 0.4s 4s 68.6%±11.4% 2s 17s 70.2%±11.9% 0.4s 0.5s
Carcinogenesis 60.9%±8.2% 6s 54s 65.1%±8.6% 29s 245s 64.8%±6.9% 7.0s 7.4s
Alzheimers 67.2%±5.0% 5s 40s 72.6%±6.2% 18s 156s 70.4%±5.6% 17s 16s
DSSTox 70.5%±6.5% 30s 253s 71.3%±3.4% 82s 684s 71.7%±5.6% 3.4s 3.6s

point, built-in efficient CV is important both to tune parameters and to properly
assess model accuracy. The accuracies are identical with none being statistically
significantly different at ρ = 0.01 level.

5 Conclusions and Future Work

The key innovation of the TDHD framework is the introduction of a first order �
theory. We prove that SLD derivation can be used to efficiently derive hypotheses
from �. A new general ILP system, TopLog, is described implementing TDHD.
An empirical comparison demonstrates the new approach is competitive, both
in predictive accuracy and speed, with a state of the art system like Aleph.

Parallelization. Since building the hypotheses set is example independent, it is
straightforward to parallelize TopLog main algorithm by dividing the examples
through all available cpus.

Sample hypotheses space. If the � theory represents a Stochastic Logic
Program [10] rather than a regular logic program (as it is now), it would be
possible to elegantly bias the hypotheses search space.

Acknowledgments. We thank James Cussens for illuminating discussions on the
TDHD framework and Vı́tor Santos Costa for his prompt help with YAP. The first au-
thor thanks the Royal Academy of Engineering and Microsoft for funding his present
5 year Research Chair. The second author thanks Wellcome Trust for his Ph.D. schol-
arship. The third author was supported by the BBSRC grant BB/C519670/1.

References

1. Muggleton, S.H.: Inverse entailment and Progol. NGC 13, 245–286 (1995)
2. Cohen, W.: Grammatically biased learning: Learning logic programs using an ex-

plicit antecedent description language. Artificial Intelligence 68, 303–366 (1994)
3. Boström, H., Idestam-Almquist, P.: Specialisation of logic programs by pruning

SLD-trees. In: Proceedings of the 4th ILP Workshop (ILP 1994), Bonn, pp. 31–48
(1994)

692 S.H. Muggleton, J.C.A. Santos, and A. Tamaddoni-Nezhad

4. Kedar-Cabelli, S.T., McCarty, L.T.: Explanation-based generalization as resolu-
tion theorem proving. In: Langley, P. (ed.) Proceedings of the 4th Int. Workshop
on Machine Learning, Los Altos, pp. 383–389. Morgan Kaufmann, San Francisco
(1987)

5. Srinivasan, A., Muggleton, S., King, R., Sternberg, M.: Mutagenesis: ILP experi-
ments in a non-determinate biological domain. In: Wrobel, S. (ed.) Proceedings of
the 4th ILP Workshop, ILP 1994, GMD-Studien Nr 237 (1994)

6. Srinivasan, A., King, R.D., Muggleton, S.H., Sternberg, M.: Carcinogenesis pre-
dictions using ILP. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS (LNAI),
vol. 1297, pp. 273–287. Springer, Heidelberg (1997)

7. King, R.D., Srinivasan, A., Sternberg, M.J.E.: Relating chemical activity to struc-
ture: an examination of ILP successes. New Gen. Comp. 13, 411–433 (1995)

8. Richard, A.M., Williams, C.R.: Distributed structure-searchable toxicity DSSTox
public database network: A proposal. Mutation Research 499, 27–52 (2000)

9. Srinivasan, A.: The Aleph Manual. University of Oxford (2007)
10. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Proceedings of

the 5th International Workshop on ILP, Katholieke Universiteit Leuven (1995)

Towards Typed Prolog

Tom Schrijvers1,�, Vı́tor Santos Costa2, Jan Wielemaker3, and Bart Demoen1

1 Department of Computer Science, K.U.Leuven, Belgium
2 CRACS & FCUP, Universidade do Porto, Portugal
3 HCS, University of Amsterdam, The Netherlands

Abstract. Prolog is traditionally not statically typed. Since the benefits
of static typing are huge, it was decided to grow a portable type system
inside two widely used open source Prolog systems: SWI-Prolog and
Yap. This requires close cooperation and agreement between the two
systems. The type system is Hindley-Milner. The main characteristics
of the introduction of types in SWI and Yap are that typing is not
mandatory, that typed and untyped code can be mixed, and that the
type checker can insert dynamic type checks at the boundaries between
typed and untyped code. The basic decisions and the current status of
the Typed Prolog project are described, as well as the remaining tasks
and problems to be solved.

1 Introduction

We resolutely choose for the most established type system, that of Hindley and
Milner [1]. It is in wide-spread use in functional programming languages and has
already been proposed various times for logic programming. The first and seminal
proposal in the context of LP is by Mycroft and O’Keefe [2], and the most notable
typed Prolog variants are Gödel [3], Mercury [4], Ciao [5] and Visual Prolog
[6]. However, traditional Prolog systems have not followed that trend towards
types, and many Prolog programmers continue to use an untyped Prolog, because
switching to a new language is usually not an option. Our approach intends to
remedy this by addressing the following critical issues:

– Our type system is presented as an add-on (a library) for currently used
Prolog systems, SWI and YAP, rather than being part of yet another LP
language. This means that programmers just need to learn the type system
and can stay within their familiar programming language.

– The type system is optional with granularity the predicate. This allows users
to gradually migrate their existing untyped code, to interface with untyped
legacy code (e.g. libraries) and to hold on to Prolog idioms and built-ins for
which Hindley-Milner typing is not straightforward.

� Tom Schrijvers is a post-doctoral researcher of the Fund for Scientific Research -
Flanders.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 693–697, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

694 T. Schrijvers et al.

– Particular care goes to interfacing typed with untyped code. Our approach can
introduce a runtime1 type check at program points on the border between
typed to untyped code. In this way, bugs in untyped code are caught at
the boundary and do not propagate into the typed code, i.e. the user knows
where to put the blame.

In its current incarnation, our system only type checks predicate clauses with
respect to programmer-supplied type signatures. In the future, we intend also to
automatically infer signatures to simplify the programmer’s job.

2 The Hindley-Milner Type System

In order to support the Hindley-Milner type system, we follow standard practice,
with a syntax that is nearly identical to the Mercury syntax. Types are repre-
sented by terms e.g. boolean, list(integer), . . . Types can also be or contain
variables; those are named type variables and polymorphic types respectively,
e.g. T and list(T).

A type definition introduces a new type, a so-called algebraic data type. It is
of the form :- type t(X) ---> f1(τ1) ; ...; fn(τn)., which defines a new
polymorphic type t(X). The type variables X must be mutually distinct. The τi
are arbitrary types whose type variables are a subset of X. Also, the function
symbols fi/ai must be mutually distinct, but they may appear in other type
definitions.

A type signature is of the form :- pred p(τ̄) and declares a type τi for every
argument of predicate p. If a predicate’s signature contains a type variable, we
call the predicate polymorphic.

A fully typed program, i.e., there is a signature for each predicate, is well-typed
iff each clause is well-typed.

A clause is well-typed if we can find a consistent typing of all variables in the
clause such that the head and body of the clause respect the supplied type sig-
natures. The arguments of the head must have the same type (up to variable re-
naming) as the corresponding predicate’s signature. The types of the arguments
in body calls must be instances of the corresponding predicates’ signatures. We
refer the reader to [2] for a formal treatment and for concrete examples to later
sections.

While this works fine for fully typed programs that do not use the typical
Prolog built-in constructs, some care is needed for programs calling built-ins or
containing a mix of typed and untyped code. Sections 3 and 4 deal with these
issues.

3 Support for Prolog Features

Arithmetic Expressions. Prolog-style arithmetic does not fit well in the Hindley-
Milner type system. The problem is that variable X in Y is X + 1 can be a
1 In contrast with the compile time checking of typed code.

Towards Typed Prolog 695

number, or a full-fledged arithmetic expression. Hence, numbers are a subtype
of arithmetic expressions. Unfortunately, it is an old result that subtyping in
Prolog can go wrong [7]!

In the current implementation, variables in arithmetic expressions can be of a
numeric type only. We are considering to relax this by overloading the expression
argument types to be either arithmetic expression or numeric types.

Built-ins. Some Prolog built-ins cannot be given a sensible Hindley-Milner type,
such as arg/32, which extracts an argument of a term. In general, the type of
the argument depends on the index number, which may not be statically known.

Nevertheless, for many Prolog built-ins there is a straightforward signature.
Some of the built-ins our system supports are:

:- pred var(T). :- pred ground(T). :- pred write(T).
:- pred (T == T). :- pred (T @< T).

:- pred compare(cmp,T,T). :- pred reverse(list(T),list(T)).
:- type cmp ---> (<) ; (=) ; (>). :- type list(T) ---> [] ; [T|list(T)].

Meta-Predicates. Meta-predicates take goals as arguments. They are supported
through the higher-order type pred. For instance, the types of some well-known
built-in meta-predicates are:

:- pred \+(pred). :- pred once(pred). :- pred setof(T,pred,list(T)).

It may seem problematic in a goal like setof(X,Goal,List) to figure out the
type of X. This is not so: the necessary information is usually provided by an
earlier goal, e.g. Goal = between(1,10,X). The former forces the type of Goal
to be pred. Hence, from the latter it follows that X has type integer, assuming
the signature :- pred between(integer,integer,integer).

The meta-predicate support is generalized to higher-order predicates with
closures as arguments, i.e. goals missing one or more arguments. For instance,
the well-known maplist/3 predicate has the signature:

:- pred maplist(pred(X,Y),list(X),list(Y)).

Atoms. For lack of the conventional strings, many Prolog programmers re-
sort to using atoms instead. In order to support this convention, our type sys-
tem offers the atom type containing all atoms. Hence, the ISO-Prolog built-in
atom concat/3 has signature

:- pred atom_concat(atom,atom,atom).

Note that a true string type would offer a cleaner solution.
2 Its type-friendly counterpart are typed (record) field selectors.

696 T. Schrijvers et al.

4 Interfacing Typed and Untyped Code

One of the most distinguishing properties of our type system is its support for
interfacing typed with untyped code.

Untyped to Typed. While typed code is statically verified by the type checker,
untyped code is not. Hence, any call from untyped code (or the Prolog toplevel)
to typed code can go wrong, if the provided arguments are not of the required
types. If left unchecked, such an ill-typed call may manifest itself elsewhere far
away in the code and greatly complicate the debugging process.

By default, we prevent this scenario by performing a runtime type check on
any call from untyped to typed code (by means of a simple program transforma-
tion). If the call is ill-typed, it is caught before the actual call is executed. Then,
the programmer knows the untyped code leading up to the call is to blame.

Typed to Untyped. Also in the inverse situation, when calling untyped code from
typed code, we want to catch type violations early on in order to blame the un-
typed code. In order to do so, the programmer has to supply a type annotation for
the call to untyped code. This allows to statically verify whether the surrounding
typed code is consistent with this annotation. On top of that, a runtime check
whether the untyped code satisfies the type annotation is inserted. The check
is performed right after the call returns: any logical variables improperly bound
by the call are detected in this way.

As an example, consider the following predicate from Santos Costa’s red-black
tree library:

:- pred list_to_rbtree(list(pair(K,V)),rbtree(K,V)).

list_to_rbtree(List, T) :-
sort(List,Sorted) :: sort(list(pair(K,V)),list(pair(K,V))),
ord_list_to_rbtree(Sorted, T).

Assume the sort/2 predicate is untyped, whereas the other predicates are
typed. The programmer has annotated the call (after ::) with the missing type
information sort(list(pair(K,V)),list(pair(K,V))). Based on the annota-
tion, the type checker assumes that the arguments List and Sorted both have
the type list(pair(K,V)). Moreover, a runtime type check is inserted right
after the call, to check whether the two arguments actually have this type.

The programmer can optionally declare that the runtime check need not be
performed.

Untyped Terms. The programmer is forced to make a single one-off decision for a
predicate: either she provides a signature and the predicate is typed, or she does
not and the predicate is untyped. The former choice is the most desirable, but may
require pervasive changes to the code as all terms handled by the predicate must be
typeable, and hence be made to respect the Hindley-Milner data type conventions.

Towards Typed Prolog 697

We provide the programmer a way out of this dilemma with the universal
type any, which covers all possible terms. Now the programmer only provides
precise types for the terms she wants, and defers the job for the others by typing
them with any. For the subsequent gradual and localized instruction of more
precise types, terms of type any can be coerced to other types, and vice versa.

5 Conclusion

The Typed Prolog project is based on the belief that it is better to gradually
introduce types in an existing language than to start from scratch with a new
language. People tend not to migrate to another system just because of types,
hence our decision to introduce types into Yap and SWI, two widely used Prolog
systems, and in such a way that users can gradually adapt to the use of types.

We aim at making this process as pleasant as possible, with special support
for Prolog language features and for interfacing typed with untyped code, and
while not forcing the Prolog programmer to give up essential functionality.

The Typed Prolog project started in the spring of 2008 and now consists of
about 1,000 lines of code. It is no surprise that there are still many issues to
tackle: error messages, handling floats and rationals, complete integration with
the module system, dealing with large sets of facts, adaptation of the runtime
checks to delayed execution, general support for constraint solvers, . . .

The simultaneous introduction of the same type system into SWI and Yap is
another clear sign of the commitment of their development teams to unify their
functionality. Library type check will be available in their next release. Most
other Prolog systems could include our library with little effort, in particular
Ciao Prolog, because its overall design principles are compatible with ours.

Acknowledgements. The authors are grateful to Roberto Bagnara, Fred Mesnard
and Ulrich Neumerkel for there helpful comments.

References

1. Milner, R.: A theory of type polymorphism in programming. Journal of Computer
System Sciences 17, 348–375 (1978)

2. Mycroft, A., O’Keefe, R.A.: A polymorphic type system for prolog. Artif. In-
tell. 23(3), 295–307 (1984)

3. Hill, P.M., Lloyd, J.W.: The Gödel Programming Language. MIT Press, Cambridge
(1994)

4. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of mercury: an
efficient purely declarative logic programming language. Journal of Logic Program-
ming 29, 17–64 (1996)

5. Pietrzak, P., Correas, J., Puebla, G., Hermenegildo, M.: A Practical Type Analysis
for Verification of Modular Prolog Programs. In: ACM SIGPLAN 2008 Workshop
on Partial Evaluation and Program Manipulation (PEPM 2008), pp. 61–70. ACM
Press, New York (2008)

6. Prolog Development Center (Visual Prolog), http://www.visual-prolog.com
7. Hill, P.M., Topor, R.: A semantics for Typed Logic Programs. In: Pfenning, M. (ed.)

Types in Logic Programming, pp. 1–62. MIT Press, Cambridge (1992)

http://www.visual-prolog.com

Environment Reuse in the WAM

Bart Demoen1 and Phuong-Lan Nguyen2

1 Department of Computer Science, K.U.Leuven, Belgium
2 Institut de Mathématiques Appliquées, UCO, Angers, France

bmd@cs.kuleuven.be, nguyen@ima.uco.fr

Abstract. The TOAM reuses eagerly allocated stack frames, while the
WAM avoids to allocate environments. This is investigated by using the
tak/4 benchmark as an inital case study for better understanding what
one can expect from environment reuse for deterministic predicates in the
WAM. Additionally, artificial programs are used to amplify the findings.
The experiment compares the impact of reusing an environment versus
avoiding to create it: the latter seems a superior technique.

1 Introduction

We assume familiarity with Prolog [1], the WAM [2,3] and the TOAM [4]. Ac-
quaintance with the B-Prolog implementation of the TOAM and with hProlog [5]
can also help.

The TOAM and the WAM treat stack frames/environments differently: the
TOAM allocates eagerly a stack frame for a predicate, and reuses it when possi-
ble. The WAM avoids to allocate an environment for a predicate call, e.g., in case
the selected clause is a fact, but possible needs to allocate many environments
for the same predicate. This difference stems from different design choices in the
two abstract machines and their compilers: the TOAM compiles a predicate at a
time, and passes arguments through the stack. The WAM compiles clauses at a
time1, and passes the arguments through a fixed set of argument registers. One
can argue endlessly about which is better. We take here a different approach: we
investigate to what extent the WAM can benefit from environment reuse, and
how effective the environment avoidance optimization, which is in fact known
in classical compiler literature as a leaf procedure optimization, compared to
environment reuse. We start by using tak/4 as a case study in Section 2. The
experiment indicates that the WAM approach can be improved in principle by
adopting an environment reuse schema as in the TOAM, at least for tak/4. Sec-
tion 3 discusses the dynamics of tak/4 and provides a more general insight in the
experimental data. Section 4 uses artificial benchmarks for showing the relative
merit of environment reuse versus environment avoidance. Section 5 concludes.

The experiments were done on a 1.8 GHz Pentium 4 with Linux (hProlog 2.7
and B-Prolog 7.1b3.2) and on an Intel Mac (hProlog 2.7 and B-Prolog 7.0). The
versions of B-Prolog use the TOAM Jr. [6]. Timings are always in milliseconds.

1 Except for the glue code for indexing.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 698–702, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Environment Reuse in the WAM 699

2 Tak/4 and Its Abstract Machine Code

Below is the source code for tak/4.

tak(X,Y,Z,A):-
(X =< Y ->

Z = A
;

X1 is X - 1, tak(X1,Y,Z,A1),
Y1 is Y - 1, tak(Y1,Z,X,A2),
Z1 is Z - 1, tak(Z1,X,Y,A3),
tak(A1,A2,A3,A)

).

The original tak/4 code uses two clauses, but the hProlog compiler and the B-
Prolog compiler effectively transform them to the version above with if-then-else.
The code generated by B-Prolog and hProlog can be obtained by using ’bpc’/1
and print code/1 respectively. A more high level description of the code follows:

B-Prolog hProlog
======== =======
@tak: @tak:

allocate_det
@afteralloc:

if (! X =< Y) goto @else if (! X =< Y) goto @else
unify(Z,A) unify(Z,A)
return_det proceed

@else: @else:
allocate
move (X,Y,Z,A) to environment

X1 is X - 1, tak(X1,Y,Z,A1), X1 is X - 1, tak(X1,Y,Z,A1),
Y1 is Y - 1, tak(Y1,Z,X,A2), Y1 is Y - 1, tak(Y1,Z,X,A2),
Z1 is Z - 1, tak(Z1,X,Y,A3), Z1 is Z - 1, tak(Z1,X,Y,A3),
move (A1,A2,A3) to (X,Y,Z) load (A1,A2,A3,A) from env
goto @afteralloc deallocate

goto @tak

B-Prolog has clearly taken the allocate out of the tak loop.
hProlog performs slightly less instruction compression than B-Prolog, it ex-

ecutes some extra instructions for dealing with the argument registers, and it
never reuses an environment. Still, hProlog is faster by 33% on the Linux ma-
chine, and about 9% on the Mac. This was measured by repeating the goal
tak(18,12,6,) 100 times: the first two columns of the table in Section 3 show the
figures. The next section explains why the WAM approach works so well.

3 The Dynamics of Tak/4

During one run of the query, the then-branch is taken 47.707 times, while the
else-branch is taken 15.902 times: that is (close to) 3 times less. So, in total,

700 B. Demoen and P.-L. Nguyen

B-Prolog allocates 47.707 times an enviroment, while hProlog does the same 3
times less. The factor 3 results from the fact that 3 out of 4 calls in the body
are non-tail calls. One can also see this by considering the execution tree for
tak/4: each call-node has outgoing degree equal to 4. Its leaves correspond to
calls of the form tak(X,Y,Z,A) in which X ≤ Y , for which the WAM does not
allocate an environment. Since the number N of nodes relates to the number I
of internal nodes by the simple formula N − 1 = 4 ∗ I, the conclusion follows. It
is easy to generalize these findings, at least for deterministic programs.

Seemingly, the eager allocation of a stack frame (for deterministic programs)
is counterproductive, and it would be a nice experiment to modify B-Prolog to
do lazy stack frame allocation, as the WAM does. Since the source code of B-
Prolog is not available to us, we have taken the other path: we have modified
hProlog to reuse its environments, first in the tak/4 benchmark, and later in
some artificial benchmarks.

hProlog had already enough instructions to generate code that performs both
lazy allocation and environment reuse. The resulting code for tak/4 is:

hProlog+reuse
=============
@tak:

if (! X =< Y) { allocate;
move (X,Y,Z,A) to environment;
goto @else }

unify(Z,A)
proceed

@allocated:
if (! X =< Y) goto @else
unify(Z,A)
deallocate
proceed

@else:
X1 is X - 1, tak(X1,Y,Z,A1),
Y1 is Y - 1, tak(Y1,Z,X,A2),
Z1 is Z - 1, tak(Z1,X,Y,A3),
move (A1,A2,A3) to environment slots (X,Y,Z)
goto @allocated

hProlog B-Prolog hProlog
+reuse

tak on Linux 315 473 278
tak on Mac 375 412 367

The table above shows the timings for B-Prolog, hProlog and the hProlog version
with environment reuse. There is a clear gain in re-using the environment for
hProlog, although it depends on the combination of the platform and the gcc
version. The above code avoids the allocation of environments and at the same
time reuses environments when possible, albeit at the cost of some seemingly
duplicate code. Note however that the first X =< Y takes its arguments from
the argument registers, while the second takes them from the environment.

It seems clear that the hybrid compilation schema that combines environment
avoidance with environment reuse is worth investigating further.

Environment Reuse in the WAM 701

4 Artificial Benchmarks

In order to amplify the potential advantage of environment reuse and environ-
ment avoidance, we have constructed a set of benchmarks with a characteristic
similar to tak/4, but from which the fluff was removed. We defined predicates
takliken for n = 1..10. As an example, taklike5 is defined as:

taklike_5(X) :-
(X =< 1 -> true s.
;

s, s, s, s, s, % 5 calls to s
X1 is X - 1, taklike_5(X1)

). ...

The execution tree is also shown: the black nodes correspond to calls that can
reuse the current environment. The other nodes cannot. For takliken, the ratio
between the calls that can avoid an environment and the calls that can reuse the
environment is n : 1.

The goal is always of the form ?− takliken(5000000). The table below shows
the timings for hProlog and B-Prolog on two platforms: the upper half on the
Linux machine, the seond one on the Mac.

The first (and fifth) row shows the results of running hProlog unaltered on
the benchmarks. The second (and sixth) row shows the effect of making hProlog
allocate an environment for the s. fact: normally the WAM (and hProlog alike)
generates just a proceed instruction; in this case, hProlog was made to generate
an allocate, deallocate proceed sequence, mimicking an eager allocation. The third
(and seventh) row shows the result for hProlog with reuse of the environment
for the tail call to tak like.

1 2 3 4 5 6 7 8 9 10 avi
hProlog 150 250 418 450 478 514 542 586 590 630 53

hProlog+extra env 208 458 542 628 714 798 888 972 1056 1148 104
hProlog+reuse 110 208 374 404 432 462 500 524 558 589 53

B-Prolog 226 492 596 692 792 894 994 1100 1204 1304 119
hProlog 183 199 229 252 369 398 422 454 484 492 34

hProlog+extra env 249 325 496 572 670 739 817 899 980 1058 89
hProlog+reuse 123 147 170 196 317 340 364 397 417 444 35

B-Prolog 254 466 590 704 826 959 1154 1191 1367 1456 133

The table also indicates the average increment between successive values of n.
It is interesting to see that the B-Prolog figures are the closest to hProlog+extra
env. The hProlog columns further show that

– the relative gain of environment reuse depends on n: the gain is larger with
smaller n; this gain goes from 26% to 6.5% (on Linux) and 27% to 9.7% (on
Mac); note that those are overestimates of what can be achieved in practical
programs, because the artificial benchmarks contain hardly any fluff.

702 B. Demoen and P.-L. Nguyen

– the relative loss of creating the extra environment is about 27% to 45%
(on Linux) and 26% to 53% (on Mac); again, those figures overestimate the
relative effect.

When one considers the absolute figures (for Linux), one sees that environment
avoidance reduces the runtime by 58 msecs up to 518 msecs. Environment reuse
gives an almost constant gain between 30 and 40 msecs.

One can conclude that the WAM optimization of not allocating an environ-
ment for a fact, is more effective that the TOAM optimization of reusing the
stack frame. Both the absolute and relative figures suggest that. Moreover, as
expected, environment avoidance becomes better when there are more goals in
the body.

5 Conclusion

Tak/4 lends itself easily to environment reuse in the WAM: such reuse is more
difficult if a predicate has more than one clause with an allocate, and if one still
wants to compile clauses in isolation, as the WAM does. So we cannot claim that
we have ultimate answers and solutions. We observed that environment reuse
for tak/4 was quite effective, but depending on the platform-gcc combination.
The analysis of the experimental results shows that environment avoidance is a
better optimization than environment reuse. Of course, for performance reasons,
one would like to have them both. The next step should be an adaptation of the
hProlog compiler to exploit the reuse of environments.

Acknowledgements

Bart Demoen thanks Research Foundation-Flanders (FWO-Vlaanderen) for sup-
port. Part of this work was performed during a visit to IMA, UCO, Angers.

References

1. Clocksin, W., Mellish, C.: Programming in Prolog. Springer, Heidelberg (1984)
2. Aı̈t-Kaci, H.: The WAM: a (real) tutorial. Technical Report 5, DEC Paris Research

Report (1990)
3. Warren, D.H.D.: An Abstract Prolog Instruction Set. Technical Report 309, SRI

(1983)
4. Zhou, N.F.: Global optimizations in a Prolog compiler for the TOAM. Journal of

Logic Programming 15(4), 275–294 (1993)
5. Demoen, B., Nguyen, P.L.: So many WAM variations, so little time. In: Palamidessi,

C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K.,
Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 1240–1254.
Springer, Heidelberg (2000)

6. Zhou, N.F.: A Register-Free Abstract Prolog Machine with Jumbo Instructions. In:
Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 455–457. Springer,
Heidelberg (2007)

Logic Engines as Interactors

Paul Tarau

Department of Computer Science and Engineering
University of North Texas

tarau@cs.unt.edu

Abstract. We introduce a new programming language construct, Inter-
actors, supporting the agent-oriented view that programming is a dialog
between simple, self-contained, autonomous building blocks.

We define Interactors as an abstraction of answer generation and re-
finement in Logic Engines resulting in expressive language extension and
metaprogramming patterns.

Interactors extend language constructs like Ruby, Python and C#’s
multiple coroutining block returns through yield statements and they
can emulate the action of monadic constructs and catamorphisms in
functional languages.

The full version of this paper [1] describes source level emulation of
Prolog’s dynamic database and various built-ins in terms of an Interactor
API and design patterns for algorithms involving combinatorial genera-
tion and infinite answer streams.

Keywords: generalized iterators, logic engines, agent oriented program-
ming language constructs, metaprogramming.

1 Introduction

Agent programming constructs have influenced design patterns at “macro level”,
ranging from interactive Web services to mixed initiative computer human in-
teraction. Performatives in Agent communication languages [2] have made these
constructs reflect explicitly the intentionality, as well as the negotiation process
involved in agent interactions.

In a logic programming context, the Jinni agent programming language [3,4,5]
and the BinProlog system [6] have been centered around logic engine constructs
providing an API that supported reentrant instances of the language processor.
This has naturally led to a view of logic engines as instances of a generalized
family of iterators called Fluents [7], that have allowed the separation of the first-
order language interpreters from the multi-threading mechanism, while providing
a very concise source-level reconstruction of Prolog’s built-ins.

Building upon the Fluents API described in [7], this paper will focus on bring-
ing interaction-centered, agent oriented constructs from software design frame-
works and design patterns to programming language level.

The resulting language constructs, that we shall call Interactors, will express
control, metaprogramming and interoperation with stateful objects and external

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 703–707, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

704 P. Tarau

services. They complement pure Horn Clause Prolog with a significant boost in
expressiveness, to the point where they allow emulating at source level virtually
all Prolog builtins, including dynamic database operations.

As paradigm independent language constructs, Interactors are a generaliza-
tion of Coroutine Iterators [8] and Interruptible Iterators [9].

2 First Class Logic Engines

Our Interactor API is an natural extension of of the Logic Engine API introduced
in [7]. An Engine is simply a language processor reflected through an API that
allows its computations to be controlled interactively from another Engine, very
much the same way a programmer controls Prolog’s interactive toplevel loop:
launch a new goal, ask for a new answer, interpret it, react to it.

A Logic Engine is an Engine running a Horn Clause Interpreter with LD-
resolution [10] on a given clause database, together with a set of built-in opera-
tions. The command

new_engine(AnswerPattern,Goal,Interactor)

creates a new Horn Clause solver, uniquely identified by Interactor, which
shares code with the currently running program and is initialized with Goal as
a starting point. AnswerPattern is a term, usually a list of variables occurring
in Goal, of which answers returned by the engine will be instances.

The get/2 operation is used to retrieve successive answers generated by an
Interactor, on demand.

get(Interactor,AnswerInstance)

It tries to harvest the answer computed from Goal, as an instance of
AnswerPattern. If an answer is found, it is returned as the(AnswerInstance),
otherwise the atom no is returned. As in the case of Maybe Monad in Haskell,
returning distinct functors in the case of success and failure, allows further case
analysis in a pure Horn Clause style, without needing Prolog’s CUT or if-then-
else operation.

Note that bindings are not propagated to the original Goal or AnswerPattern
when get/2 retrieves an answer, i.e. AnswerInstance is obtained by first stan-
dardizing apart (renaming) the variables in Goal and AnswerPattern, and then
backtracking over its alternative answers in a separate Prolog interpreter. There-
fore, backtracking in the caller interpreter does not interfere with the new Inter-
actor’s iteration over answers. Backtracking over the Interactor’s creation point,
as such, makes it unreachable and therefore subject to garbage collection.

An Interactor is stopped with the stop/1 operation (that is also called auto-
matically when no more answers can be produced.)
So far, these operations provide a minimal Coroutine Iterator API, powerful
enough to switch tasks cooperatively between an engine and its client and em-
ulate key Prolog built-ins like if-then-else and findall [7], as well as higher
order operations like fold and best of [1].

Logic Engines as Interactors 705

3 From Fluents to Interactors

We will now describe the extension of the Fluents API of [7] that provides a
minimal bidirectional communication API between interactors and their clients.

The following operations provide a “mixed-initiative” interaction mechanism,
allowing more general data exchanges between an engine and its client.

A Yield/Return Operation

First, like the yield return construct of C# and the yield operation of Ruby
and Python, our return/1 operation

return(Term)

will save the state of the engine and transfer control and a result Term to its
client. The client will receive a copy of Term simply by using its get/1 operation.
Similarly to Ruby’s yield, our return operation suspends and returns data from
arbitrary computations (possibly involving recursion) rather than from specific
language constructs like a while or for loop.

Note that an Interactor returns control to its client either by calling return/1
or when a computed answer becomes available. By using a sequence of return/get
operations, an engine can provide a stream of intermediate/final results to its
client, without having to backtrack. This mechanism is powerful enough to im-
plement a complete exception handling mechanism (see [7]) simply with

throw(E):-return(exception(E)).

When combined with a catch(Goal,Exception,OnException), on the client
side, the client can decide, upon reading the exception with get/1, if it wants
to handle it or to throw it to the next level.

The mechanisms discussed so far are expressive enough, as described in [7], to
implement at source level key built-in predicates of Prolog like if-then-else,
findall and copy term.

Interactors and Coroutining. The operations described so far allow an engine
to return answers from any point in its computation sequence. The next step is
to enable its client to inject new goals (executable data) to an arbitrary inner
context of an engine. Two new primitives are needed:

to_engine(Engine,Data)

used to send a client’s data to an Engine, and

from_engine(Data)

used by the engine to receive a client’s Data.
A typical use case for the Interactor API looks as follows:

1. the client creates and initializes a new engine
2. the client triggers a new computation in the engine, parameterized as follows:

706 P. Tarau

(a) the client passes some data and a new goal to the engine and issues a
get operation that passes control to it

(b) the engine starts a computation from its initial goal or the point where
it has been suspended and runs (a copy of) the new goal received from
its client

(c) the engine returns (a copy of) the answer, then suspends and returns
control to its client

3. the client interprets the answer and proceeds with its next computation step
4. the process is fully reentrant and the client may repeat it from an arbitrary

point in its computation

Using a metacall mechanism like call/1 (which can also be emulated in terms
of engine operations [7]), one can implement a close equivalent of Ruby’s yield
statement as follows:

ask_engine(Engine,Goal, Answer):-
to_engine(Engine,Goal),
get(Engine,Answer).

engine_yield(Answer):-
from_engine((Answer:-Goal)),
call(Goal),
return(Answer).

where ask engine sends a goal (possibly built at runtime) to an engine, which
in turn, executes it and returns a result with an engine yield operation.

As the following example shows, this allows the client to use from outside the
(infinite) recursive loop of an engine as a form of updatable persistent state.

sum_loop(S1):-engine_yield(S1=>S2),sum_loop(S2).

inc_test(R1,R2):-
new_engine(_,sum_loop(0),E),
ask_engine(E,(S1=>S2:-S2 is S1+2),R1),
ask_engine(E,(S1=>S2:-S2 is S1+5),R2).

?- inc_test(R1,R2).
R1=the(0 => 2),
R2=the(2 => 7)

Note also that after parameters (the increments 2 and 5) are passed to the
engine, results dependent on its state (the sums so far 2 and 7) are received
back. Moreover, note that an arbitrary goal is injected in the local context of
the engine where it is executed, with access to the engine’s state variables S1 and
S2. As engines have separate garbage collectors (or in simple cases as a result
of tail recursion), their infinite loops run in constant space, provided that no
unbounded size objects are created.

Logic Engines as Interactors 707

4 Conclusion

Logic Engines encapsulated as Interactors have been used to build on top of
pure Prolog (together with the Fluent API described in [7]) a practical Prolog
system, including dynamic database operations [1], entirely at source level.

In a broader sense, Interactors can be seen as a starting point for rethinking
fundamental programming language constructs like Iterators and Coroutining
in terms of language constructs inspired by performatives in agent oriented pro-
gramming. Beyond applications to logic-based language design, we hope that
our language constructs will be reusable in the design and implementation of
new functional and object oriented languages.

References

1. Tarau, P.: Logic Engines as Interactors (2008), http://arXiv.org/abs/0808.0556
2. Mayfield, J., Labrou, Y., Finin, T.W.: Evaluation of KQML as an Agent Commu-

nication Language. In: Wooldridge, M., Müller, J.P., Tambe, M. (eds.) ATAL 1996.
LNCS, vol. 1037, pp. 347–360. Springer, Heidelberg (1996)

3. Tarau, P.: Orthogonal Language Constructs for Agent Oriented Logic Program-
ming. In: Carro, M., Morales, J.F. (eds.) Proceedings of CICLOPS 2004, Fourth
Colloquium on Implementation of Constraint and Logic Programming Systems,
Saint-Malo, France (September 2004)

4. Tarau, P.: Agent Oriented Logic Programming Constructs in Jinni 2004. In: De-
moen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 477–478. Springer,
Heidelberg (2004)

5. Tarau, P.: The Jinni Prolog Compiler: a fast and flexible Prolog-in-Java (2008),
http://www.binnetcorp.com/download/jinnidemo/JinniUserGuide.html

6. Tarau, P.: BinProlog 11.x Professional Edition: Advanced BinProlog Programming
and Extensions Guide. Technical report, BinNet Corp. (2006)

7. Tarau, P.: Fluents: A Refactoring of Prolog for Uniform Reflection and Interoper-
ation with External Objects. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W.,
Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL
2000. LNCS, vol. 1861. Springer, Heidelberg (2000)

8. Liskov, B., Atkinson, R.R., Bloom, T., Moss, J.E.B., Schaffert, C., Scheifler, R.,
Snyder, A.: CLU Reference Manual. LNCS, vol. 114. Springer, Heidelberg (1981)

9. Liu, J., Kimball, A., Myers, A.C.: Interruptible iterators. In: Morrisett, J.G., Jones,
S.L.P. (eds.) POPL, pp. 283–294. ACM, New York (2006)

10. Tarau, P., Boyer, M.: Nonstandard Answers of Elementary Logic Programs. In:
Jacquet, J. (ed.) Constructing Logic Programs, pp. 279–300. J. Wiley, Chichester
(1993)

http://arXiv.org/abs/0808.0556
http://www.binnetcorp.com/download/jinnidemo/JinniUserGuide.html

Global Storing Mechanisms
for Tabled Evaluation

Jorge Costa and Ricardo Rocha�

DCC-FC & CRACS
University of Porto, Portugal

c0607002@alunos.dcc.fc.up.pt, ricroc@dcc.fc.up.pt

Abstract. Arguably, the most successful data structure for tabling is
tries. However, while tries are very efficient for variant based tabled evalu-
ation, they are limited in their ability to recognize and represent repeated
terms in different tabled calls or/and answers. In this paper, we propose
a new design for the table space where tabled terms are stored in a
common global trie instead of being spread over several different tries.

1 Introduction

Tabling is an implementation technique where intermediate answers for subgoals
are stored and then reused whenever a repeated call appears. The performance
of tabled evaluation largely depends on the implementation of the table space
– being called very often, fast lookup and insertion capabilities are mandatory.
Applications can make millions of different calls, hence compactness is also re-
quired. Arguably, the most successful data structure for tabling is tries [1].

However, while tries are very efficient for variant based tabled evaluation, they
are limited in their ability to recognize and represent repeated terms in differ-
ent tabled calls or/and answers. In [2], Rao et al. proposed a Dynamic Threaded
Sequential Automata (DTSA) that recognizes reusable subcomputations for sub-
sumption based tabling. In [3], Johnson et al. proposed an alternative to DTSA,
called Time-Stamped Trie (TST), which not only maintains the time efficiency
of the DTSA but has better space efficiency.

In this paper, we propose a different approach. We propose a new design for
the table space where all terms in a tabled subgoal call or/and answer are stored
in a common global trie instead of being spread over several different trie data
structures. Our approach resembles the hash-consing technique [4], as it tries to
share data that is structurally equal. An obvious goal is to save memory usage
by reducing redundancy in term representation to a minimum. We will focus
our discussion on a concrete implementation, the YapTab system [5], but our
proposals can be easy generalized and applied to other tabling systems.

� This work has been partially supported by the research projects STAMPA
(PTDC/EIA/67738/2006) and JEDI (PTDC/ EIA/66924/2006) and by Fundação
para a Ciência e Tecnologia.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 708–712, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Global Storing Mechanisms for Tabled Evaluation 709

2 Table Space

A trie is a tree structure where each different path through the trie data units,
the trie nodes, corresponds to a term. Each root-to-leaf path represents a term
described by the tokens labelling the nodes traversed. Two terms with common
prefixes will branch off from each other at the first distinguishing token. For
example, the tokenized form of the term p(X, q(Y,X), Z) is the stream of 6
tokens: p/3, V AR0, q/2, V AR1, V AR0, V AR2. Variables are represented using
the formalism proposed by Bachmair et al. [6], where the set of variables in
a term is mapped to the sequence of constants V AR0, ..., V ARN .

Internally, the trie nodes are 4-field data structures. One field stores the node’s
token, one second field stores a pointer to the node’s first child, a third field stores
a pointer to the node’s parent and a fourth field stores a pointer to the node’s
next sibling. Each node’s outgoing transitions may be determined by following
the child pointer to the first child node and, from there, continuing through
the list of sibling pointers. A threshold value controls whether to dynamically
index the sibling nodes through a hash table. Further, hash collisions are re-
duced by dynamically expanding the hash tables. YapTab implements tables
using two levels of tries - one for subgoal calls, the other for computed an-
swers. More specifically, the table space of YapTab is organized in the following
way:

– each tabled predicate has a table entry data structure assigned to it, acting
as the entry point for the predicate’s subgoal trie.

– each different subgoal call is represented as a unique path in the subgoal trie,
starting at the predicate’s table entry and ending in a subgoal frame data
structure, with the argument terms being stored within the path’s nodes.

– the subgoal frame data structure acts as an entry point to the answer trie.
– each different subgoal answer is represented as a unique path in the an-

swer trie. To increase performance, answer trie paths enforce the substitu-
tion factoring mechanism [1] and hold just the substitution terms for the
free variables which exist in the argument terms.

– the subgoal frame has internal pointers to the first and last answer on the
trie and the leaf’s child pointer of answers are used to point to the next
available answer, a feature that enables answer recovery in insertion time
order. Answers are loaded by traversing the answer trie nodes bottom-up.

An example for a tabled predicate t/2 is shown in Fig. 1. Initially, the subgoal
trie is empty. Then, subgoal t(a(1),X) is called and three trie nodes are inserted:
one for the functor a/1, a second for the constant 1 and one last for variable X.
The subgoal frame is inserted as a leaf, waiting for the answers. Next, subgoal
t(a(2),X) is also called. It shares one common node with t(a(1),X) but, having
a/1 a different argument, two new trie nodes and a new subgoal frame are
inserted. At the end, the answers for each subgoal are stored in the corresponding
answer trie as their values are computed. Note that, for this particular example,
the completed answer trie for both subgoal calls is exactly the same.

710 J. Costa and R. Rocha

3 Global Trie

subgoal frame for
t(a(1),VAR0)

1

a/1

2

subgoal
trie

t(a(X),a(Y)) :- a(X), a(Y).
a(1).
a(2).

VAR0VAR0

table entry for t/2

answer
trie

a/1

12

subgoal frame for
t(a(2),VAR0)

answer
trie

a/1

12

Fig. 1. YapTab’s original table organization

We next describe the YapTab’s
new design for the table space.
In this new design, all terms in
a tabled subgoal call or/and an-
swer are now stored in a com-
mon global trie (GT) instead of
being spread over several different
trie data structures. The GT data
structure still is a tree structure
where each different path through
the trie nodes corresponds to a
term. However, here a term can
end at any internal trie node and
not necessarily at a leaf trie node.

The previous subgoal trie and
answer trie data structures are
now represented by a unique level
of trie nodes that point to the cor-
responding terms in the GT (see
Fig. 2 for details). For the sub-
goal tries, each node now repre-
sents a different subgoal call where the node’s token is the pointer to the
unique path in the GT that represents the argument terms for the subgoal
call. The organization used in the subgoal tries to maintain the list of sibling
nodes and to access the corresponding subgoal frames remains unaltered. For
the answer tries, each node now represents a different subgoal answer where
the node’s token is the pointer to the unique path in the GT that repre-
sents the substitution terms for the free variables which exist in the argu-
ment terms. The organization used in the answer tries to maintain the list of
sibling nodes and to enable answer recovery in insertion time order remains
unaltered. With this organization, answers are now loaded by following the
pointer in the node’s token and then by traversing the corresponding GT’s nodes
bottom-up.

Figure 2 uses again the example from Fig. 1 to illustrate how the GT’s de-
sign works. Initially, the subgoal trie and the GT are empty. Then, the first
subgoal t(a(1),X) is called and three nodes are inserted on the GT: one to
represent the functor a/1, another for the constant 1 and a last one for vari-
able X. Next, a node representing the path inserted on the GT is stored in
the subgoal trie (node labeled call1). The token field for the call1 node
is made to point to the leaf node of the GT’s inserted path and the child
field is made to point to a new subgoal frame. For the second subgoal call,
t(a(2),X), we start again by inserting the call in the GT and then we store a
node in the subgoal trie (node labeled call2) to represent the path inserted on
the GT.

Global Storing Mechanisms for Tabled Evaluation 711

a/1

12

VAR0 VAR0

subgoal frame for
t(a(1),VAR0)

call
1

call
2

subgoal
trie

table entry for t/2

subgoal frame for
t(a(2),VAR0)

answer trie
answer

1
answer

2

answer trie
answer

1
answer

2

global
trie

Fig. 2. YapTab’s new table organization

For each subgoal call we have
two answers: the terms a(1)
and a(2). However, as these
terms are already represented
on the GT, we need to store
only two nodes, in each answer
trie, to represent them (nodes
labeled answer1 and answer2).
The token field for these answer
trie nodes are made to point to
the corresponding term repre-
sentation on the GT. With this
example we can see that terms
in the GT can end at any inter-
nal trie node (and not necessar-
ily at a leaf trie node) and that
a common path on the GT can
simultaneously represent differ-
ent subgoal and answer terms.

4 Preliminary Experimental Results

To evaluate the impact of our proposal, we have defined a tabled predicate t/5
that stores in the table space terms of a certain kind, and then we use a top
query goal test/0 that recursively calls t/5 with all combinations of one and
two free variables in the arguments. We next show the code example used in the
experiments for functor terms of arity 1 (500 terms in total).

t(A,B,C,D,E) :- term(A), term(B), term(C), term(D), term(E).

test :- t(A,f(1),f(1),f(1),f(1)), fail. term(f(1)).
... term(f(2)).
test :- t(A,B,f(1),f(1),f(1)), fail. ...
... term(f(499)).
test. term(f(500)).

The environment for our experiments was an AMD Athlon XP 2800+ with 1
GByte of main memory and running the Linux kernel 2.6.24-19. Table 1 shows
the memory usage and the running times to store to the tables (first execu-
tion) and to load from the tables (second execution) the complete set of sub-
goals/answers for YapTab with and without support for the global trie data
structure. We tested 5 different programs with functor terms of arity 1 to 5.

The results show that GT support can significantly reduce memory usage
proportionally to the depth and redundancy of the terms stored in the GT.
On the other hand, the results indicate that this reduction comes at a price
in execution time. With GT support, we need to navigate in two tries when
checking/inserting a term. Moreover, in some situations, the cost of inserting

712 J. Costa and R. Rocha

Table 1. Memory usage (in KBytes) and store/load times (in milliseconds) for YapTab
with and without support for the global trie data structure

Terms
YapTab (a) YapTab+GT (b) Ratio (b)/(a)

Mem Store Load Mem Store Load Mem Store Load
500 f/1 49172 693 242 52811 1029 243 1.07 1.48 1.00
500 f/2 98147 842 314 56725 1298 310 0.58 1.54 0.99
500 f/3 147122 1098 377 60640 1562 378 0.41 1.42 1.00
500 f/4 196097 1258 512 64554 1794 435 0.33 1.43 0.85
500 f/5 245072 1418 691 68469 2051 619 0.28 1.45 0.90

a new term in an empty/small trie can be less than the cost of navigating in
the GT, even when the term is already stored in the GT. However, our results
seem to suggest that this cost also decreases proportionally to the depth and
redundancy of the terms stored in the GT. The results obtained for loading
terms do not suggest significant differences. However and surprisingly, the GT
approach showed to outperform the original YapTab design in some experiments.

5 Conclusions

We have presented a new design for the table space that uses a common global
trie to store terms in tabled subgoal calls and answers. Our preliminary experi-
ments showed very significant reductions on memory usage. This is an important
result that we plan to apply to real-world applications that pose many subgoal
queries with a large number of redundant answers, such as ILP applications.

References

1. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1), 31–54
(1999)

2. Rao, P., Ramakrishnan, C.R., Ramakrishnan, I.V.: A Thread in Time Saves Tabling
Time. In: Joint International Conference and Symposium on Logic Programming,
pp. 112–126. The MIT Press, Cambridge (1996)

3. Johnson, E., Ramakrishnan, C.R., Ramakrishnan, I.V., Rao, P.: A Space Efficient
Engine for Subsumption-Based Tabled Evaluation of Logic Programs. In: Middel-
dorp, A. (ed.) FLOPS 1999. LNCS, vol. 1722, pp. 284–300. Springer, Heidelberg
(1999)

4. Goto, E.: Monocopy and Associative Algorithms in Extended Lisp. Technical Report
TR 74-03, University of Tokyo (1974)

5. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to
Support Parallelism. In: Conference on Tabulation in Parsing and Deduction, pp.
77–87 (2000)

6. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative Commutative Discrimina-
tion Nets. In: International Joint Conference on Theory and Practice of Software
Development. LNCS, vol. 668, pp. 61–74. Springer, Heidelberg (1993)

Thread-Based Competitive Or-Parallelism�

Paulo Moura1,3, Ricardo Rocha2,3, and Sara C. Madeira1,4

1 Dep. of Computer Science, University of Beira Interior, Portugal
{pmoura, smadeira}@di.ubi.pt

2 Dep. of Computer Science, University of Porto, Portugal
ricroc@dcc.fc.up.pt

3 Center for Research in Advanced Computing Systems, INESC–Porto, Portugal
4 Knowledge Discovery and Bioinformatics Group, INESC–ID, Portugal

Abstract. This paper presents the logic programming concept of thread-
based competitive or-parallelism, which combines the original idea of
competitive or-parallelism with committed-choice nondeterminism and
speculative threading. In thread-based competitive or-parallelism, an
explicit disjunction of subgoals is interpreted as a set of concurrent al-
ternatives, each running in its own thread. The subgoals compete for
providing an answer and the first successful subgoal leads to the termi-
nation of the remaining ones. We discuss the implementation of com-
petitive or-parallelism in the context of Logtalk, an object-oriented logic
programming language, and present experimental results.

1 Introduction

Or-parallelism is a simple form of parallelism in logic programs, where the bodies
of alternative clauses for the same goal are executed concurrently. Or-parallelism
is often explored implicitly, without input from the programmer to express or
manage parallelism. In this paper, we introduce a different, explicit form of
or-parallelism, thread-based competitive or-parallelism, that combines the origi-
nal idea of competitive or-parallelism [1] with committed-choice nondetermin-
ism [2] and speculative threading [3]. Committed-choice nondeterminism, also
known as don’t-care nondeterminism, means that once an alternative is taken,
the computation is committed to it and cannot backtrack or explore in par-
allel other alternatives. Committed-choice nondeterminism is useful whenever
a single solution is sought among a set of potential alternatives. Speculative
threading allows the exploration of different alternatives, which can be inter-
preted as competing to provide an answer for the original problem. The key idea
is that multiple threads can be started without knowing a priori which of them,
if any, will perform useful work. In competitive or-parallelism, different alterna-
tives are interpreted as competing for providing an answer. The first successful
alternative leads to the termination of the remaining ones. From a declarative
programming perspective, thread-based competitive or-parallelism allows one to
� This work has been partially supported by the FCT research projects STAMPA

(PTDC/EIA/67738/2006) and MOGGY (PTDC/EIA/70830/2006).

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 713–717, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

714 P. Moura, R. Rocha, and S.C. Madeira

specify alternative procedures to solve a problem without caring about the de-
tails of speculative execution and thread handling. Another important key point
of thread-based competitive or-parallelism is its simplicity and implementation
portability when compared with classical, low-level or-parallelism implementa-
tions. The ISO Prolog multi-threading standardization proposal [4] is currently
implemented in several systems including SWI-Prolog, Yap and XSB, providing
a highly portable solution given the number of operating systems supported by
these Prolog systems. In contrast, most or-parallelism systems described in the
literature [5] are no longer available, due to the complexity of maintaining and
porting their implementations.

Our competitive or-parallelism research is driven by the increasing availability
of multi-core personal computing systems. These systems are turning into a
viable high-performance, low-cost and standardized alternative to the traditional
(and often expensive) parallel architectures. The number of cores per processor
is expected to continue to increase, further expanding the areas of application
of competitive or-parallelism.

2 Thread-Based Competitive Or-Parallelism

The concept of thread-based competitive or-parallelism is based on the interpre-
tation of an explicit disjunction of subgoals as a set of concurrent alternatives,
each running in its own thread. Each individual alternative is assumed to imple-
ment a different procedure that, depending on the problem specifics, is expected
to either fail or succeed with different performance results. For example, one al-
ternative may converge quickly to a solution, other may get trapped into a local,
suboptimal solution, while a third may simply diverge. The subgoals are inter-
preted as competing for providing an answer and the first subgoal to complete
leads to the termination of the threads running the remaining subgoals.

Consider, for example, the water jugs problem. In this problem, we have
several jugs of different capacities and we want to measure a certain amount
of water. We may fill a jug, empty it, or transfer its contents to another jug.
Assume now that we have implemented several methods to solve this problem,
e.g. breadth-first, depth-first, and hill-climbing. In Logtalk, we may then write:

solve(Jugs, Moves) :-
threaded((

breadth_first::solve(Jugs, Moves)
; depth_first::solve(Jugs, Moves)
; hill_climbing::solve(Jugs, Moves)
)).

The semantics of a competitive or-parallelism call implemented by the Logtalk
built-in predicate threaded/1 is simple. Given a disjunction of subgoals, a com-
petitive or-parallelism call blocks until one of the subgoals succeeds, all the sub-
goals fail, or one of the subgoals generates an exception. All the remaining threads
are terminated once one of the subgoals succeeds or throws an exception. The com-
petitive or-parallelism call is deterministic and opaque to cuts; there is no back-
tracking over completed calls. The competitive or-parallelism call succeeds if and

Thread-Based Competitive Or-Parallelism 715

only if one of the subgoals succeeds. When one of the subgoals generates an ex-
ception, the competitive or-parallelism call terminates with the same exception.

3 Implementation

In this section, we discuss the Logtalk [6] implementation of competitive
or-parallelism, based on the core predicates found on the ISO standardization
proposal for Prolog threads [4]. Logtalk is an open source object-oriented logic
programming language that can use most Prolog systems as a back-end compiler.
Logtalk takes advantage of modern multi-processor and multi-core computers to
support high level multi-threading programming, allowing objects to support
both synchronous and asynchronous messages without worrying about the de-
tails of thread management. Using Prolog core multi-threading predicates to
support competitive or-parallelism allows simple and portable implementations
to be written. Nevertheless, three major problems must be addressed when im-
plementing or-parallelism systems: (i) multiple binding representation, (ii) work
scheduling, and (iii) predicate side-effects.

Multiple Binding Representation. A significant implementation advantage
of competitive or-parallelism is that only the first successful subgoal in a dis-
junction of subgoals can lead to the instantiation of variables in the original call.
This greatly simplifies our implementation as the Prolog core support for multi-
threading programming can be used straightforward. In particular, we can take
advantage of the Prolog thread creation predicate thread create/3. Threads
created with this predicate run a copy of the goal argument using its own set of
data areas (stack, heap, trail, etc). Its implementation is akin to the environment
copying approach [7], but much simpler as only the goal is copied. Because it
is running a copy, no variable is shared between threads. Thus, the bindings of
shared variables occurring within a thread are independent of bindings occurring
in other threads. This operational semantics simplifies the problem of multiple
binding representation in competitive or-parallelism, which results in a simple
implementation with only a small number of lines of Prolog source code.

Work Scheduling. Unrestricted competitive or-parallelism can lead to com-
plex load balancing problems, since the number of running threads may easily
exceed the number of available computational units. In our implementation,
load balancing is currently delegated to the operating system thread scheduler.
This is partially a consequence of our use of the core Prolog multi-threading
predicates. However, and although we have postponed working on an advanced,
high-level scheduler, we can explicitly control the number of running threads
using parametric objects with a parameter for the maximum number of running
threads. This is a simple programming solution, used in most of the Logtalk
multi-threading programming examples.

Side-Effects and Dynamic Predicates. The subgoals in a competitive or-
parallelism call may have side-effects that may clash if not accounted for. Two

716 P. Moura, R. Rocha, and S.C. Madeira

common examples are input/output operations and asserting and retracting
clauses for dynamic predicates. To prevent conflicts, Logtalk and the Prolog
compilers implementing the ISO Prolog multi-threading standardization pro-
posal allow predicates to be declared synchronized, thread shared (the default),
or thread private. Synchronized predicates are internally protected by a mutex,
thus allowing for easy thread synchronization. Thread private dynamic pred-
icates may be used to implement thread local dynamic state. Thread shared
dynamic predicates are required by the ISO Prolog multi-threading standard-
ization proposal to follow logical update semantics.

4 Experimental Results

In order to validate our implementation, we used competitive or-parallelism
(COP) to simultaneously explore depth-first (DF), breadth-first (BF), and hill-
climbing (HC) search strategies for the water jugs problem. Our experimental
setup used Logtalk 2.33.0 with SWI-Prolog 5.6.59 64 bits as the back-end com-
piler on an Intel-based computer with four cores running Fedora Core 8 64 bits.1

Table 1. Measuring from 1 to 14 liters with 5-liter and 9-liter jugs

Liters DF HC BF COP Overhead Steps

1 26.373951 0.020089 0.007044 0.011005 0.003961 5
2 26.596118 12.907172 8.036822 8.324970 0.288148 11
3 20.522287 0.000788 1.412355 0.009158 0.008370 9
4 20.081001 0.000241 0.001437 0.002624 0.002383 3
5 0.000040 0.000240 0.000484 0.000907 0.000867 2
6 3.020864 0.216004 0.064097 0.098883 0.034786 7
7 3.048878 0.001188 68.249278 0.008507 0.007319 13
8 2.176739 0.000598 0.127328 0.007720 0.007122 7
9 2.096855 0.000142 0.000255 0.003799 0.003657 2
10 0.000067 0.009916 0.004774 0.001326 0.001295 4
11 0.346695 5.139203 0.587316 0.404988 0.058293 9
12 14.647219 0.002118 10.987607 0.010785 0.008667 14
13 0.880068 0.019464 0.014308 0.029652 0.015344 5
14 0.240348 0.003415 0.002391 0.010367 0.007976 4

Table 1 shows the running times, in seconds, when 5-liter and 9-liter jugs were
used to measure from 1 to 14 liters of water. It allows us to compare the running
times of single-threaded DF, BF, and HC search strategies with the COP multi-
threaded call where one thread is used for each individual search strategy. The
results show the average of thirty runs. We highlight the fastest method for each
measure. The last column shows the number of steps of the solution found by
the competitive or-parallelism call. The maximum solution length was set to 14
steps for all strategies.
1 The experiments can be easily reproduced by the reader by running the query
logtalk load(mtbatch(loader)), mtbatch(swi)::run(search, 30).

Thread-Based Competitive Or-Parallelism 717

The results show that the use of competitive or-parallelism allows us to quickly
find a sequence of steps of acceptable length to solve different configurations of
the water jugs problem. Moreover, given that we do not know a priori which
individual search method will be the fastest for a specific measuring problem,
competitive or-parallelism is a better solution than any of the individual search
methods. The overhead of the competitive or-parallelism calls is due to the im-
plicit thread and memory management. In particular, the initial thread data
area sizes and the amount of memory that must be reclaimed when a thread
terminates play a significant role on observed overheads. We are optimizing our
implementation in order to minimize the thread management overhead. There
is also room for further optimizations on the Prolog implementations of the ISO
Prolog multi-threrading standardization proposal. Nevertheless, even with the
current implementations, our preliminary experimental results are promising.

5 Conclusions and Future Work

We have presented the logic programming concept of thread-based competitive
or-parallelism supported by an implementation in the object-oriented logic pro-
graming language Logtalk. This concept is orthogonal to the object-oriented fea-
tures of Logtalk and can be implemented in plain Prolog and in non-declarative
programming languages supporting the necessary threading primitives. Future
work will include exploring the role of tabling in competitive or-parallelism calls
and implementing a load-balancing mechanism. We also plan to apply com-
petitive or-parallelism to non-trivial problems, seeking real-world experimental
results allowing us to improve and expand our current implementation.

References

1. Ertel, W.: Performance Analysis of Competitive Or-Parallel Theorem Proving. Tech-
nical report fki-162-91, Technische Universität München (1991)

2. Shapiro, E.: The Family of Concurrent Logic Programming Languages. ACM Com-
puting Surveys 21(3), 413–510 (1989)

3. González, A.: Speculative Threading: Creating New Methods of Thread-Level Par-
allelization. Technology@Intel Magazine (2005)

4. Moura, P.: ISO/IEC DTR 13211–5:2007 Prolog Multi-threading Support,
http://logtalk.org/plstd/threads.pdf

5. Gupta, G., Pontelli, E., Ali, K., Carlsson, M., Hermenegildo, M.V.: Parallel Execu-
tion of Prolog Programs: A Survey. ACM Transactions on Programming Languages
and Systems 23(4), 472–602 (2001)

6. Moura, P.: Logtalk – Design of an Object-Oriented Logic Programming Language.
PhD thesis, Department of Computer Science, University of Beira Interior (2003)

7. Ali, K., Karlsson, R.: The Muse Approach to OR-Parallel Prolog. International
Journal of Parallel Programming 19(2), 129–162 (1990)

http://logtalk.org/plstd/threads.pdf

A Logic Language with Stable Model
Semantics for Social Reasoning�

Francesco Buccafurri, Gianluca Caminiti, and Rosario Laurendi

DIMET, Università degli Studi Mediterranea di Reggio Calabria
via Graziella, loc. Feo di Vito, 89122 Reggio Calabria, Italy

{bucca,gianluca.caminiti,rosario.laurendi}@unirc.it

Abstract. In this paper we present a new language based on logic programming
allowing us to represent some forms of social reasoning. The nice feature of this
semantics is that the interdependent individuals’ requirements might result in a
sort of guessing of agreed conclusions, which autonomously each individual can-
not derive, thus capturing the common case of mutual influence of a community
in the individuals’ reasoning.

1 An Overview of the Language

Assume there are three friends, Alice, Bob and Mary. Each wants to buy a bottle of
wine as a present for a dinner. In order to decide how much to spend, each reasons
about the price of his/her present relating it with the decisions of the other individuals.
A possible situation is the following. Everyone, autonomously, decides to spend the
maximum value between the amounts decided by the other two individuals. Assuming
that a number of possible wines (with distinct prices) are available, any intuitive equi-
librium answer to the above requirements is that all the individuals choose the same
wine. Such an intended meaning is not captured by a traditional logic program obtained
by putting together the requirements of all the individuals (directly encoded into logic
rules). Indeed, it is easy to verify that a logic program with aggregates[1,2,3,4] like1:

r1 : person(alice) ← r2 : person(bob) ← r3 : person(mary)←
r4 : wine(merlot, 25) ← r5 : wine(cabernet, 30) ←
r6 : spend(alice,X) ← wine(Z, X), #max{Y : spend(T, Y),

person(T), T = alice, wine(K, Y)} = X
r7 : spend(bob,X) ← wine(Z, X), #max{Y : spend(T, Y),

person(T), T = bob, wine(K, Y)} = X
r8 : spend(mary,X) ← wine(Z, X), #max{Y : spend(T, Y),

person(T), T = mary,wine(K, Y)} = X
r9 : spent ← spend(X,Y), wine(Z, Y)

r10 : ← not spent

does not admit stable models (according to the semantics given in [2,3] and [4]). Indeed,
the symmetrical requirements represented by rules r6, r7, r8 are not able to support each
� This is an abridged version of the report “A Logic Language to Reason in a Social Modality”,

TR Lab. Ing. Inf. 08/01. The reader may download it in order to find all the technical issues not
included here for space limitations (http://www.ai.unirc.it/tr0801.pdf).

1 We are using here the syntax of [2,3].

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 718–723, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Logic Language with Stable Model Semantics for Social Reasoning 719

other, due to the minimality satisfied by stable model semantics. As a consequence the
program is not able to produce decisions about the amount to spend, and, then, the
integrity constraint r10 is not satisfied.

The purpose of this paper is to introduce a language with social features allowing
us to represent the reasoning of each individual as a distinct logic program, possibly
embedding rules that encode the dependency of an individual’s conclusion on the con-
clusions of other individuals (as it typically happens in a community), also by inferring
quantities obtained as aggregates computed over the community of individuals. We call
this language Logic Programming with Social Assumptions (LPSA, for short). Due to
space limitations, we present the language only by example. The reader may find all the
technical features in the full report (http://www.ai.unirc.it/tr0801.pdf).
Therein, the formal semantics of our language, that extends stable model semantics to
social collections of programs can be found. Moreover, we give a polynomial transla-
tion to stable model semantics showing that the semantics of a LPSA collection can be
computed by determining the stable models of a logic program with aggregates.

Let us come back to the informal presentation of our language. Observe that the
above situation can be encoded into LPSA, by writing three programs (labelled with
Alice, Bob, and Mary, resp.) each consisting of the following rules:

r1 : wine(merlot, 25) ← r2 : wine(cabernet, 30) ←
r3 : spend(X) ← wine(Z, X), #Smax{Y : spend(T, Y), wine(K, Y)} = X
r4 : spent ← spend(X), wine(Z, X)
r5 : ← not spent

We thus obtain a collection of programs (each associated with an individual of the
community), each allowing the direct encoding of the interdependent individual’s re-
quirements. #Smax is a social aggregate operator, where the adjective social means
that its action involves only individuals different from the one where it is used. In par-
ticular, considering the program Alice, the informal meaning of the term #Smax{Y :
spend(T, Y), wine(K,Y))} = X appearing in rule r3 (that, accordingly is said so-
cial rule) is that the variable X (representing how much Alice would like to spend)
is equal to the maximum between the amounts spent by Bob and Mary (i.e., the so-
cial aggregate is computed over all the other individuals). The nice feature of LPSA

programs is that under their semantics the interdependent individuals’ requirements
result in a sort of guessing of agreed conclusions, that autonomously each individ-
ual cannot derive. The stability condition that in traditional programs (with negation)
selects those models that can be re-generated by assuming false all external atoms,
here operates by assuming true social conditions and by guaranteeing that this assump-
tion allows us to re-generate the intended model. For example, according to the se-
mantics of LPSA programs, the LPSA collection described above has two intended
models, one including (beside the list of available wines) the atoms spendAlice(30),
spendBob(30), spendMary(30), the other (beside the list of available wines) the atoms
spendAlice(25), spendBob(25), spendMary(25). Indeed, any other instantiation of the
predicate spend cannot allow to derive itself through the rules r3 of the three individ-
uals. We observe that the above intended models reflect just the intuitive semantics we
expect under a social perspective, where a given behavior of a community even though

720 F. Buccafurri, G. Caminiti, and R. Laurendi

supported by the community itself is unfounded if interpreted as the behavior of a single
individual.

As another example of mutual influence of a community in the individuals’ reason-
ing, consider the case of the formation of voting coalitions (like the election of the
president of a committee). Typically a single individual does not decide autonomously
to vote a given candidate, but it might happen that this decision depends on the deci-
sions of other people. Even the formation of a coalition of two electors (say Frank and
Brenda) in favor of a candidate (say John) fails when encoded in logic programming
(under stable model semantics) by the following program:

r1 : vote(frank, john) ← vote(brenda, john)
r2 : vote(brenda, john) ← vote(frank, john)

since no model for the program different from ∅ is stable. Again, a LPSA collection of
two simple programs (labelled with Frank and Brenda, resp.):

Frank – r1 : vote(john) ← [Brenda]{vote(john)}
Brenda – r2 : vote(john) ← [Frank]{vote(john)}

has two intended models, that are ∅ and {voteFrank(john), voteBrenda(john)}, repre-
senting all the possible behaviors of the community. The term [Brenda]{vote(john)}
(as well as the term [Frank]{vote(john)}) is a social condition (with intuitive meaning
of the syntax) applied to an individual different from that where it is used. We highlight
that our semantics is not in contrast with the prevalent literature in logic programming
affirming that the minimality requirement (and thus the absence of unfoundness) must
be satisfied by any plausible semantics for logic programs. Indeed, whenever our pro-
grams do not include social rules, the semantics of the collection is the trivial combina-
tion of the stable models of each program, thus preserving the minimality in the standard
(non-social) case (in the trivial case of a singleton social-rule-freeLPSA collection our
semantics coincides with stable model semantics).

In order to prevent a wrong interpretation of our semantics, we highlight that a stan-
dard logic rule, like a ← b in a social program P cannot be viewed as a particular
case of a social rule a← [P]{b} (i.e. a social rule with a self-reference). Indeed the se-
mantics operates differently on those predicates that are included in the body of social
rules, relaxing only for them the minimality condition given by stable model semantics.
In particular the semantics enables a “guessing” mechanism that allows us to apply a
sort of circumscription over all predicates (as traditional Stable Model Semantics) but
those appearing in the body of social rules, where the minimality is relaxed, in such
a way that those models that are mutually supported by the community are generated.
In words, social rules enable derivation through “mutual influence”, thus reflecting the
behavior of a community supported by the community itself even though unfounded if
interpreted as the behavior of a single individual. Thus, it is not correct (according to our
semantics) to view a standard logic rule as a particular case of a social logic rule, i.e., a
social rule with self-reference. Technically, self-reference is forbidden, since semanti-
cally self-influence is meaningless. A related approach is [5], introducing the notion of
equilibrium for contexts, i.e. knowledge bases linked by bridge rules (similar to social
conditions, but allowing self-reference). An equilibrium is a set of elements (from each

A Logic Language with Stable Model Semantics for Social Reasoning 721

context) supported by the context they belong and by some other context trough applica-
ble bridge rules. The closest work to this proposal is [6], wherein a language (SOLP -
Social Logic Programming) for representing social requirements has been proposed. In
SOLP , a program is a collection of logic programs, but the semantics is different from
that here presented, since in [6] it allows a more liberal guessing of unfounded conclu-
sions, even not related to social rules. From this point of view, SOLP inherits such a
feature from a previous language describing compromises between logic programs [7].
Indeed, SOLP incorporates the possibility for an individual to specify tolerance rules,
that are rules expressing a desire, instead of a requirement, and bases its semantics on a
fixpoint-based semantics instead of stable model semantics. As a consequence, unlike
LPSA, the semantics of a singleton social-rule-free SOLP collection does not coin-
cide with stable model semantics (thus it is not true, as it is for LPSA, that SOLP
extends stable model semantics with features enabled by social constructs). The other
main difference between the language here presented and SOLP is due to the presence
in LPSA of social aggregate operators, that provide the language with the capability of
representing in a natural way a number of social-like situations, where costs, distances,
numerousness, and other measures related to the community are used to influence the
behavior of each individual (consider for example problems of coalition formation in
electronic markets – an example of this setting is included below). It is worth noting
that, even though it might appear that our aggregates have a non-stratified behaviour (in
the sense of the definition given in [8,9] – even though, formally, this definition is not
applicable to our language), we show that no semantic complications arise from non-
stratification (i.e. aggregates involved into recursion) since our semantics is defined on
the basis of stable models of traditional logic programs with no aggregates. A more
complete contextualization of our work in the literature can be found in the full report.
Finally, we give an example showing how social aggregates and social conditions can
be used for naturally representing an interesting real-world application.

Coalition Formation. Consider a market with n vendors and m customers. Each ven-
dor sells items in lots of different sizes in such a way that the bigger is a lot, the bigger
is the discount. Each customer requires a number of items and specifies the maximum
price per item. Let I be the total number of items (of the same type) requested by all the
customers and A be the maximum amount they offer for the items. Customers cooper-
ate by forming coalitions for the same item in such a way that one vendor is chosen that
sells (i) a number k ≥ I of items at the minimum price p w.r.t. other vendors provided
that (ii) p ≤ A. Finally, (iii) unfair combinations of customer bids, that is combinations
such that a customer sets a maximum unit price that is two times lower than the price set
by another one, are forbidden. This scenario is represented by n+m LPSA programs.
The following rules encode a vendor (for instance vendor #1):

r1 : vendor name(1) ← r2 : lot(a, 10, 100) ← r3 : lot(a, 100, 900) ←

The j-th program (representing vendor#j) (1≤ j ≤ n) contains a factvendor name(j),
identifying the vendor. Vendor #1 sells a lot of 10 items a at 100$ (rule r2) and a lot of 100
at 900$, (rule r3). Likewise, the other vendors can specify different amounts and prices
for items to be sold. A typical customer bid for a is modelled as follows:

722 F. Buccafurri, G. Caminiti, and R. Laurendi

r4 : bid(a, 36, 4) ←
r5 : in(a, V) ← bid(a, J, C), ∗(J, C, T), #Ssum{X : in(a, V), bid(a,X,)} = N,

+(N, J, I), [1,]{vendor name(V), lot(a, K, M)}, K >= I,
#Smin{P : lot(a, K, P)} = M, M <= A, +(T, B, A),
#Ssum{Y : in(a, V), bid(a, X, F), ∗(X, F, Y)} = B

r6 : ← in(a, V 1), in(a, V 2), V 1 <> V 2
r7 : ← in(a, V), bid(a, J, C), [1,]{in(a, V), bid(a, I, G)}, ∗(2, G, H), C >= H

The predicate bid(X,Y, Z) (rule r4) means that the customer wants to buy Y items
of kind X , each at a price not greater than Z . The coalition formation mechanism is
encoded by the rule r5. First, let us explain the meaning of the variables used. J (resp.
N) is the number of items requested by the customer (resp. by all the other customers)
and T (resp.B) is the total maximum amount of money offered by him (resp. by them).
Both N and B are computed by social aggregate operators computing sums over the
customers. Finally, I (the total number of items a requested by all the customers) and
A (the maximum amount of money the customers offer for I items) are computed as
J + N and T + B, resp. Now, we can explain the meaning of rule r5. The customer
will join the coalition buying item a from vendor #V (represented by in(a, V)) if he
sells a lot having admissible size K (i.e., K ≥ I , see requir.(i)) and such that the cor-
responding price M both is not greater than A (see requir. (ii)) and is minimum among
the prices of lots (of admissible size) offered by other vendors. Note that the social
condition [1,]{vendor name(V), lot(a, K, M)} occurs in r5. Indeed, besides specifying
requirements on single individuals (as shown in the voting example), social conditions
may be of the form [l, h]{Conj} requiring groups (with cardinality bounds l and h) of
individuals to satisfy the conjunction Conj2. In detail, the social condition occurring in
r5 requires that at least one individual3 satisfies the above conjunction in curly brackets.
M is computed by the social aggregate operator #Smin. Moreover, if different vendors
offer lots (of admissible size) of the same item at the same minimum price, then the
customer chooses only one of them (rule r6). Finally, in rule r7, the social condition
[1,]{in(a, V), bid(a, I, G)} is used to drop unfair combinations of bids (requir. (iii)).

References

1. Son, T.C., Pontelli, E.: A Constructive Semantic Characterization of Aggregates in Answer
Set Programming. TPLP 7(3), 355–375 (2007)

2. Faber, W., Leone, N., Pfeifer, G.: Recursive Aggregates in Disjunctive Logic Programs: Se-
mantics and Complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp.
200–212. Springer, Heidelberg (2004)

3. Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative and Computational Properties of
Logic Programs with Aggregates. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 406–411.
Professional Book Center (2005)

4. Ferraris, P., Lifschitz, V.: Weight Constraints as Nested Expressions. TPLP 5(1-2) (2005)
5. Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems. In:

AAAI, pp. 385–390. AAAI Press, Menlo Park (2007)

2 Social conditions can also be nested in order to declare requirements over sub-groups of indi-
viduals, if a super-group satisfying a social condition exists.

3 Since l = 1 and h is assumed by default as the total number of individuals in the community.

A Logic Language with Stable Model Semantics for Social Reasoning 723

6. Buccafurri, F., Caminiti, G.: Logic Programming with Social Features. TPLP (to appear)
7. Buccafurri, F., Gottlob, G.: Multiagent Compromises, Joint Fixpoints, and Stable Models. In:

Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS,
vol. 2407. Springer, Heidelberg (2002)

8. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate Functions in Disjunctive
Logic Programming: Semantics, Complexity, and Implementation in DLV. In: IJCAI 2003,
Proc. of the 18th Int. Joint Conf. on Artificial Intelligence, pp. 847–852 (2003)

9. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and Implementation of
Aggregate Functions in the DLV System. CoRR abs/0802.3137 (2008)

ASPVIZ: Declarative Visualisation and
Animation Using Answer Set Programming

Owen Cliffe, Marina De Vos, Martin Brain, and Julian Padget

Department of Computer Science,
University of Bath,
United Kingdom

{occ,mdv,mjb,jap}@cs.bath.ac.uk

Abstract. Answer set programming provides a powerful platform for
model-based reasoning problems. The answer sets are solutions, but for
many non-trivial problems post-processing is often necessary for human
readability. In this paper we describe a method and a tool for visualising
answer sets in which we exploit answer set programming itself to define
how visualisations are constructed. An exciting potential application of
our method is to assist in the debugging of answer set programs that,
as a consequence of their declarative nature, are not amenable to tradi-
tional approaches: visual rendering of answer sets offers a way to help
programmers spot false and missing solutions.

1 Introduction

Answer Set Programming (ASP) is a methodology for solving NP and NP-
complete problems by representing the problem as a logic program under answer
set semantics, such that the answer sets correspond to the solutions of the prob-
lem. Although the answer sets represent the solutions of the problem encoded
by the program, they only consist of sets of atoms that are true (rendering the
missing ones false). To understand these answer sets, one must interpret them in
the context of the problem domain, which for simple cases can be done relatively
easily (by inspection) but, for any non-trivial problem/domain answer set size is
typically large and some post-processing is needed. In addition, post-processing
often plays an important role in verifying and debugging answer set programs.
There is a large body of literature relating to ASP, for in-depth coverage includ-
ing commonly used syntax see [1].

In this paper, we introduce ASPViz, a tool that enables end-users and ASP
programmers to visualise answer sets using the declarative nature of ASP itself
to produce graphical representations of solutions. Visualisation of a given domain
is achieved by the construction of a small answer set program that defines how
elements of the problem solution should be displayed.

2 Declarative Visualisation with ASP

ASPViz: is a Java program that constructs two-dimensional images from the an-
swer sets of a given program.The tool takes an answer set programΠ , representing

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 724–728, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ASPViz: Visualisation and Animation of ASP 725

a given problem and a visualisation program Πv which elaborates on the conclu-
sions drawnby the programΠ concluding the necessary literals to render a graphic.
Visualisation programs conclude atoms in the language Lviz , whereof the atoms
have the following types: (i) Those defining scene-control properties, such as the
display extents, scene-wide transformations and animation orderings (see below),
(ii)Those defining colours, brushes (line andfill properties), sprites (2Dbitmapped
graphics) and text properties which may be referenced in drawing atoms; e.g. the
atoms: brush(thick). brush color(thick,rgb(0,0,0)). brush width(thick,3).

define a black line brush called thickwhich is three units thick, (iii) Primitive draw-
ing atoms that relate to the rendering of graphical artifacts including lines, (filled)
polygons, ellipses, curves, sprites, and text. Each of these predicates includes the
relevant points (as terms) to position the corresponding artifact and drawing prop-
erties (brush, font, colour) required to render it; e.g. the atom draw line(thick,

p(0,0),p(1,4)) would draw a line connecting the points (0, 0) and (1, 4) using the
defined brush thick.

ASPViz supports two visualisation modes: one frame, or multiple frames,
per answer set. In the first case a visualisation program Πv is constructed such
that it contains no negative-order cycles and is stratified below Π (i.e. Πv is
deterministic w.r.t. Π). The program Πv + Π is solved to give zero or more
answer sets, each corresponding to an answer set of the original program Π
extended with visualisation atoms in Lviz concluded by Πv. For each of these
answer sets ASPViz extracts the atoms in Lviz and produces a graphic using a
Java-native graphics toolkit (SWT) as follows: (i) Canvas extents and transfor-
mation are set using the defined properties—or default values where none are
specified, (ii) Native objects (in SWT) are constructed corresponding to the de-
fined colours, brushes, fonts and sprites, (iii) Each of the graphical primitives is
rendered using the corresponding native drawing functions to produce a graphic.
A full description of language used, detailed examples and software are available
from http://www.cs.bath.ac.uk/∼occ/aspviz/.

In addition to rendering answer sets of a program individually, the same ap-
proach may be used to create animations and multi-framed image visualisations
based on individual answer sets. In this case the negative cycle restriction on
Πv is relaxed yielding a program which may itself have multiple answer sets (a
typical example might be a program which extracts each step of a plan as a
frame). For each answer set of Π a corresponding ground program Πi is pro-
duced consisting of the atoms of that answer set. Πv +Πi is then solved yielding
zero or more answer sets, each consisting of a partial rendering of the original
answer set of Π . These frames are rendered as before. In order to produce an-
imations, frames must be ordered: this is achieved by the inclusion of a unique
atom frame(T) in the conclusions of Πv, where T is a term. Animations are pro-
duced by parsing all produced answer sets of Πv +Πi and then ordering the sets
by the value of T. The value of T is typically an integer and may be determined
directly from some value in Π (e.g. the largest time step value in the case of of a
planning problem), or may be derived from aggregates or weight values (where
supported by the underlying ASP system) over atoms in a solution of Π .

http://www.cs.bath.ac.uk/~occ/aspviz/

726 O. Cliffe et al.

Π :

position(1 .. 9). value(1 .. 9).

% all initial cell positions are final positions
state(X,Y,N):-initial(X,Y.N).

% select at most one value for each cell
1 { state(X,Y,NU) : value(NU) } 1:- position(X;Y),value(NU) .

% no numbers may appear twice on the same row or column
:- state(XA,Y,N), state(XB,Y,N), XA !=
XB,position(XA;XB;Y),value(N). :- state(X,YA,N), state(X,YB,N), YA
!= YB,position(YA;YB,X),value(N).

% no numbers may appear twice in the same sub-square
sameSubSquare(NA,NB) :- A = (NA - 1) / 3, B = (NB - 1) / 3, A =
B,value(N;NA;NB) . :- state(XA,YA,N), state(XB,YB,N),
sameSubSquare(XA,XB), sameSubSquare(YA,YB),

XA != XB, YA != YB,position(XA;XB;YA;YB),value(N).

Πv:

% Define brushes and text styles
brush(light). brush_color(light,rgb(5,5,5)). brush_width(light,1).
brush(dark). brush_color(dark,black). brush_width(dark,2).
font(inferred). font_size(inferred,12). font(initial).
font_style(initial,bold). font_size(initial,12).

% Draw grid (use hard lines to separate sub-squares)
draw_rect(light,p((X-1)*30,(Y-1)*30),30,30) :- position(X;Y).
draw_rect(dark,p((X-1)*30,(Y-1)*30),90,90) :- position(X;Y),

((X-1) mod 3)==0, ((Y-1) mod 3)== 0.

% draw cells (initial and then inferred) using different fonts
draw_text(initial,c,c,p((PX - 1) * 30+15,(PY - 1) *30+15),V) :-

initial(PX,PY,V), position(PX;PY;V).
draw_text(inferred,c,c,p((PX - 1) * 30 + 15,(PY - 1) *30 + 15),V)
:-

state(PX,PY,V), not initial(PX,PY,V),position(PX;PY;V).

Fig. 1. Sudoku puzzle solver Π and its visualisation program Πv

(a) Rendering of Sudoku (b) Complete puzzle (c) Broken maze puzzle

Fig. 2. Example output

Example 1 – Simple two dimensional rendering: Consider the program Π given
in Figure 1 which produces solutions to Sudoku puzzles consisting of a 9 × 9
grid containing some initial numbers between 1 and 9 which must be filled such
that no number appears twice in any row, column or 3× 3 square of the puzzle.
The program takes a problem description consisting of a set of atoms describing
the initial grid square entries of the form initial(X,Y,N) and computes values
for each cell of the form state(X,Y,N). The program Πv in Figure 1 shows the

ASPViz: Visualisation and Animation of ASP 727

visualisation program for the Sudoku puzzle, rendering a grid with sub-squares
highlighted in a darker brush, and displaying inferred and initial (in bold) cells.
Passing both the Sudoku program and its visualisation program to ASPViz

results in the image in Figure 2(a).

Example 2 – Animated graphics: In some domains, it helps to see an animation
of how a result is achieved. In this example Π solves a planning problem in
which a mouse must navigate through a maze, avoiding obstacles on its way.
Each answer set of Π represents a valid path through the maze. A visualisa-
tion program Πv is constructed such that when it is combined with an answer
set of Π (encoded as Πi), the program Πv + Πi produces multiple answer sets.
Each of these answer sets encodes a single frame corresponding to a the move-
ments of the mouse up to a given step of the underlying plan. The frames are
ordered using frame(X) atoms which are defined using the time point that the
frame represents (in the example time is encoded as an integer). These frames
may be stepped through within the ASPViz tool. Figures 2(b) and 3 show the
final state and sequential visualisations of a single solution to the maze puzzle
respectively.

Debugging: Debugging is a major challenge in answer set programming—an
overview of current work in this area can be found in [2,3]. A typical problem
is that a syntactically correct program does not yield the desired answer sets.
Current work focusses on adding debugging information to the program or in-
specting the structure of the program by generating a support graph for selected
parts of the program. Unfortunately, deciding which part is important and in-
specting the vast amount of information coming from the program is a very
challenging task. A detailed discussion is provided in [3].

Using a graphical representation tool like ASPViz one tackles the problem
from a different angle. By visualising the outcomes of the program it immedi-
ately becomes easier for a designer to understand the nature of a given problem
by representing the (faulty) answer sets inside the problem domain, offering a
completely different perspective.

We appreciate that this approach to debugging will not always be successful,
because only some programs have a natural graphical representation. In cases
where it is applicable however, we believe that the approach can make problems
easier to spot by showing visually the cases in which the code is not working.

Take for example the maze problem above. On one occasion we obtained the
following answer set when encoding the scene above:

{move(0,e) move(5,e) move(6,e) move(7,e) move(8,e) move(1,n) move(2,n)

move(3,n) move(4,n) move(9,n) p(0,psn(0,0)) p(1,psn(1,0)) p(2,psn(1,1))

p(3,psn(1,2)) p(4,psn(1,3)) p(5,psn(1,4)) p(6,psn(2,4)) p(7,psn(3,4))

p(8,psn(4,4)) p(9,psn(5,4)) p(10,psn(5,5)) blocked(psn(1,1))

blocked(psn(2,1)) blocked(psn(4,1)) blocked(psn(2,2)) blocked(psn(4,2))

blocked(psn(5,2)) blocked(psn(0,3)) blocked(psn(2,3)) blocked(psn(0,4))

blocked(psn(2,4)) blocked(psn(4,4)) blocked(psn(4,5))}.

Is this a correct solution to the problem? The answer can be found in Figure 2(c).

728 O. Cliffe et al.

Fig. 3. Frame renderings for maze puzzle

3 Related and Future Work

As far as we know, very little has been published on general tools visualising an-
swer sets. There are a few domain-specific tools, like A-circuit [4], a tool designed
to reason about digital circuits. Declarative and constraint-based graphical sys-
tems are not new, for instance SWI-Prolog includes its own graphics system [5] and
[6,7] address the problem of a user-interface layer using constraint-solvers and vi-
sualising the internal state of programs, respectively. Our approach differs in that
we focus on re-using the underlying features of the language used to describe the
problem itself (ASP), making visualisation more natural for programmers.

ASPViz is still in a very early development state and is limited to the ren-
dering of two-dimensional graphics with Cartesian coordinates; by changing the
underlying rendering mechanism the same approach may be trivially extended
to render three dimensional scenes or produce input for other graphical systems
such as automatic graph layout tools like Graphviz. It is also our intention to
incorporate the tool into a broader ASP development environment.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving,
1st edn. Cambridge University Press, Cambridge (2003)

2. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging
ASP programs by means of ASP. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR
2007. LNCS, vol. 4483, pp. 31–43. Springer, Heidelberg (2007)

3. Brain, M., De Vos, M.: Answer set programming – a domain in need of explanation.
In: Exact 2008: International Workshop on Explanation-aware Computing (2008)

4. Balduccini, M., Gelfond, M., Nogueira, M.: A-prolog as a tool for declarative pro-
gramming. In: Proceedings of the 12th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE 2000), pp. 63–72 (2000)

5. XPCE the SWI-Prolog native GUI library:
http://www.swi-prolog.org/packages/xpce/

6. Szekely, P., Myers, B.: A user interface toolkit based on graphical objects and con-
straints. SIGPLAN Not. 23(11), pp. 36–45 (1988)

7. Carro, M., Hermenegildo, M.: Tools for constraint visualisation: The VI-
FID/TRIFID tool. In: Deransart, P., Ma�luszyński, J. (eds.) DiSCiPl 1999. LNCS,
vol. 1870, pp. 253–272. Springer, Heidelberg (2000)

http://www.swi-prolog.org/packages/xpce/

Removing Redundancy from Answer Set Programs�

Tomi Janhunen

Department of Information and Computer Science
Helsinki University of Technology TKK
P.O.Box 5400, FI-02015, TKK, Finland

Tomi.Janhunen@tkk.fi

Abstract. In answer set programming, ground programs are used as intermedi-
ate representations of logic programs for which answer sets are computed. It is
typical that such programs contain many redundant rules—increasing the length
of the program unnecessarily. In this article, we address redundancy of rules in
answer set programs, and in particular, in program modules that are used as com-
ponents of programs. To this end, we provide an exact semantical characterization
of redundancy and present a translation-based method for detecting redundant
rules. A prototype implementation, the modular optimizer (MODOPT), has been
developed in the context of the SMODELS system. In the experimental part, we
study the effects of modular optimization on lengths and run times of programs.

1 Introduction

A typical system for answer set programming (ASP) is based on an architecture where
a front-end of the system, often called a grounder, is responsible for instantiating vari-
ables and pre-evaluating certain expressions appearing in the logic program provided
by the user. The outcome is a ground (effectively propositional) logic program which
is then forwarded to the answer set solver for the actual computation of answer sets.
It is common that the ground program involves a number of redundant rules, e.g., in
the forms of tautological, subsumed, and inactive rules, which could be safely omitted
without affecting answer sets. Such rules are partly due to the grounder which is unable
to judge their applicability in advance. The original (non-ground) program may also
contain sources of redundancy such as symmetries etc. Imagine, for instance, a simple
rule “nogood ← edge(x, y), red(x), red(y). ” as part of a graph coloring condition. By
substituting constants a and b for x and y, respectively, and vice versa we obtain a pair
of ground rules each of which is likely to be redundant given the other. Last, but not
least, the programmer may also write needless rules—even unintentionally.

The goal of this research is to develop methods for detecting redundant rules from
answer set programs after grounding. Ground programs with millions of rules are be-
coming increasingly frequent because the demands of applications are interminable. To
deal with program instances of this scale, we resort to the theory of modular ASP [1] as
well as existing tools for the automated (de)composition of ground logic programs such

� This research is affiliated with the project “Methods for Constructing and Solving Large Con-
straint Models” funded by the Academy of Finland (research grant #122399).

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 729–733, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

730 T. Janhunen

as MODLIST and LPCAT in the ASPTOOLS collection.1 A brief account of logic program
modules and the stable model semantics is provided in Section 2.

On the other hand, the translation-based verification method [2] and its generaliza-
tion for logic program modules [3] can be used to check whether a particular rule r in a
ground logic programP is redundant, i.e., whether P and P \{r} have exactly the same
answer sets. However, these methods do not exploit the fact that P and P \ {r} differ
only by r and they can be further optimized for the purpose of redundancy checking.
In Section 3, we present a model-theoretic characterization of redundant rules and an
improved method for detecting such rules. The idea is to translate a set of rules R and a
rule r ∈ R into two redundancy-checking programs TrRC1(R\{r}, r) and TrRC2(R, r)
so that r is redundant in R iff these translations have no stable models. Thus existing
answer set solvers can be used to decide the redundancy of individual rules.

In Section 4, we describe the first implementation of the method, the modular opti-
mizer for stable semantics (MODOPT), which performs redundancy checks on a rule-by-
rule basis. For the sake of efficiency, subsequent checks use approximations of stable
models based on propagation and look-ahead [4]. We use a number of benchmark pro-
grams to evaluate the effects of such a procedure. Section 5 concludes the paper.

2 Logic Program Modules in Brief

For the sake of simplicity, we concentrate on normal logic programs, or just nor-
mal programs for short, which form a common syntactic fragment of logic programs
supported by answer set solvers. Normal rules are expressions of the form “a ←
b1, . . . ,bn,∼c1, . . . ,∼cm.” where∼ denotes default negation. The idea is that the head
a can be inferred if the body of the rule is satisfied, i.e., each bi is inferable but none
of cj’s. Since the order of literals is irrelevant, we also write a ← B,∼C for the rule
using abbreviations B and C for the sets {b1, . . . , bn} and {c1, . . . , cm} involved.

We assume a Gaifman-Shapiro style module architecture for normal programs [1].
A program module Π is a quadruple 〈R, I,O,H〉 where R is a finite set of normal
rules, and I , O, and H are pairwise disjoint signatures for input, output, and hidden
atoms, respectively. It is essential that the head a ∈ O ∪H for each rule a ← B,∼C
of R. The atoms in I ∪ O are visible and hence accessible by other modules whereas
the atoms in H formalize some auxiliary concepts of Π . The stable model semantics
[5] is generalized for an arbitrary module Π = 〈R, I,O,H〉 as follows. The reduct of
R with respect to an interpretation M ⊆ I ∪O ∪H and I , denoted by RM,I , contains
a← (B \ I) iff there is a rule a← B,∼C ∈ R such that B ∩ I ⊆M and C ∩M = ∅.

Definition 1 ([1]). An interpretation M ⊆ I ∪ O ∪ H is a stable model of a module
Π = 〈R, I,O,H〉, denoted by M ∈ SM(Π), iff M \ I is the least model LM(RM,I).

The join Π1 Π2 is defined as 〈R1 ∪R2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2, H1 ∪H2〉 if
modules Π1 = 〈R1, I1, O1, H1〉 and Π2 = 〈R2, I2, O2, H2〉 respect each other’s hid-
den atoms and no two atoms a1 ∈ O1 and a2 ∈ O2 become positively interdependent.
By the module theorem from [1], we have SM(Π1 Π2) = SM(Π1) �� SM(Π2) where
�� combines any compatible pair of interpretationsM1 ∈ SM(Π1) and M2 ∈ SM(Π2).

1 Currently available at http://www.tcs.hut.fi/Software/asptools/

http://www.tcs.hut.fi/Software/asptools/

Removing Redundancy from Answer Set Programs 731

3 Translation-Based Method for Redundancy Checking

Given Definition 1, any non-empty set of rules R′ ⊆ R is redundant in a module
Π = 〈R, I,O,H〉 iff SM(Π) = SM(ΠR′) where ΠR′ = 〈R \R′, I, O,H〉. Likewise,
a rule r in a module Π is deemed redundant iff R′ = {r} is redundant in Π . As
observed for defaults in [6], the members of a redundant set R′ need not be redundant.

Example 1. Consider a moduleΠ = 〈R, ∅, {a, b, c, d, e, f}, ∅〉 whereR = R1∪R2 for

R1 = { a← ∼b,∼d,∼e,∼f. b← ∼c,∼d,∼e,∼f. c← ∼a,∼d,∼e,∼f. } and
R2 = { d← ∼e,∼a,∼b,∼c. e← ∼f,∼a,∼b,∼c. f ← ∼d,∼a,∼b,∼c. }.

By the symmetries present in Π , we have SM(Π) = ∅ but SM(Π{r}) �= ∅ for any
r ∈ R1 ∪R2. But R1 and R2 are redundant in Π as SM(ΠR1) = SM(ΠR2) = ∅. �
Theorem 1. A set R′ is redundant in a normal program module Π = 〈R, I,O,H〉 iff
(i) ∀M ∈ SM(ΠR′), M |= R′; and (ii) ∀M ∈ SM(Π), LM((R \R′)M,I) |= R′M,I .

Theorem 1 nicely encompasses two aspects of R′ being redundant in a module Π .
Firstly, any stable model M obtained without rules in R′ must also satisfy R′. But this
is not enough: the other rules of Rmust be able to compensate forR′ in the construction
of the least model LM(RM,I) in the context of eachM ∈ SM(Π). For example, the first
two rules of R∗ = {a1 ← a2. a2 ← a3. a1 ← a3. } compensate for the last in Π∗ =
〈R∗, {a3}, {a1, a2}, ∅〉. To develop a method for checking the redundancy of individual
rules, we apply Theorem 1 to R′ = {r}. Moreover, due to coNP-completeness, we
concentrate on finding counter-examples to the conditions (i) and (ii) of Theorem 1.

Definition 2. For a normal program module Π = 〈R, I,O,H〉 and a rule r ∈ R,
define TrRC1(Π, r) = 〈(R \ {r}) ∪ TrF(r), I, O,H ∪ {b, f}〉 where b and f are new
atoms and TrF(a← B,∼C) = {b← B,∼C. f ← ∼b,∼f. f ← a,∼f. }.

The idea of the translation TrRC1(Π, r) is that the rules of R \ {r} capture a stable
model M of Π{r} and, on top of that, the rules of TrF(r) check that M �|= r. To
evaluate the second condition for R′ = {r}, we capture the projection of the least
model LM((R \ {r})M,I) on the strongly connected component S(r) ⊆ O ∪H of the
positive dependency graph of Π related to the head of r (see, e.g., [1] for details).

Definition 3. For a normal program module Π = 〈R, I,O,H〉 and a rule r ∈ R, de-
fine TrRC2(Π, r) = 〈R ∪TrNC(R, r, S(r)), I, O,H ∪ S(r)• ∪ {b, f}〉 where S(r)• ∪
{b, f} is a set of new atoms based on S(r) but renamed as S(r)• = {a• | a ∈ S(r)}.

The part TrNC(R, r, S(r)) includes a rule a• ← (B ∩ S(r))• ∪ (B \ S(r)),∼C for
each a ← B,∼C ∈ R \ {r} with a ∈ S(r); and for r = a ← B,∼C itself, the set of
rules {b← (B ∩ S(r))• ∪ (B \ S(r)),∼C. f ← ∼b,∼f. f ← a•,∼f. }.

For r = a1 ← a3 and Π∗ given above, we have S(r) = {a1} so that TrRC2(Π∗, r) has
a set of rules R∗ ∪ {a•1 ← a2. b ← a3. f ← ∼b,∼f. f ← a•1,∼f. }. As indicated by
Theorem 2 below, the resulting method is correct and complete for individual rules but,
for the sake of efficiency, incomplete approximations are employed in Section 4.

Theorem 2. A rule r ∈ R is redundant in a normal program moduleΠ = 〈R, I,O,H〉
iff SM(TrRC1(Π, r)) = ∅ and SM(TrRC2(Π, r)) = ∅.

732 T. Janhunen

Benchmark Optimization Solving (before/after)

(satisfiable (s), or |R| |R′| |R′|
|R| t SMODELS 2.32 CLASP 1.0.5 ≡

unsatisfiable (u)) (%) (s) (s) (s) (s) (s) (s)

ephp-8 (u) 10 854 0 0 201 0.50 0.49 0.38 0.35 2.1
- non-modular 10 854 10 650 98 1 868 0.50 0.01 0.38 0.00 0.62
factoring-30 (s) 9 391 4 0 314 2.7 3.3 4.0 5.0 92
- non-modular 9 391 5 727 61 2 073 2.7 9.1 4.0 3.0 63
factoring-30 (u) 9 391 4 0 308 20 20 16 16 70
- non-modular 9 391 5 646 60 2 119 20 22 16 10 49
gryzzles-5 (s) 3 760 980 26 124 499 357 0.066 0.078 49
gryzzles-48 (s) 4 412 1 172 27 166 10 487 9 937 0.14 0.17 480
queens-15 (s) 11 050 5 180 47 1 430 0.35 0.18 0.040 0.031 0.97
qeq-12 (u) 11 277 3 608 32 420 357 238 70 70 163
qeq-13 (u) 14 381 4 628 32 732 2 278 1 462 563 533 1 281
schur-4-44 (s) 13 068 4 312 33 1 260 38 63 0.27 0.348 19
schur-4-45 (u) 13 635 4 498 33 1 334 581 598 8.1 7.6 19
15-puzzle-19 (s) 21 017 2 736 13 380 16 12 0.53 0.66 4.2
15-puzzle-20 (u) 22 076 2 880 13 400 0.14 0.12 0.055 0.051 0.37

4 Experiments

We have generalized the method from Section 3 for SMODELS programs [4]. A trans-
lator called REDR implements the respective translations TrRC1(·) and TrRC2(·) for
SMODELS program modules. The modular optimization of an entire SMODELS pro-
gram Π is coordinated by script MODOPT, distributed in the ASPTOOLS collection,
which (i) splits Π into componentsΠ1, . . . ,Πn using MODLIST, (ii) checks every mod-
ule Πi and each rule of Πi in turn for being redundant (using REDR and SMODELS)
and hence removable, and (iii) links a complete program Π ′ out of the resulting set
of optimized modules Π ′

1, . . . ,Π
′
n using LPCAT. The implementation is incomplete for

two reasons. First, redundancy of rules is inherently context-dependent and hence cer-
tain redundant rules might not be detected in a modular approach. Second, due to the
coNP-completeness of redundancy checking, only consistency checks based on the
propagation and look-ahead functions of the SMODELS engine [4] are performed.

To make experiments, we used a hardware with an Intel Core2 6320 1.86GHz CPU
and 2GB of main memory. We took a number of benchmarks from the literature and the
ASPARAGUS2 collection; see the table above. For each instance, we report the number
of rules, the number of rules found redundant, the respective compression rate, and
optimization time in the first four columns. The results indicate substantial portions of
redundant rules in ground programs in practise. Since MODOPT removed practically no
rules from ephp-8 and factoring-30, we also tried out non-modular optimization.

The second block provides average times, reported over 10 runs with random shuf-
fling, to compute at most one stable model. In view of running times, the savings ob-
tained are not so clear-cut and also negative effects are occasionally perceived. Finally,
the last column reports the time needed to double-check the weak/ordinary equivalence
of the original and optimized programs using LPEQ (v. 1.21) [2] and CLASP.

2 Consult http://asparagus.cs.uni-potsdam.de/ for details.

http://asparagus.cs.uni-potsdam.de/

Removing Redundancy from Answer Set Programs 733

5 Discussion and Conclusions

Few comments on related work follow. Eiter et al. [7] address the simplification of
logic programs under strong and uniform equivalence. For normal programs, transfor-
mations TAUT, RED−, NONMIN, CONTRA, and S-IMP preserve strong as well as
weak/ordinary equivalence—a special case of modular equivalence≡m [1]. Since each
of these transformations removes exactly one rule r ∈ R, they are all covered by The-
orem 1 by setting R′ = {r}. E.g., a tautological rule a ← B,∼C with a ∈ B is
always satisfied in the sense of Theorem 1 which enables far more profound simplifica-
tions. E.g., the last two rules of Π = 〈{a← ∼b. b← ∼a. c← b,∼c. }, ∅, {a, b, c}, ∅〉
are redundant and removable in the given order which is impossible under strong and
uniform equivalence. As shown in [8], certain redundant rules can enable a more effi-
cient splitting of the search space. The removal of such redundant rules is not desirable
and we suggest to protect computationally relevant rules using approximations. Indeed,
MODOPT leaves the redundant rules of the pigeonhole benchmark ephp-8 [8] intact but
they get removed under non-modular optimization in the presence of all other rules.

In conclusion, we address the redundancy of rules in answer set programs, and more
precisely, in a modular setting where programs are built of components pertaining to a
particular module interface. In contrast to syntactic criteria, a semantic characterization
of redundancy is developed and a translation-based method for redundancy checking
is proposed. The implementation enables redundancy checking using any SMODELS-
compatible solver for computations. The current implementation is still a prototype and
the time spent on optimization can be further improved. Nevertheless, as demonstrated
by the experiments, it is already sufficient for studying the degree of redundancy in
SMODELS programs as well as the effects of removing redundant rules on the perfor-
mance of solvers. From a programmer’s point of view, it can also be very informative
to inspect which rules are removed in order to improve the original encoding.

References

1. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: Proceedings
of ECAI 2006, Riva del Garda, Italy, pp. 412–416. IOS Press, Amsterdam (2006)

2. Janhunen, T., Oikarinen, E.: Automated verification of weak equivalence within the SMODELS

system. Theory and Practice of Logic Programming 7(6), 697–744 (2007)
3. Oikarinen, E., Janhunen, T.: A translation-based approach to the verification of modular equiv-

alence. Journal of Logic and Computation (to appear, 2008); A preliminary version appears in
Proceedings of ASP 2007, pp. 255–269 (2007)

4. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics.
Artificial Intelligence 138(1-2), 181–234 (2002)

5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings
of ICLP 1988, Seattle, Washington, USA, pp. 1070–1080. MIT Press, Cambridge (1988)

6. Liberatore, P.: Redundancy in logic III: Non-monotonic reasoning. Artificial Intelli-
gence 172(11), 1317–1359 (2008)

7. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and
strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp.
87–99. Springer, Heidelberg (2003)

8. Järvisalo, M., Oikarinen, E.: Extended ASP tableaux and rule redundancy in normal logic
programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 134–148. Springer,
Heidelberg (2007)

ASPARTIX: Implementing Argumentation Frameworks
Using Answer-Set Programming�

Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran

Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9–11, A–1040 Vienna, Austria

Abstract. The system ASPARTIX is a tool for computing acceptable extensions
for a broad range of formalizations of Dung’s argumentation framework and gen-
eralizations thereof. ASPARTIX relies on a fixed disjunctive datalog program
which takes an instance of an argumentation framework as input, and uses the
answer-set solver DLV for computing the type of extension specified by the user.

1 Motivation

The area of argumentation (see [1] for an excellent summary) has become one of the
central issues in Artificial Intelligence (AI) within the last decade, providing a formal
treatment for reasoning problems arising in a number of interesting applications fields,
including Multi-Agent Systems and Law Research. In a nutshell, argumentation frame-
works formalize statements together with a relation denoting rebuttals between them,
such that the semantics gives an abstract handle to solve the inherent conflicts between
statements by selecting admissible subsets of them. The reasoning underlying such ar-
gumentation frameworks turned out to be a very general principle capturing many other
important formalisms from the areas of AI and Knowledge Representation (KR).

The increasing interest in argumentation led to numerous proposals for formaliza-
tions of argumentation. These approaches differ in many aspects. First, there are several
ways how “admissibility” of a subset of statements can be defined; second, the notion
of rebuttal has different meanings (or even additional relationships between statements
are taken into account); finally, statements are augmented with priorities, such that the
semantics yields those admissible sets which contain statements of higher priority.

Argumentation problems are in general intractable, thus developing dedicated algo-
rithms for the different reasoning problems is non-trivial. Instead, a more promising
approach is to use a reduction method, where the given problem is translated into an-
other language, for which sophisticated systems already exist.

The system we present in this paper follows this approach and provides solutions for
reasoning problems in different types of argumentation frameworks (AFs) by means
of computing the answer sets of a datalog program. To be more specific, the system is
capable to compute the most important types of extensions (i.e., admissible, preferred,
stable, complete, and grounded) in Dung’s original AF [2], the preference-based AF
[3], the value-based AF [4], and the bipolar AF [5]. Hence our system can be used to

� This work was partially supported by the Austrian Science Fund (FWF) under project P20704.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 734–738, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ASPARTIX: Implementing Argumentation Frameworks 735

compare different argumentation semantics in a profound and novel way, and thus can
be used by researchers to compare the different semantics on concrete examples within
a uniform setting. Our approach is to use a fixed logic program which is capable of
computing the different forms of extension from a given framework which is given as
input. Hence, the burden of efficient computation is delegated to systems which evalu-
ates this logic program. Due to this simple architecture, our system is easily extendible
and suitable for rapid prototyping.

To the best of our knowledge, so far no system is available which supports such a
broad range of different semantics, although nowadays a number of implementations
exists1, including Dungine [6] a Java reasoner capable of reasoning with grounded and
preferred extensions; an epistemic and practical reasoner which also supports preferred
credulous semantics for practical arguments (see [7]); PARMENIDES, a system for e-
democracy based on value-based AFs [8]; and CASAPI, a Prolog implementation that
combines abstract and assumption-based argumentation [9].

The work which is closest related to ours is by Nieves et al. [10] who also suggest to
use answer-set programming for computing extensions of argumentation frameworks.
The most important difference is that in their work the program has to be re-computed
for each new instance, while our system relies on a single fixed interpreter program
which just requires the actual instance as an input database. Although there is no ad-
vantage of the interpreter approach from a theoretical point of view (as long as the
reductions are polynomial-time computable), there are several practical ones. The in-
terpreter is easier to understand, easier to debug, and easier to extend. We believe that
our approach thus is more reliable and easier extendible to further formalisms. An eval-
uation of the practical efficiency of the approach is subject of ongoing work.

Our system makes use of the prominent answer-set solver DLV [11]. All necessary
programs to run ASPARTIX and some illustrating examples are available at http://
www.kr.tuwien.ac.at/research/systems/argumentation/

2 Background and System Specifics

The declarative programming paradigm of Answer Set Programming (ASP) [11,12] un-
der the stable-models semantics [13] is nowadays recognized as well suited for
modeling and solving problems which involve common sense reasoning, and has been
fruitfully applied to a range of applications including data integration, configuration,
or diagnosis using advanced ASP solvers [14] such as Smodels, DLV, GnT, Cmodels,
Clasp, or ASSAT. The basic idea of ASP is to encode solutions to a problem into the
intended models of a logic program, in a way such that the solutions are described in
terms of rules and constraints instead of specifying a concrete algorithm which singles
out the solutions. The problem encoding is then given to an ASP solver, which computes
some or multiple answer set(s) of the program together with the input. The solutions of
the problem can then be easily read off from the answer sets.

We will use ASP to compute several kinds of extensions in different argumentation
frameworks. An argumentation framework AF is a pair (A,R) where A is a set of
arguments and R ⊆ A × A. The pair (a, b) ∈ R means that a attacks b. A set S ⊆ A

1 See also http://www.csc.liv.ac.uk/∼azwyner/software.html for an overview.

http://
www.kr.tuwien.ac.at/research/systems/argumentation/

736 U. Egly, S.A. Gaggl, and S. Woltran

of arguments attacks b, if b is attacked by some a ∈ S. An argument a ∈ A is defended
by S ⊆ A iff for each b ∈ A, it holds that, if (b, a) ∈ R, then b is attacked by S. A set
S ⊆ A is said to be conflict-free (in AF), if there are no a, b ∈ S, such that (a, b) ∈ R.
A conflict-free set S ⊆ A is admissible (for AF), iff each a ∈ S is defended by S. A
preferred extension of AF is a maximal (w.r.t. set inclusion) admissible set of AF .

As an example of a generalization, we give the definitions for value-based argumen-
tation frameworks (VAFs). VAFs are given by tuples (A,R, V, val , valpref), where A
and R are as for a standard argumentation framework, V is a non-empty set of values,
val assigns to each a ∈ A an element of V , and valpref ⊆ V × V is a preference
relation (transitive, irreflexive and asymmetric). An argument a ∈ A attacks or defeats
an argument b ∈ A iff both (a, b) ∈ R and (val(b), val (a)) �∈ valpref . Using this new
notion of an attack provides the definitions of conflict-free sets, and admissible and
preferred extensions for VAFs in the same way as for the basic framework.

Computing extensions of argumentation frameworks is quite straight forward within
the ASP paradigm. First we guess candidates for extensions (i.e., subsets of arguments)
and then rule out via constraints those candidates which do not match the particular
requirements of the extension (for instance, constraints can easily eliminate those can-
didates which are not conflict-free). Typical language extensions in ASP are helpful for
different problems. For instance, a suitable use of disjunction in rule heads allow us to
formalize how to compute preferred extensions (which are known to be computationally
more involved).

The architecture of the system ASPARTIX is as follows: We have a single ASP
program which provides all necessary rules to compute extensions of the different ar-
gumentation formalisms. The task of the user is just to set up the input database which
contains (i) the instance of the argumentation frameworks (ii) the type of extension AS-
PARTIX should compute. Then, invoking DLV with this input facts together with the
ASPARTIX-program provides answer sets which are in a one-to-one correspondence
with the specified extensions of the given framework. Technical details of the encoding
are provided in a companion paper [15].

3 Applying ASPARTIX

The example we will consider to demonstrate our system is adapted from [16] and
describes the case “Popov v. Hayashi” as decided by the honorable Kevin McCarthy
in 2002. The case concerned the possession of the baseball which Barry Bonds hit for
his record breaking 73rd home run in the 2001 season. When the ball was struck into
the crowd, Popov caught it in the upper part of the webbing of his baseball glove. But
Popov was not given the chance to complete his catch since, as it entered his glove,
he was tackled and thrown to the ground by others trying to secure the ball, which
became dislodged from his glove. Hayashi (himself innocent of the attack on Popov),
then picked up the ball and put it in his pocket, so securing possession.

After the examination of all testimonies and videotapes neither Popov nor Hayashi
were able to establish possession to the baseball. But McCarthy had to make a decision
which is fair to both parties. Therefore he considered the following arguments on which
he also assigned different values:

ASPARTIX: Implementing Argumentation Frameworks 737

a1
Public order

a2
Fairness

a3
Clarity

a4
Public order

a5
Fact

a6
Fairness

a7
Popov sue
assailants

a8
Fact

Fig. 1. Value-based Argument Graph for Popov v. Hayashi

1. Where interruption of completing the catch so establishing possession was illegal;
decide for Popov; to prevent assault being rewarded; promoting the value of public
order.

2. Where it has not been shown that Hayashi did not have possession and did nothing
wrong; do not decide for Popov; which would punish Hayashi; demoting the value
of fairness.

3. Where Hayashi had unequivocal control of the baseball; decide for Hayashi; to
provide a bright line; promoting clarity of law.

4. Where interruption of completing the catch so establishing possession was illegal;
do not insist on unequivocal control; which would reward assault; demoting the
value of public order.

5. Since Hayashi was not an assailant, finding for Hayashi would not reward assault.
6. Where it has not been shown that Popov did not have possession and did nothing

wrong; do not decide for Hayashi; which would punish Popov; demoting the value
of fairness.

7. Where interruption of completing the catch so establishing possession was illegal;
Popov should sue the assailants of the assault; which would not punish Popov;
promoting the value of fairness.

8. Since assailants cannot be identified, suing those responsible for the assault is not
a viable action.

Figure 1 shows arguments 1–8 from above together with the attack relation inbe-
tween them (see [16] for details). The input file input.dl for this example (formulated
as a simple framework without values) would contain the following facts:

prefex. arg(a1). arg(a2). ... arg(a8).
attacks(a1,a2). attacks(a1,a3). attacks(a2,a1). attacks(a3,a1).
attacks(a3,a4). attacks(a3,a6). attacks(a4,a3). attacks(a5,a4).

attacks(a6,a3). attacks(a7,a6). attacks(a8,a7).

The fact prefex specifies that the preferred extensions should be computed. Execut-
ing ASPARTIX thus consists of one call to DLV using input.dl and our program
aspartix.dl, using filter options of DLV as follows:

./DLV input.dl aspartix.dl -filter=in,input error

which produces the following output representing the preferred extensions

738 U. Egly, S.A. Gaggl, and S. Woltran

{in(a2),in(a3),in(a5),in(a8)}, {in(a2),in(a5),in(a6),in(a8)},
{in(a1),in(a5),in(a6),in(a8)}.

Hence, one still does not get a clear answer unless the framework is accordingly ex-
tended to a VAF. We add the following facts to our input file.

val(a1,public order). val(a2,fairness). val(a3,clarity).
val(a4,public order). val(a5,fact). val(a6,fairness).
val(a7,popov sue assailants). val(a8,fact).
vaf. valpref(fairness,public order). valpref(fairness,clarity).

valpref(fairness,fact). valpref(fairness,popov sue assailants).

Here, predicate vaf tells ASPARTIX that the input is a VAF, predicate val specifies
the values of the arguments, and predicate valpref defines a value ranking.

If we now invoke ASPARTIX as above with the now extended input file we receive
as output a single answer set representing the preferred extension of the specified VAF,
{a2,a5,a6,a8}. Since the result is that both a2 and a6 are contained in the preferred
extension, McCarthy can decide neither for Popov nor for Hayashi. Therefore, he de-
cided that the ball should be sold and the proceeds divided between the two.

References

1. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171,
619–641 (2007)

2. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77, 321–358 (1995)

3. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable argu-
ments. Ann. Math. Artif. Intell. 34, 197–215 (2002)

4. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation
frameworks. J. Log. Comput. 13, 429–448 (2003)

5. Amgoud, L., Cayrol, C., Lagasquie, M.C., Livet, P.: On bipolarity in argumentation frame-
works. International Journal of Intelligent Systems 23, 1–32 (2008)

6. South, M., Vreeswijk, G., Fox, J.: Dungine: A java dung reasoner. In: Proceedings of
COMMA 2008, pp. 360–368 (2008)

7. Visser, W.: (2008), http://www.wietskevisser.nl/research/epr/
8. Cartwright, D., Atkinson, K.: Political engagement through tools for argumentation. In: Pro-

ceedings of COMMA 2008, pp. 116–127 (2008)
9. Gaertner, D., Toni, F.: (2008), http://www.doc.ic.ac.uk/∼dg00/casapi.html

10. Nieves, J.C., Osorio, M., Cortés, U.: Preferred extensions as stable models. Theory and Prac-
tice of Logic Programming 8, 527–543 (2008)

11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv system
for knowledge representation and reasoning. ACM ToCL 7, 499–562 (2006)

12. Niemelä, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell. 25, 241–273 (1999)

13. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput 9, 365–386 (1991)

14. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first
answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS, vol. 4483, pp. 3–17. Springer, Heidelberg (2007)

15. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation
frameworks. Technical Report DBAI-TR-2008-62, Technische Universität Wien (2008)

16. Wyner, A., Bench-Capon, T.J.M., Atkinson, K.: Arguments, values and baseballs: Represen-
tation of Popov v. Hayashi. In: Proceedings of JURIX 2007, pp. 151–160 (2007)

http://www.wietskevisser.nl/research/epr/
http://www.doc.ic.ac.uk/~dg00/casapi.html

An Implementation of Extended P-Log Using XASP

Han The Anh, Carroline D.P. Kencana Ramli, and Carlos Viegas Damásio

CENTRIA, Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade
Nova de Lisboa, 2829-516 Caparica, Portugal

{h.anh,c.kencana}@fct.unl.pt, cd@di.fct.unl.pt

Abstract. We propose a new approach for implementing P-log using XASP, the
interface of XSB with Smodels. By using the tabling mechanism of XSB, our sys-
tem is most of the times faster than P-log. In addition, our implementation has query
features not supported by P-log, as well as new set operations for domain definition.

1 Introduction

P-log is a declarative language based on a logic formalism for probabilistic reasoning
and action [1]. P-log uses Answer Set Programming (ASP) as its logical foundation
and causal Bayesian Networks as its probabilistic foundation. Although ASP has been
proven to be a useful paradigm for solving varieties of combinatorial problems, its non-
relevance property [2] makes the P-log system sometimes computationally redundant.
We explore a new approach for implementing P-log using XASP, the interface of XSB
with Smodels [3] - an answer set solver. With XASP, the relevance of the system is
maintained [4].

The paper is organized as follows. The next section provides a description of the
syntax and semantics of the system. Section 3 outlines the implementation, and Section
4 provides some results of benchmarks comparing P-log(ASP) and P-log(XSB) 1. The
paper finishes with conclusions and directions for future work.

2 Extended P-Log

In this section, the syntax and semantics of extended P-log programs are defined, which
are compatible with the ones of the original P-log system [1]. The extended syntax has
constructs for declaring new sorts by union or intersection of other sorts. This syntactic
sugar enables a more declarative representation of many practical problems. In addition,
by using XASP, the logical part can use arbitrary XSB prolog code, thus, allowing for
the representation of more complex problems that are more difficult or even impossible
to express in the original P-log language. In general, a P-log program Π consists of
a sorted signature, declarations, a regular part, a set of random selection rules, a prob-
abilistic information part, and a set of observations and actions [1]. In our extended
version, a union sort is represented by c = union(c1,, cn) and an intersection sort
by c = intersection(c1, ..., cn), where ci, 1 ≤ i ≤ n are declared sorts.

1 We denote the original P-log implementation based on [1] by P-log(ASP) and our implemen-
tation by P-log(XSB).

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 739–743, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

740 H.T. Anh, C.D.P. Kencana Ramli, and C.V. Damásio

The semantics is given by an adapted program transformation from the original P-
log program into a XASP program. It is defined in two stages. First, a mapping of the
logical part of Π into its XASP counterpart τ(Π) is defined. The answer sets of τ(Π)
will play the role of possible worlds of Π . Next the probabilistic part of τ(Π) will be
used to define a measure over the possible worlds, and the probability of formulas. This
part of the semantics is the same as in [1].

The logical part of a P-log program Π is translated into a XASP program τ(Π) in
the following way:

1. Sort declaration:
– for every sort declaration c = {x1, .., xn} of Π , τ(Π) contains c(xi) for each

1 ≤ i ≤ n.
– for every sort declaration c = {L..U} of Π , τ(Π) contains c(i) where L ≤
i ≤ U , with integers L ≤ U .

– for every sort declaration c = {h(L..U)} of Π , τ(Π) contains c(h(i)) where
L ≤ i ≤ U , with integers L ≤ U .

– for every sort declaration c = union(c1, ..., cn), τ(Π) contains the rules
c(X) : − ci(X) for each 1 ≤ i ≤ n.

– for every sort declaration c = intersection(c1, ..., cn), τ(Π) contains the
rules c(X) : − c1(X), . . . , cn(X).

2. Regular part: For each attribute term a(t̄), τ(Π) contains the rules:
– false :- a(t̄, Y 1), a(t̄, Y 2), Y 1\ = Y 2.

which is to guarantee that in each answer set a(t̄) has at most one value.
– a(t̄, y) :- do(a(t̄, y)).

which is to guarantee that the atoms which are made true by a deliberate action
are indeed true.

3. Random selection:
– For attribute a, τ(Π) contains the rule: intervene(a(t̄)) :- do(a(t̄, Y)).
– Each random selection rule

random(RndName, a(t̄), DynRange) :- B.
is translated into:
• a(t̄, Y) :- tnot(intervene(a(t̄))), tnot(neg a(t̄, Y)), B.
• neg a(t̄, Y) :- tnot(intervene(a(t̄))), tnot(a(t̄, Y)), B.
• atLeastOne(t̄) :- a(t̄, Y).
• false :- tnot(atLeastOne(t̄)).
• pd(RndName, a(t̄, Y)) :- tnot(intervene(a(t̄))), DynRange, B.
• if dynamic range DynRange is not full, τ(Π) contains
false :- a(t̄, Y), tnot(DynRange), B, tnot(intervene(a(t̄))).

4. Observation and action: τ(Π) contains actions and observations of Π .

5. For each literal l, τ(Π) contains the rule: false :- obs(l), tnot(l).

In the transformation the XSB default table negation operator tnot/1 is used. The rule
with false in the head denotes an integrity constraint. In the transformation of the ran-
dom selection part the predicate pd/3 is to define default probabilities. Notice that our
semantics is equivalent to the semantics defined in [1] for the original P-log syntax. In
fact, we reformulated the transformation from the original paper to adapt it to the XASP
syntax. The rationale for the transformation can be found in [1].

An Implementation of Extended P-log Using XASP 741

3 Implementation of Extended P-Log System

Our system is comprised of two main modules: transformation and probabilistic infor-
mation processing. The first module transforms the original P-log(XSB) code into an
appropriate form for further computation by the second module. Both modules were
developed on top of XSB Prolog [3].

The tabling mechanism [5] used by XSB not only provides significant decrease
in time complexity of logic program evaluation, but also allows for extending Well-
Founded Semantics (WFS) of XSB to other non-monotonic semantics. An example of
this is the XASP interface which extends WFS with Smodels to compute stable mod-
els [6]. In XASP, only the relevant part to the query of the program is sent to Smodels
for evaluation [2]. This allows us to maintain the relevance property for queries over
programs, something that ASP does not comply to [4].

The transformation module maps the original P-log(XSB) program into a XASP
program using five transformation steps described in Section 2. This program is then
used as the input of the probabilistic processing module which will compute all the
stable models with necessary information for dealing with the query. Only predicates for
random attributes and probabilistic information, which have been coded by predicates
pd/2 as the default probability and pa/3 as the assigned probability are kept in each
stable model (extra explanation about pa/3 is provided in the next section).

Having obtained stable models with necessary information the system is ready to an-
swer queries about probabilistic information coded inside the program. Besides queries
in form of ASP formulas, our system was extended to be able to answer queries in
the form of Prolog predicates which can be defined in a variety of ways. The code for
defining the predicate can be included in the original P-log(XSB) program, in a sep-
arated XSB prolog program or even asserted into the system. The implementation of
this new feature can be done easily with XASP, using the query as a filter for ruling out
unsatisfied stable models.

4 Examples and System Evaluation

We describe some benchmark problems used to compare the performance of our im-
plementation in XASP with the one of P-log(ASP). The first example is Dice problem
taken from [1]. There are 2 dice, d1 and d2, belonging to Mike and John, respectively.
Each dice has scores from 1 through 6, and will be rolled once. The dice owned by
Mike is biased to 6 with probability 1/4. This scenario can be coded with the following
P-log(XSB) program Πdice

1. score ={1..6}.
2. dice ={d1,d2}. owns(d1,mike). owns(d2,john).
3. roll : dice --> score.
4. random(r(D), roll(D), full) :- true.
5. pa(r(D), roll(D,6), d(1,4)) :- owns(D,mike).

Notice that the reserved predicate pa/3 represents assigned probability, e.g. line 5
expresses that if owns(D,mike) holds then the probability of rolling a 6 with dice D
is 1/4. The probabilistic information part of a P-log program consists of pa-rules, i.e.

742 H.T. Anh, C.D.P. Kencana Ramli, and C.V. Damásio

the rules for defining assigned probability of attributes. Also notice that the probabilistic
information part is kept unchanged through the transformation. For better understanding
of the transformation described in Section 2, we provide here the resulting transformed
program τ(Πdice) of Πdice:

1. score(1). score(2). score(3). score(4). score(5). score(6).
2. dice(d1). dice(d2). owns(d1,mike). owns(d2,john).
3. false :- score(X),score(Y),dice(D),roll(D,X),roll(D,Y),X \= Y.
4. roll(D,X) :- dice(D), score(X), do(roll(D,X)).
5. intervene(roll(D)) :- dice(D), score(X), do(roll(D,X)).
6. roll(D,X) :- dice(D), score(X),

tnot(intervene(roll(D))), tnot(neg_roll(D,X)).
7. neg_roll(D,X) :- dice(D), score(X),

tnot(intervene(roll(D))), tnot(roll(D,X)).
8. atLeastOne(D) :- dice(D), score(X), roll(D,X).
9. false :- dice(D), tnot(atLeastOne(D)).
10.pd(r(D),roll(D,X)):-dice(D),score(X),tnot(intervene(roll(D,X))).
11.pa(r(D),roll(D,6),d(1,4)) :- owns(D,mike).

Lines 1-2 are the transformation of sorts declaration. Lines 3-4 are the resulting code
of the transformation for the attribute roll (regular part). Lines 5-10 are the result of
the transformation for the random selection part in line 4 of the original programΠdice.
Line 11 is the probabilistic information part that is kept unchanged from the original
program (line 5 of Πdice).

The second example is the Card problem taken from [7]. Suppose that there is one
deck of cards, divided into spades, hearts, diamonds, and clubs. Each suit contains num-
bers and pictures. Numbers are from 1 to 10 and pictures are jack, queen and king. The
corresponding P-log(XSB) program is as follows:

1. heart = {h(1..10), h(jack), h(queen), h(king)}.
spade = {s(1..10), s(jack), s(queen), s(king)}.
diamond = {d(1..10), d(jack), d(queen), d(king)}.
club = {c(1..10), c(jack), c(queen), c(king)}.

2. cards = union(heart,spade,diamond,club).
3. number = {1..5}.
4. draw : number --> cards.
5. random(r(N),draw(N),full):- true.
6. sameValue(X,Y) :- X =.. [_|V], Y =.. [_|V].

Declaration of attributes is defined in lines 1 – 4. Line 5 shows the fact that the dis-
tribution of each attribute drawi is random. In this example, the same card cannot be
drawn twice. Line 6 captures the existence of a pair with the same value. Notice that in
this example we use the built-in predicate of XSB (=..)/2 that is not supported by ASP.
In general, the ability of using any XSB prolog code enables our system to be able to
model more complicated problems. To model, for example, the rule for sameValue/2
in line 6, in P-log(ASP) we must use a number of rules for grounding that rule.

We have tested our system using these two examples 2, with several instances, and
for the first query our system is about 1.5 to 2 times slower than P-log(ASP). But from

2 The examples, benchmarks and implementation are available at http://plog.xasp.
googlepages.com/home

http://plog.xasp.
googlepages.com/home

An Implementation of Extended P-log Using XASP 743

the second time on, P-log(XSB) is much faster, namely, from 8 to 150 times if the first
time is not taken into account and from 3 to 5 times otherwise. Therefore, the more
probabilistic information we need to extract from the knowledge base in the program,
the more useful our system is. P-log(XSB) is more stable but both systems did not
provide the answers to all cases. Although our system managed to compute the list of
all stable models for problem Cards〈5, 12〉, i.e. the Card problem with 5 drawn cards
and 12 cards on the desk, it did not provide the answer in the period of 60 minutes
(timeout) since the list of stable models was big (95040 stable models) and each with a
large number of predicates (70); no answer was obtained with P-log(ASP).

5 Conclusions and Future Work

We have described our approach for reimplementing P-log in XASP. By comparing to
P-log(ASP) using some benchmark problems, we have shown that although our system is
slower than P-log(ASP) for the first query, in general, it is faster than P-log(ASP), namely,
about 3 to 5 times for subsequent queries. In addition, we have extended P-log(ASP)
with new features, first of all, to query the system with more expressive queries that are
not supported by P-log(ASP). Furthermore, some set operations for domain definition
equipped in our system are useful for representing practical problems.

However, the approach to probabilistic reasoning by deriving all possible worlds has
to deal with a huge number of stable models. In any cases, we have to compute the
unnormalized probability for each stable model. Since the computation can be done in
parallel, the performance of the system would very much benefit from multicore CPU
computers by using multi-threading, which is very efficient in XSB, from version 3.0
[3]. This approach will be explored in our next version. In the next version we also want
to compare our system with another implementation of P-log developed by Gelfold and
his students [8].

References

1. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In: Lifschitz,
V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 21–33. Springer, Heidelberg (2003)

2. Castro, L., Swift, T., Warren, D.S.: Xasp: Answer set programming with xsb and smodels,
http://xsb.sourceforge.net/packages/xasp.pdf

3. The xsb system version 3.0 volume 2: Libraries, interfaces and packages (2006)
4. Urgen Dix, J.: A classification theory of semantics of normal logic programs. Fundamenta

Informaticae 22, 257–288 (1995)
5. Swift, T.: Tabling for non-monotonic programming. Annals of Mathematics and Artificial

Intelligence 25(3-4), 201–240 (1999)
6. Niemelä, I., Simons, P.: Smodels - an implementation of the stable model and well-founded

semantics for normal lp. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS,
vol. 1265, pp. 421–430. Springer, Heidelberg (1997)

7. Michael Shackleford, A.S.A.: Problem 62 solution - probabilities in poker (Last accessed June
10 2008), http://mathproblems.info/prob62s.htm

8. Gelfond, M., Rushton, N., Zhu, W.: Combining logical and probabilistic reasoning. In: AAAI
Spring Symposium (2006)

http://xsb.sourceforge.net/packages/xasp.pdf
http://mathproblems.info/prob62s.htm

Compiling and Executing Declarative Modeling
Languages to Gecode

Raffaele Cipriano, Agostino Dovier, and Jacopo Mauro

Dipartimento di Matematica e Informatica
Università di Udine, via delle Scienze 208, 33100, Udine, Italy

(cipriano,dovier)@dimi.uniud.it

Abstract. We developed a compiler from SICStus Prolog CLP(FD) to Gecode
and a compiler from MiniZinc to Gecode. We compared the running times of the
executions of (standard) codes directly in the three languages and of the com-
piled codes for some classical problems. Performances of the compiled codes in
Gecode improve those in the original languages and are comparable with running
time of native Gecode code. This is a first step towards the definition of a unified
declarative modeling tool for combinatorial problems.

1 Introduction

In the past decades a lot of techniques and solvers have been developed to cope with
combinatorial problems (e.g., branch and bound/cut/price, constraint programming,
local search) and several modeling languages have been proposed to easily model prob-
lems and interact with the solvers. In fact, it would be desirable to have both user-
friendly modeling languages, that allows to define problems in an easy and flexible
way, and efficient solvers, that cleverly explore the search space.

CLP(FD), Gecode, MiniZinc are recent modeling platforms, with different charac-
teristics: Gecode has excellent performances, but is not as user-friendly as declarative
approaches, like CLP(FD) or MiniZinc. We present a compiler from SICStus Prolog
CLP(FD) to Gecode and a compiler from MiniZinc to Gecode. We have chosen a set
of benchmarks, and compare their running times in the original paradigms (SICStus,
MiniZinc, and Gecode) and in their Gecode translation. We also compare our results
with the translation of MiniZinc into Gecode offered by MiniZinc developers.

The results are rather encouraging. Native code executions are typically faster in
Gecode than in SICStus and MiniZinc. However, in all cases, compilation (and then
execution) in Gecode improves the performance of the native execution, and, moreover,
these times are comparable with running time of native Gecode code. This way, the user
can model problems at high level keeping all the advantages of this programming style,
without loosing efficiency w.r.t. C++ encoding. Moreover, our encoding of MiniZinc in
Gecode outperforms the one presented in [1].

2 The Languages Used

We briefly introduce the languages CLP(FD) and MiniZinc, and the Gecode platform.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 744–748, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Compiling and Executing Declarative Modeling Languages to Gecode 745

CLP (D) is a declarative programming paradigm, first presented in 1986 (e.g., [2]).
Combinatorial problems are usually encoded using constraints over finite domains
(D = FD), currently supported by all CLP systems based on Prolog. We focused on
the library clpfd of SICStus Prolog [3], but what we have done can be repeated for the
other CLP(FD) systems (e.g., ECLiPSe, GNU-Prolog, B-Prolog). We focus on the clas-
sical constraint+generate programming style. We report the fragment of the N-Queens
problem where diagonal constraints are set.

1. safe(_,_,[]).
2. safe(X,D,[Q|Queens]) :-
3. X + D #\= Q, Q + D #\= X, D1 is D + 1, safe(X,D1,Queens).

MiniZinc is a high-level modeling language developed by the NICTA research
group [4]. It allows to express most CP problems easily, supporting sets, arrays, user
defined predicates, some automatic coercions, and so on. But it is also low-level enough
to be easily mapped onto existing solvers. FlatZinc [5] is a low-level solver-input lan-
guage. The NICTA group provides a compiler from MiniZinc to FlatZinc that supports
global constraints. The NICTA team also provide a solver that reads and executes a
FlatZinc model. We report the diagonal constraints of the MiniZinc N-Queens model.

4. constraint
5. forall (i in 1..n, j in i+1..n) (
6. q[i] + i != q[j] + j /\ q[i] - i != q[j] - j;);

Gecode is an environment for developing constraint-based systems and applica-
tions [1]. It is implemented in C++ and offers competitive performance w.r.t. both run-
time and memory usage. It implements a lot of data structures, constraints definitions
and search strategies, allowing also the user to define his own ones. It is C++ like, and,
thus, programmer should take care of several low-level details (there exists, however, a
FlatZinc frontend). We report the extract of the N-Queens problem encoded in Gecode
regarding diagonal constraints.

7. for (int i = 0; i<n; i++){
8. for (int j = i+1; j<n; j++) {
9. post(this, q[i]+i!=q[j]+j); post(this, q[i]-i!=q[j]-j);}}

3 Translation

The translation from SICStus and MiniZinc programs to Gecode is carried out in two
stages: first we translate the high-level code into an intermediate language (CNT, de-
fined ad-hoc) that lists explicitly all the constraints. Then we generate C++ code from
CNT, using static analysis to improve the second part of the compilation.

CNT. The language CNT is used for listing the constraints and specifying some search-
ing parameters and the output variables. It is very similar to FlatZinc, and in the next
future we intend to use only FlatZinc instead of CNT. The complete CNT grammar is
defined in the file parser.y [6]. An example of CNT code is the following:

10. domain [_1, _2, _3, _4], 1, 4;
11. all_different [_1, _2, _3, _4];

746 R. Cipriano, A. Dovier, and J. Mauro

12. ((_1+1)!=_2); ((_2+1)!=_1); ((_1+2)!=_3); ((_3+2)!=_1);
13. ((_1+3)!=_4); ((_4+3)!=_1); ((_2+1)!=_3); ((_3+1)!=_2);
14. ((_2+2)!=_4); ((_4+2)!=_2); ((_3+1)!=_4); ((_4+1)!=_3);

CLP(FD) to CNT. For translating SICStus to CNT, we automatically create a new
SICStus program where constraints definition is replaced by a printing stage. The exe-
cution of the modified SICStus code prints all the constraints in the CNT form, and thus
generates CNT code. For instance, the code 15–18 is converted into code 19–22:

15. test(X,N):- 19. test(X,N) :-
16. length(X,N), 20. length(X,N),
17. domain(X,1,N), 21. format("domain ˜q,˜q,˜q;\n",[X,1,N]),
18. all_different(X). 22. format("all_different ˜q;\n",[X]).

Some problems arise when there is a unification. In fact, in some programs the logic
variables are known to be FD-variables only at runtime and therefore every time in the
program there is a unification we have to add some equality constraints. We developed
some particular cases to cope with this and other minor technical problems.

For instance, the execution of the modified version of the SICStus N-Queens code
with N = 4 generates the CNT code 10–14.

MiniZinc (FlatZinc) into CNT. We took advantage of the existing compiler from
MiniZinc to FlatZinc [4] and thus focused on the translation from FlatZinc to CNT.
Being these two languages rather similar in spirit, the translation is straightforward. For
example, the FlatZinc constraints 23–25 can be defined into CNT code 26–28:

23. array[0 .. 2] of var 0 .. 2: v;
24. constraint int_eq(v[0], 0);
25. constraint all_different([v[0],v[1],v[2]]);
26. domain [_0,_1,_2], 0, 2;
27. (_0 == 0);
28. all_different [_0,_1,_2];

In principle, starting from MiniZinc one can exploit the existing “for” to obtain a
more compact CNT code. Since we pass through FlatZinc, however, this information is
lost. Prolog does not have “for” loops, and one could infer some of them through pro-
gram analysis, but this is, in general, an undecidable problem. One solution (reasonable
only from MiniZinc) could be to enrich CNT (or, better, FLatZinc) with a construct that
keeps the “for” cycles information.

CNT into Gecode. We have developed a compiler from CNT to C++/Gecode. Before
the compilation we perform some simplifying transformation on the CNT code (e.g.,
precomputation of numerical expressions). Moreover, using static analysis, the compiler
groups the constraints that can be defined within a for cycle to reduce the size of the
final C++ program. This can lead to a dramatic reduction of time needed by Gecode for
the compilation of the .cc file with its libraries. For instance, the Gecode file obtained by
the instance 100-Queens with this optimization is compiled with the Gecode libraries
in 5.8s, while the code obtained by “flat” CNT requires 13 hours and 40 minutes.

The translation is performed using the following tools: for SICStus to CNT: SICStus;
FlatZinc to CNT: gcc, Bison and Flex; for CNT to Gecode we used Haskell tools.

Compiling and Executing Declarative Modeling Languages to Gecode 747

4 Experimental Results

We considered instances of four well-known problems, i.e. N-Queens, Su-
doku, Golomb Rulers, and Knapsack. Sudoku 16x16 instances are taken
from www.live-sudoku.com/play-online/geant, and 25x25 ones are
taken from www.eleves.ens.fr/home/frisch/sudoku.html; N-Queens
instances range from N = 100 to N = 115; Golomb Rulers instances have order from
6 to 13, with two different lengths (the biggest satisfiable and the shorter unsatisfiable)
for each order; knapsack instances are the same used in [7].

We modeled each problem in SICStus Prolog, MiniZinc, and Gecode. When avail-
able, we used the modeling offered by languages libraries. We also considered their
translation with the tools described in the paper. All codes and instances, together with
all the running times, are available at [6].

There are two kinds of compile times: time of the compilation from high level code
to Gecode C++ file and time needed by Gecode for internal compilation and libraries
linking. With the proposed automatic detection of “for” loops both of them are rather
low (the order of some seconds). Of course, for some small instances this time cannot
be ignored w.r.t. execution time, but it becomes negligible for difficult instances.

There is a wide variety of results, that it still has to be investigated. However, the
following general considerations can be done.

Native Gecode code is always the fastest, save for some 25x25 Sudoku instances.
Gecode models obtained compiling SICStus prolog models often speeds-up SICStus

native, save for some instances of N-Queens. Moreover it has, in average, comparable
times with Gecode native code. Let us observe, however, that it solves all the Sudoku
instances, while native Gecode does not.

Gecode models obtained compiling SICStus and MiniZinc have substantially the
same behavior, while in average they outperforms the MiniZinc to FlatZinc models
obtained by the tools provided by NICTA and Gecode team, which are the standard
ways to run MiniZinc (FlatZinc) models. Precisely, for Sudoku, N-Queens and Golomb
rulers the Gecode encoding obtained from Minizinc with our tool is faster than the ones
obtained with NICTA tools of various order of magnitude, while it is slightly slower in
the case of Knapsack.

We think that the performances of the Gecode models obtained by our translations
are better than the NICTA and Gecode ones because of our precomputations and static
analysis (see section 3), that simplify domains and constraints, w.r.t the execution of the
flatzinc models. However, the utility provided by NICTA research group and the one of
the Gecode Team directly execute the flatzinc files, without returning any intermediate
encoding, so we can’t perform an exhaustive comparison of the encodings.

5 Conclusion and Future Work

Our compiler from SICStus and MiniZinc to Gecode, although in its preliminary ver-
sion, shows that Constraint Programming can be done at high level using well-known
languages and then executed in new paradigms since running times are comparable
w.r.t. those of this latter paradigm. This allows to benefit from both the flexibility of
high-level modeling languages and the efficiency of the new low-level solvers.

www.live-sudoku.com/play-online/geant
www.eleves.ens.fr/home/frisch/sudoku.html

748 R. Cipriano, A. Dovier, and J. Mauro

We would like to improve the static analysis of the generated code to further speed-
up the overall process (compilation+execution) and to extend its compiling mechanism
(up to now limited to CSP). We also would like to discard the use of CNT and write a
front-end from CLP(FD) to FlatZinc to take advantage of FlatZinc solvers, and to port
our tools to the Gecode 2.1.1.

The present work is part of a more general project of developing a programming tool
for combinatorial problems, made of three main parts: the modeling part, where the
user will define in a high-level style the problem to solve and the algorithm to use (e.g.,
constraint programming search, eventually interleaved with local search, heuristics or
meta-heuristics phases); the translating part, where the model and the meta-algorithm
defined will be automatically compiled into the solver languages, e.g. Gecode; and the
solving part, where the overall compiled program will be run and the various solvers
will interact in the way specified, to find the solution of the problem modeled.

We are planning to test the tool on different families of problems including those
we have already cope with: a hospital rostering (timetable) problem [8], the protein
structure prediction problem [9], and planning problems [10].

Acknowledgements. The work is partially supported by MUR FIRB RBNE03B8KK.

References

1. Team, G.: Gecode: Generic Constraint Development Environment,
http://www.gecode.org

2. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A survey. Journal of Logic Program-
ming (19/20), 503–581 (1994)

3. Carlsson, M., Ottosson, G., Carlson, B.: An Open-Ended Finite Domain Constraint Solver,
191–206

4. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc: Towards
a Standard CP Modelling Language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
529–543. Springer, Heidelberg (2007)

5. Nethercote, N.: Specification of FlatZinc,
http://www.g12.cs.mu.oz.au/minizinc/flatzinc-spec.pdf

6. Cipriano, R., Dovier, A., Jacopo, M.: Tools for Compiling SICStus and Minizinc in Gecode,
http://www.dimi.uniud.it/dovier/MISIGE/

7. Dovier, A., Formisano, A., Pontelli, E.: A Comparison of CLP(FD) and ASP Solutions to
NP-Complete Problems. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668,
pp. 67–82. Springer, Heidelberg (2005)

8. Cipriano, R., Di Gaspero, L., Dovier, A.: Hybrid Approaches for Rostering: a Case Study in
The Integration of Constraint Programming and Local Search. In: Almeida, F., Blesa Aguil-
era, M.J., Blum, C., Moreno Vega, J.M., Pérez Pérez, M., Roli, A., Sampels, M. (eds.) HM
2006. LNCS, vol. 4030, pp. 110–123. Springer, Heidelberg (2006)

9. Cipriano, R., Dal Palù, A., Dovier, A.: A Hybrid Approach Mixing Local Search and Con-
straint Programming Applied to the Protein Structure Prediction Problem. In: WCB 2008,
Paris (2008)

10. Dovier, A., Formisano, A., Pontelli, E.: Multivalued Action Languages with Constraints
in CLP(FD). In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 255–270.
Springer, Heidelberg (2007)

http://www.gecode.org
http://www.g12.cs.mu.oz.au/minizinc/flatzinc-spec.pdf
http://www.dimi.uniud.it/dovier/MISIGE/

Telecommunications Feature Subscription
as a Partial Order Constraint Problem

Michael Codish1, Vitaly Lagoon2, and Peter J. Stuckey2,3,4

1 Department of Computer Science, Ben-Gurion University, Israel
2 Department of Computer Science and Software Engineering

The University of Melbourne, Australia
3 National ICT Australia, Victoria Laboratory

4 IMDEA Software, UPM, Spain
mcodish@cs.bgu.ac.il, {lagoon,pjs}@cs.mu.oz.au

Abstract. This paper describes the application of a partial order con-
straint solver to a telecommunications feature subscription configuration
problem. Partial order constraints are encoded to propositional logic and
solved using a state-of-the-art Boolean satisfaction solver. The encoding
is based on a symbol-based approach: symbols are viewed as variables
which take integer values and are interpreted as indices in the order.
Experimental evaluation indicates that partial order constraints are a
viable alternative to previous solutions which apply constraint program-
ming techniques and integer linear programming.

1 Introduction

Modern telecommunications providers enable a customer to subscribe to services
selected from a catalog of features. The configuration of a feature subscription is
often personalized based on preferences provided by the customer and constraints
imposed by the provider to prevent undesirable feature interactions at run-time.
When the subscription requested by a user is inconsistent, one problem is to find
an optimal relaxation which is consistent.

In recent research, described in [1], the authors formalize the telecommunica-
tions feature subscription configuration problem and prove that the complexity
of finding an optimal relaxation is NP-hard. That paper compares three tech-
niques to address the problem using: constraint programming, SAT encoding,
and integer linear programming. The authors conclude that the constraint pro-
gramming approach is able to scale well compared to the other approaches.

This paper reexamines the encoding of telecommunications feature subscrip-
tion configuration problem to SAT. Our approach to the encoding leads to a
scalable solution which is considerably faster than the three techniques reported
in [1]. Our approach is based on an encoding of partial order constraints into
propositional logic and using the same implementation described in [2]. Partial
order constraints are just like usual propositional formulae except that proposi-
tions involve also statements about a partial order on a finite set of symbols.

The encoding considered in [1] is atom-based. It models an atom of the form
(f > g) (which may be interpreted as f is after g) as a propositional variable.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 749–753, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

750 M. Codish, V. Lagoon, and P.J. Stuckey

Then, propositional statements are added to encode the axioms of partial orders
which the atoms are subject to. For a partial order constraint on n symbols, such
encodings typically introduce O(n2) propositional variables and involve O(n3)
propositional connectives to express the axioms. In contrast, the proposal in [2]
takes a symbol-based approach modeling the symbols in a partial order con-
straint as integer values (in binary representation). For n symbols this requires
k = 7log2 n8 propositional variables for each symbol. The integer value of a sym-
bol reflects its index in a total order extending the partial order. Constraints
of the form (f > g) are then straightforward to encode in k-bit arithmetic and
involve O(log n) connectives each.

2 Problem Statement

This section presents the formal statement of the telecommunications feature sub-
scription configuration problem and is taken (with slight modification) from [1].

Let F denote a finite set of features. For fi, fj ∈ F a precedence constraint
(fi>fj) indicates that fi is after fj. An exclusion constraint (fi<>fj) between fi

and fj indicates that fi and fj cannot appear together in a sequence of features,
and is equivalent to the pair (fi>fj), (fj>fi). A catalog is a pair 〈F, P 〉 with F a
set of features and P a set of precedence constraints on F . A feature subscription
S of a catalog 〈Fc, Pc〉 is a tuple 〈F,C, U,WF ,WU 〉 where F ⊆ Fc is the set of
features selected from Fc, C is the projection of Pc on F , U is a set of user defined
precedence constraints on F , and WF :F → N and WU :U → N are maps which
assign weights to features and user precedence constraints. The value of S is
defined by V alue(S) = Σf∈FWF (f) +Σp∈UWU (p). The weight associated with
a feature or a precedence constraint signifies its importance for the user.

A feature subscription 〈F,C, U,WF ,WU 〉 is consistent iff the directed graph
〈F,C∪U〉 is acyclic. Checking for consistency is straightforward using topological
sort as described in [1]. If a feature subscription is inconsistent then the task is
to relax it and to generate a consistent one with maximum value. A relaxation
of a feature subscription S = 〈F,C, U,WF ,WU 〉 is a consistent subscription
S′ = 〈F ′, C′, U ′,WF ′ ,WU ′〉 such that F ′ ⊆ F , C′ is the projection of C on F ′,
U ′ is a subset of the projection of U on F ′, WF ′ is the restriction of WF to F ′,
and WU ′ is the restriction of WU to U ′. We say that S′ is an optimal relaxation
of S if there does not exist another relaxation S′′ of S such that V alue(S′′) >
V alue(S′). In [1], the authors prove that finding an optimal relaxation of a
feature subscription is NP-hard. This is the problem addressed in this paper.

3 Partial Order Constraints

Partial order constraints were introduced in [2]. Informally, a partial order con-
straint is just like a formula in propositional logic except that statements may
involve propositional variables as well as atoms of the form (f > g) where f and
g are symbols.1

1 For brevity of presentation, we omit here atoms of the form (f=g) considered in [2].

Telecommunications Feature Subscription 751

The semantics of a partial order constraint is a set of solutions. A solution
is an assignment of truth values to propositional variables and atoms which is
required to satisfy both parts of the formula: the “propositional part” and the
“partial order part”. Namely, if ϕ is a partial order constraint and µ a truth
assignment, then µ is a solution for ϕ if: it satisfies ϕ when viewing the atoms as
propositional variables, µ does not map an atom of the form (f > f) to true, and
if µ maps both (f > g) and (g > h) to true then µ also maps (f > h) to true.

We are concerned with the question of satisfiability of partial order con-
straints: given a partial order constraint ϕ does it have a solution? Similarly
to the general SAT problem, the satisfiability of partial order constraints is NP-
complete, and the reduction from SAT is straightforward.

The following definition from [2] introduces the integer-based interpretation
of partial order constraints. Let ϕ be a partial order constraint on propositional
variables B and symbols F and let |F| = n. An integer assignment for ϕ is
a mapping µ which maps propositional variables from B to truth values {0, 1}
and symbols from F to values from {0, . . . , n− 1}. We say that µ is an integer
solution of ϕ if it makes ϕ true under the standard interpretation of > on the
non-negative integers. In [2], the authors prove that a partial order constraint is
satisfiable if and only if it has an integer solution.

To check the satisfiability of partial order constraints we apply an encoding
to propositional logic. A partial order constraint ϕ on a set of propositional
variables B and symbols F is encoded by a propositional formula ϕ′ such that
each solution of ϕ corresponds to a model of ϕ′ and in particular such that ϕ is
satisfiable if and only if ϕ′ is. The idea is to construct the encoding in terms of the
integer-based interpretation of partial order constraints. We view the n symbols
in F as integer variables taking finite domain values from the set

{
0, . . . , n− 1

}
.

Each symbol is thus modeled using k = 7log2 n8 propositional variables which
encode the binary representation of its value. Constraints of the form (f > g) on
F are interpreted as constraints on integers and it is straightforward to encode
them in k-bit arithmetic.

The experiments described in [2] apply a partial order constraint solver writ-
ten in SWI-Prolog [3] which interfaces the MiniSat solver [4] for solving SAT
instances as described in [5]. This paper makes use of the same constraint solver.

4 The Encoding

Let S = 〈F,C, U,WF ,WU 〉 be a subscription of a catalog 〈Fc, Pc〉. We seek an
optimal relaxation S′ = 〈F ′, C′, U ′,WF ′ ,WU ′〉. With each feature f ∈ F we
associate a propositional variable bf indicating if f is included in F ′. With each
constraint p ∈ C (and p ∈ U) we associate a propositional variable bp to indicate
if p is in C′ (or in U ′).

For each constraint p = (f > g) in C, f and g occur in the relaxation F ′ iff p
occurs in the relaxation C′. Hence we introduce the propositional constraint

bf ∧ bg ↔ bp (1)

752 M. Codish, V. Lagoon, and P.J. Stuckey

For each constraint p = (f > g) in U , p may occur in the relaxation U ′ if f and
g occur in F ′. Hence we introduce the propositional constraint

bf ∧ bg ← bp (2)

For each constraint p = (f > g) in C ∪ U , if p occurs in the relaxation (C′ or
U ′) then the corresponding partial order constraint must hold

bp → (f > g) (3)

Solving the partial order constraint obtained as the conjunction of the above
equations (1), (2), and (3) assigns truth values to the propositional variables bf
and bp indicating a consistent relaxation. To obtain an optimal relaxation we
need an additional step. Let ϕ be the encoding of the above constraints (1) –
(3) to a propositional formula.

With each of the propositional variables bf and bp, which indicate if feature f
and constraint p are selected to appear in the relaxation, we associate a (integer
value) weight wf and wp. To simplify presentation, consider the multiset Bits of
propositional variables which containswf occurrences of bf for each f ∈ F andwp

occurrences of bp for each p ∈ U . Letψ be the propositional formula which specifies
that the sum of these Bits is the binary number with digits Sum = {s1, . . . , sk}.

The Prolog interface to MiniSat described in [5] offers the functionality
maximize(Vector,Cnf) which seeks a satisfying assignment for the conjunc-
tive normal form Cnf which maximizes the binary number Vector. If Cnf is
unsatisfiable this call fails. This functionality is implemented by successively de-
termining the bits in the Vector. This involves a call to the underlying SAT
solver for each bit. If the Vector represents the sum of n bits then this involves
logn calls to the SAT solver.

For the telecommunications feature subscription configuration problem, this
functionality is applied taking the conjunctive normal form of ϕ ∧ ψ (Cnf) and
the sum bits Sum = {s1, . . . , sk} (Vector). In the actual encoding, the formula
representing the Sum is constructed by summing the pseudo Boolean formula
bf ∗ wf and bp ∗ wp and not as described above.

5 Experimental Results

The experimentation is based on a collection of random catalogs and feature
subscriptions obtained following the guidelines described in [1].

Table 1 describes the experiments for random catalogs with 50 features and
250 (750) precedence constraints (involving {<,>}). Each row labeled by 〈f, p〉
specifies a random subscription with f features and p user precedence constraints
with weights selected between 1 and 4. Times are measured in seconds. The col-
umn marked pocsp corresponds to our Prolog implementation of partial order con-
straints built on top of MiniSat (average times over 10 random instances2). The
columns marked pwmsat, cplex and cp are the times taken from Tables 2 and 3 of
2 The precise instances used may be found at http://www.cs.bgu.ac.il/ mcodish/
Papers/Pages/feature subscription.html

http://www.cs.bgu.ac.il/~mcodish/Papers/Pages/feature_subscription.html
http://www.cs.bgu.ac.il/~mcodish/Papers/Pages/feature_subscription.html

Telecommunications Feature Subscription 753

Table 1. Timings (sec) for two catalog sizes

catalog 〈50, 250, {<, >}〉 catalog 〈50, 750, {<, >}〉
〈f, p〉 pocsp pwmsat cplex cp pocsp pwmsat cplex cp
〈30, 20〉 0.18 6.40 1.02 0.65 0.44 5.03 18.46 2.38
〈35, 35〉 0.47 23.95 22.76 7.43 2.30 18.28 126.35 12.88
〈40, 40〉 1.08 282.76 247.14 67.80 6.37 92.11 514.27 42.27
〈45, 90〉 39.36 12638.25 7690.90 1115.51 105.51 2443.23 3780.54 188.83
〈50, 4〉 0.39 195.72 1010.38 413.61 1.00 319.53 3162.08 342.49

[1] for their: SAT encoding3, ILP solver and CP solver. Note that the random in-
stances for pocsp are most likely different than those applied in [1]. The machines
are also different. Theirs is a PC Pentium 4 (CPU 1.8 GHz and 768 MB of RAM).
Ours is a PC Pentium 4 (CPU 2.4 GHz and 512 MB of RAM). Ours is running
SWI Prolog under Linux, kernel 2.6.11-6. With no intention to compare the two
machines, the timings are clear enough.

6 Conclusions

Our encoding indicates the clear benefit in choosing the right tool for the prob-
lem at hand: Once stating the feature subscription configuration problem as one
of partial order constraints, the solution is straightforward. Our results indi-
cate that the application of partial order constraints to the telecommunications
feature subscription configuration problem provides a viable alternative to other
solution techniques. The partial order approach improves upon the previous SAT
approach by avoiding the O(n3) encoding of partial order, and over the other
approaches because of the nogood learning capabilities of SAT.

References

1. Lesaint, D., Mehta, D., O’Sullivan, B., Quesada, L.O., Wilson, N.: Solving a telecom-
munications feature subscription configuration problem. In: Stuckey, P.J. (ed.) CP
2008. LNCS, vol. 5202, pp. 67–81. Springer, Heidelberg (2008)

2. Codish, M., Lagoon, V., Stuckey, P.J.: Solving partial order constraints for LPO
termination. Journal on Satisfiability, Boolean Modeling and Computation 5, 193–
215 (2008), An earlier version appears In: Pfenning, F. (ed.) RTA 2006. LNCS,
vol. 4098, pp. 4–18. Springer, Heidelberg (2006)

3. Wielemaker, J.: An overview of the SWI-Prolog programming environment. In: Mes-
nard, F., Serebenik, A. (eds.) Proceedings of the 13th International Workshop on
Logic Programming Environments. CW 371, KU Leuven, December 2003, pp. 1–16
(2003)

4. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

5. Codish, M., Lagoon, V., Stuckey, P.J.: Logic programming with satisfiability.
TPLP 8(1), 121–128 (2008)

3 The authors of [1] use the SAT4J solver - http://www.sat4j.org/

http://www.sat4j.org/

A Constraint Logic Programming Approach to
Automated Testing

Hakim Belhaouari and Frédéric Peschanski

Laboratoire d’Informatique de Paris 6
UPMC Paris Universitas

104 avenue du President Kennedy
75016 Paris, France

{hakim.belhaouari,frederic.peschanski}@lip6.fr

Abstract. In this paper we present a new constraint solver for the auto-
mated generation of test cases from specifications. The specification lan-
guage is inspired by the contract-oriented programming extended with a
finite state machines. Beyond the generation of correct argument values
for method calls, we generate full test scenarios thanks to the symbolic
animation of the specifications. We propose a flexible CSP architecture
that can operate not only on integer or bounded domains but also on
arbitrary types. An original notion of type builder is used to establish
the link between the type semantics and the CSP framework. We illus-
trate this with a string builder that can automatically generate string
instances depending on combinations of constraints.

1 Introduction

Testing is the most popular approach to software validation. However in most
non-trivial software a systematic and exhaustive testing approach is impossible
due to their large input domain. The model-based testing (MBT) approach is
to generate test cases from specifications [1,2]. We aim to completely automate
the testing process. The objectives are (1) to determine the test requirements by
analyzing the specifications, (2) to generate test cases accordingly, (3) to extract
an oracle, and (4) to perform test on actual implementations.

We focus in this paper on the automation of test-case generation from design
by contract specifications [3]. First-order logic assertions are used to express the
contracts. We exploit the finite state machine descriptions to extract test sce-
narios automatically from the speficiations. The generation of values for method
parameters that are correct with respect to the specification corresponds to a
constraint-satisfaction problem (CSP) [4]. Initially the variable domain is defined
by its type, and the CSP reduces the range according to the various constraints
represented by each atomic term extracted from the contract.

Interestingly, the CSP architecture we propose does not restrict the con-
straint language to finite-domain and predefined types. An original notion of type
builder permits extending the testing framework in a flexible way. We describe in
this paper a sophisticated String builder that can automatically generate string

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 754–758, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Constraint Logic Programming Approach to Automated Testing 755

instances depending on combinations of constraints based on string sizes and
substrings.

2 Automated Testing: Contract Animation

Many automated testing tools analyze methods in isolation, without inspecting
deeply inside the contract and the context of the method calls [5,6]. Our tool
animates the specifications in order to extract a test scenario that integrates the
context of method calls. The scenario is extracted from the finite state machines
included in a contract. Thus, the animation reduces to choosing a sequence of
automaton’s possible transitions. A transition informs both about the called
method and the properties’ values in the current state. And it also allows to
define the future state of the contract.

Figure 1 gives an example of a bank account service specified in pseudo-
language. An account has two properties: the balance and the IBAN (interna-
tional standard for identifying bank accounts across countries)1. It is possible to
credit or to withdraw money from an account. The last part of the specification
is the automaton that governs availability of methods.

service BankAccount {
property readonly int balance init 0;

property constant string iban;
invariant balance ≥ 0 ∧ iban.size() == 34

∧ (iban.substring(0,2)==“FR”
∨ iban.substring(0,2)==“DE”
∨ iban.substring(0,2)==“GB” . . .);

method void credit(int amount, string id) {
pre amount > 0 ∧ id.size() == 34
∧ (id.substring(0,2) == “FR”

∨ id.substring(0,2) == “DE” ∨ . . .);
post balance = balance@pre + amount;

}

method void withdraw(int amount, string id) {
pre 0 ≤ amount ≤ balance ∧ id.size() == 34
∧ (id.substring(0,2) == “FR”

∨ id.substring(0,2) == “DE” ∨ . . .);
post balance = balance@pre - amount;

}
behavior {

		!" #$%& '(empty

credit

��!" #$%& '(nempty

credit,withdraw〈balance=0〉

��

withdraw〈balance=0〉

��

} }

Fig. 1. A bank account contract

In order to animate the contract, the tool analyzes the semantics attached to
a transition. This allows to define the notion of prerequisite condition. It results
from the conjunction of the constraints represented by the precondition, the
postcondition, the invariant and the guard of the current transition. Finally,
the tool generates an oracle as the conjunction between the postcondition, the
invariant and the guard of the current transition.
1 Due to lack of place we consider only constraints on the country code located at the

begining of the IBAN.

756 H. Belhaouari and F. Peschanski

As an illustration, consider the expressions of type integer: amount and bal-
ance. When the status of the bank account is just initialized, the only transition
available is a call to the credit functionality. The generated prerequisite condition
is the following expression: (balance ≥ 0) ∧ (amount > 0) ∧ (balance@post =
balance+ amount). The notation balance@post represents the value of the bal-
ance property in the future state. From the prerequisite condition, the underlying
CSP solver can determine value for each variables. Now the state machine in-
forms us about existence of three possibles transitions: (1) continue to credit the
account, (2) withdraw some part and (3) withdraw all money from the account.
The semantics can distinguish the two last cases with the guard of the transition.
In the first case the guard allows the transition only when the balance is empty,
while the second case remains in the same state if the balance is not empty. The
tool then continues its exploration of the state machine and ultimately generates
a complete scenario.

3 Test Data Generation

In this section, we describe the generation of valid arguments for the method calls
of test scenarios. This relies on a flexible CSP architecture, which we illustrate
with the support of advanced string constraints.

3.1 The CSP Architecture

Our CSP architecture is composed of a rewriting system, a constraint converter,
a solving environment and the CSP algorithm itself. The last part is similar to
a classical CSP solver with some extensions described below.

A major feature of this architecture is the automated conversion of logical
assertions into constraints directly understood by the CSP solver. At first the
rewriting system simplifies the input expressions and translates them to disjunc-
tive normal forms (DNF). The DNF induces several clauses, each one represents
a classical constraint (equality, inequality, linear equation, . . .).

Interestingly, the conversion of an atomic term into a CSP variable uses a del-
egation technique that leverages extensibility. The conversion delegates a specific
object called a type builder. The responsibility of a type builder is to “know”
the semantics of the type that it implements. The root interface of type builders
declares a unique method that returns a CSP variable for a given atomic term
(variable, method call and so on). The environment registers all the associated
type builders for each variable/property.

We illustrate the conversion algorithm on the bank account example of figure 1.
From the precondition of the credit functionality we can extract two constraints:
amount>0 and id.size()==34. Both constraints are binary constraints with con-
stant values. The first one has the form of a X gt C constraint (where X denotes
a variable, and C a constant) constraint and the second one corresponds to a
X eq C constraint. At this point, the converter uses the int builder in order to
get a CSP variable corresponding to the amount variable. It also asks the builder

A Constraint Logic Programming Approach to Automated Testing 757

associated to the id variable a reference to the CSP variable of the expression
id.size() (cf. string builder). Finally, the CSP solver solves all CSP variables.

Currently we provide builders for primitives types: boolean, integer, real,
string and generic (homogeneous) arrays. The two last examples emphasis the
support of complex types with (potentially) unbounded domains. An example
of a builder for a complex type is described in the next section.

3.2 Case Study: The String Builder

Commonly the size of strings are limited only by the available amount of al-
locatable memory. This means that the number of instances of a given string
constraint is potentially infinite. The string builder is modeled as a pair 〈regexp,
len〉, where regexp is a regular expression, len is the length represented as an
integer variable. The main difference with [7] is the extension of substrings.

The variable returned by the string builder depends on the input expression.
The size method returns the len integer variable. Any modification of the in-
teger’s domain by a constraint produces a regular expression that affects the
length of the regexp. The substring method is more involved, it creates a pair
〈regexps, lens〉 with two regexps constraining the location in the parent string.
The three finite-state automata (the two padding regexp and the substring reg-
exp) are then merged with the parent regexp.

When the CSP solver instantiates a string variable, it generates a word from
the obtained regular expressions. For example, the regexp of 2(e) is extracted
from the invariant of the bank account: iban.size() == 34 ∧ iban.substring(0,2)
==“FR”. The first constraint imposes a precise length for the main string, the
corresponding automaton generated by the analysis is shown on Figure 2(a). The
second constraint assumes the existence of a substring and this one is affected to a
constant as illustrated in figure 2(c). In order to apply the latter automaton onto
the parent automaton, we need to consider the automaton from the position zero
to the beginning of the substring in the main string represented in Figure 2(b).
Figure 2(d) gives the padding automaton that takes into consideration the length
of the main regexp. Finally the product of these automata is illustrated in
figure 2(e). This is used regular expression for generating some IBAN.

		!" #$%& '(0
. 		!" #$%& '(1

. 		!" #$%& '(2
. 		 		!" #$%& '()* +,-. /034

(a) iban.size() == 34

		!" #$%& '()* +,-. /00
(b) Padding left

		!" #$%& '(0
F 		!" #$%& '(1

R 		!" #$%& '()* +,-. /02
(c) iban.substring(0, 2) == “FR′′

		!" #$%& '()* +,-. /00

.

��

(d) Padding right

		!" #$%& '(0
F 		!" #$%& '(1

R 		!" #$%& '(2
. 		 		!" #$%& '()* +,-. /034

(e) final iban regexp

Fig. 2. Illustration of different regexp

758 H. Belhaouari and F. Peschanski

4 Related Works

The tool Jartege [6] aims at generating random test cases. An interesting aspect
of this tool is to take into account the detection of errors resulting from sequence
calls of different methods (test scenarios). We adopt a similar approach but add
the CSP-based solving of constraints for method calls arguments.

The tool Korat [5], based on the JML-JUnit approach, supports a form of
exhaustive testing for isolated methods. It calls the method with each possible
values of the domain of parameters. In our approach the test is not exhaustive
but constrained by the CSP, and thus applied to many more practical situations.
It also applies to non-trivial domains such as string constraints.

Most of these tools [2,6,8] are designed exclusively to use finite domain values
(generally of predefined types). The model of type builders we propose allows to
apply our approach on more constrained kinds and, moreover, makes the tool
extensible.

The String builder described in this paper is similar to the string solver of [7].
An important improvement is the support of substrings.

Acknowledgment

The authors would like to thank Nicolas Stefanovitch for his help and stimulating
arguments.

References

1. Myers, G.J.: Art of Software Testing. John Wiley & Sons, Inc., New York (1979)
2. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach, 1st edn.

Morgan Kaufmann, San Francisco (2006)
3. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-

wood Cliffs (1997)
4. Kumar, V.: Algorithms for constraint-satisfaction problems: A survey. AI Maga-

zine 13, 32–44 (1992)
5. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on java

predicates (2002)
6. Oriat, C.: Jartege: A tool for random generation of unit tests for java classes. In:

Reussner, R., Mayer, J., Stafford, J.A., Overhage, S., Becker, S., Schroeder, P.J.
(eds.) QoSA 2005 and SOQUA 2005. LNCS, vol. 3712, pp. 242–256. Springer, Hei-
delberg (2005)

7. Golden, K., Pang, W.: Constraint reasoning over strings. In: Rossi, F. (ed.) CP 2003.
LNCS, vol. 2833, pp. 377–391. Springer, Heidelberg (2003)

8. Ambert, F., Bouquet, F., Legeard, B., Peureux, F.: Automated boundary-value test
generation from specifications - method and tools. In: ICSTEST 2003, Cologne,
Allemagne, pp. 52–68 (2003)

Turing-Complete Subclasses of CHR

Jon Sneyers

K.U. Leuven, Belgium
jon.sneyers@cs.kuleuven.be

Abstract. Interesting subclasses of CHR are still Turing-complete:
CHR with only one kind of rule, with only one rule, and propositional re-
fined CHR. This is shown by programming a simulator of Turing machines
(orMinskymachines)within those subclasses. Single-headedCHRwithout
host language and propositional abstract CHR are not Turing-complete.

1 Introduction

As a stand-alone programming language, CHR is Turing-complete [1]. In this
paper we demonstrate that several subclasses of CHR are also Turing-complete.
Section 2 shows that CHR with only one kind of rules (simplification, propaga-
tion, or simpagation) is still Turing-complete. Then, in Section 3, we see that
multiple rules are not needed — one single rule suffices. Finally, Section 4 deals
with single-headed CHR and propositional CHR (only zero-arity constraints).

Some very restricted subclasses of CHR turn out to be not Turing-complete.
Propositional CHR is not Turing-complete under the abstract semantics, so
allowing constraints to have (even only non-compound) arguments does add
computational power. Single-headed CHR without host language is not Turing-
complete either, so computational power is gained by the availability of either
multi-headed rules or a host language. Finally, the added execution control of
a more instantiated operational semantics (e.g. the refined semantics [2] or the
priority semantics [3]) also adds computational power in the sense that proposi-
tional CHR becomes Turing-complete under a more instantiated semantics.

Because of space constraints, we need to assume that the reader is familiar
with CHR [4], Turing machines [5], and Minsky machines [6]. Unless otherwise
mentioned, we assume that the abstract operational semantics ωt is used.

2 Only One Kind of Rules

The TMSIM program of Listing 1 (adapted from [1]) contains only simpagation
rules. It can easily be modified to consist only of simplification rules: the kept
part of the simpagation rules can be removed and reinserted in the body.

It is also possible to simulate Turing machines in CHR with only propagation
rules. Since there is no way to destructively update the constraints, we add a
time-stamp argument to all constraints that are updated. By carefully making
sure that all the non-modified tape cells and adjacency constraints are copied

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 759–763, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

760 J. Sneyers

Listing 1. TMSIM: Turing machine simulator

r1 @ delta(Q,S,P,T,left), adj(L,C) \ state(Q), cell(C,S), head(C)
<=> state(P), cell(C,T), head(L).

r2 @ delta(Q,S,P,T,right), adj(C,R) \ state(Q), cell(C,S), head(C)
<=> state(P), cell(C,T), head(R).

r3 @ delta(Q,S,P,T,left) \ left(C), state(Q), cell(C,S), head(C)
<=> cell(L,b), left(L), adj(L,C), state(P), cell(C,T), head(L).

r4 @ delta(Q,S,P,T,right) \ right (C), state(Q), cell(C,S), head(C)
<=> cell(R,b), adj(C,R), right(R), state(P), cell(C,T), head(R).

Listing 2. TMSIM-2R: Turing machine simulator in two rules

% left(C) <=> adj(L,L), adj(L,C), cell(L,b).
% right(C) <=> adj(R,R), adj(C,R), cell(R,b).

r13 @ delta(Q,S,P,T,left), state (Q), head(C) \ adj(L,C), adj(C,R), cell(C,S)
<=> adj(L,C2), adj(C2,R), adj(C,C), cell(C,b), cell(C2,T), state(P), head(L).

r24 @ delta(Q,S,P,T,right), state (Q), head(C) \ adj(L,C), adj(C,R), cell(C,S)
<=> adj(L,C2), adj(C2,R), adj(C,C), cell(C,b), cell(C2,T), state(P), head(R).

from one time-stamp to the next, and the modified cell (and modified adjacency
constraints in case of a tape extension) is not copied, the correct behavior can
be obtained without destructive updates. Since the entire tape is copied at every
step, the space used by such a propagation-rule-only program is O(TS) when
simulating a T -time, S-space Turing machine. This is considerably less efficient
than the O(S) space usage of the TMSIM program.

3 Only One Rule

Now let us see how many rules are really needed. In Listing 1, we have two
rules for each direction of tape movement (left and right): one for the normal
case and one for the case in which the tape representation needs to be extended.
Using a slightly different tape representation, these two cases can be merged.

The idea is as follows. The tape is still represented using adjacency constraints
adj/2, but instead of marking the tape ends with left/1 and right/1, we put
an extra blank cell with a loop to itself at both ends, as shown in Fig. 1.

When moving to the right (the case for moving to the left is symmetric), we
create a new cell and add two adj/2 constraints as shown in Fig. 2(a). We over-
write the current cell symbol with the blank symbol b and remove the incoming
and outgoing adj/2 constraints. Finally we add a looping adj/2 constraint at the
current cell. In the normal case (Fig. 2(a)) the net result is that the current cell
becomes isolated and a tape ‘bypass’ is created. When we are at the tape end,
the net result is that the tape has been extended with one cell, and we remain
at the (new) tape end (see Fig. 2(b)). In listing 2 the resulting CHR program
TMSIM-2R is shown; it has only two rules. The two rules that are commented
out show how to change the old tape representation to the new form, but we
assume that the query is already in the correct form.

Turing-Complete Subclasses of CHR 761

Fig. 1. Tape representation for TMSIM-2R

(a) normal case (b) at the tape end

Fig. 2. Two possibilities for the right move in TMSIM-2R

Now can we further reduce this program? Certainly! It is easy to see that there
is a lot of symmetry between the two rules in TMSIM-2R. We can change the tape
representation again to take advantage of this symmetry and merge the rules.
Instead of using adj(A,B) to represent that cell A is to the left of cell B, we now
use the following redundant representation: adj(A,B,left), adj(B,A,right).
So adj(A,B,X) means that cell A is to the X of cell B. By replacing every adj/2
constraint in the two-rule program TMSIM-2R by the corresponding two adj/3
constraints, and by connecting the third argument of the adj/3 with the last
argument of the delta/5 constraint, both rules in TMSIM-2R become a variable
renaming of each other, so only one of them is needed. Listing 3 shows the
resulting CHR program TMSIM-1R.

4 Only Single-Headed Rules and Propositional CHR

The program TMSIM-1R consists of only one rule, but that rule has 8 head
constraints. All rules with more than two heads can be reduced to several rules
with only two heads by explicitly constructing partial joins. However, as we shall
see shortly, single-headed rules only do not suffice.

All of the above programs are CHR programs without host language: no host
language predicates are used in rule guards or bodies, and constraint arguments
are only constants and variables. An arbitrary number of fresh variables can
be created if the body of a rule contains variables that do not occur in the
head, but all variables are syntactically different objects and they cannot be
bound to each other or to constants (as in Prolog). CHR with only single-
headed rules can be shown to be Turing-complete if some form of host language
arithmetic is allowed [7]. Host language arithmetic can be done directly using
integers, or successor term notation can be used, so an argument of the form
s(s(s(...s(zero)...))), with n times s, indicates the number n. In both cases
however, a nontrivial host language data type is needed — respectively integers

762 J. Sneyers

Listing 3. TMSIM-1R: Turing machine simulator in one rule

% adj(A,B) <=> adj(A,B,left), adj(B,A,right).

r1234 @ delta(Q,S,P,T,D), state(Q), head(C) \ adj(A,C,D), adj(C,B,D),
cell(C,S), adj(C,A,E), adj(B,C,E)

<=> adj(A,C2 ,D), adj(C2,B,D), adj(C,C,D), cell(C,b), cell(C2,T),
adj(C2,A,E), adj(B,C2,E), adj(C,C,E), state(P), head(A).

and complex terms. Alternatively, constraint chains can be used to represent
numbers, but then either multi-headed rules are needed, or a form of assignment
(for example Prolog unification).

Without a host language, CHR with only single headed rules is a very weak
formalism — it is not more powerful than propositional CHR, i.e. CHR with
only zero-arity constraints:

Lemma. Single-headed CHR without host language can be reduced to proposi-
tional CHR without host language.

Proof (sketch). Assume there are k distinct constants used in the program and
queries. For every CHR constraint c/n, we make “flattened” versions of it, one for
every possible combination of arguments. Since variables cannot be bound and
since in single-headed rules there can only be matching between the arguments
of a single constraint, it does not matter what the variables are, but only which
ones are the same. Hence, there are less than (k+ n)n different combinations of
arguments for a constraint of arity n. We can replace the body CHR constraints
by their flattened version, and duplicate the rule for every matching flattened
version of the head. The resulting program is propositional. �
We have the following negative result for propositional CHR-only:

Theorem. Propositional CHR (without host language) is not Turing-complete.

Proof (sketch). Propositional CHR programs can easily be encoded as place-
transition Petri nets [8], which are not Turing-complete [9]. �
The above lemma and theorem can be combined in the obvious way:

Corollary. Single-headed CHR without host language is not Turing-complete.

Somewhat surprisingly, the above theorem only holds when the full abstract
semantics ωt is considered. If the refined operational semantics ωr [2] is used,
the result no longer holds. The reason is that the ωr semantics allows checking for
the absence of a constraint, which is not possible in the ωt semantics. Consider
the following encoding of Minsky machines in propositional refined CHR:

�pi : succ(r1)� = pi <=> a, pi+1.
�pi : succ(r2)� = pi <=> b, pi+1.
�pi : decjump(r1,pj)� = pi, a <=> pi+1.

pi <=> pj.
�pi : decjump(r2,pj)� = pi, b <=> pi+1.

pi <=> pj.

Turing-Complete Subclasses of CHR 763

It crucially depends on the refined semantics. The value of register r1 is rep-
resented by the multiplicity of the constraint a, and the value of r2 by the mul-
tiplicity of b. Under the abstract semantics this program breaks down because
the second rule for decjump instructions can be fired even if the corresponding
register does not have the value zero — this cannot happen in the refined seman-
tics because of the rule order. Thus, propositional CHR is not Turing-complete
in the abstract semantics, but it is Turing-complete in the refined semantics.
In the priority semantics ωp [3], propositional CHR is also Turing-complete: it
suffices to assign a higher priority to the first rule for decjump than to the second
rule. We conjecture that single-headed CHR without host language remains not
Turing-complete even under the ωr semantics.

5 Future Work

These surprising results indicate the need for further and deeper investigation
of the connection between language features, operational semantics, termination
and confluence, and computability and expressivity.

Acknowledgments. I thank Thom Frühwirth, Leslie De Koninck, and Bart
Demoen for the discussions that lead to some of the ideas presented here. This
research was funded by a Ph.D. grant of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

References

1. Sneyers, J., Schrijvers, T., Demoen, B.: The computational power and complexity
of Constraint Handling Rules. In: ACM TOPLAS (to appear, 2008)

2. Duck, G.J., Stuckey, P.J., Garćıa de la Banda, M., Holzbaur, C.: The refined opera-
tional semantics of Constraint Handling Rules. In: Demoen, B., Lifschitz, V. (eds.)
ICLP 2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)

3. De Koninck, L., Schrijvers, T., Demoen, B.: User-definable rule priorities for CHR.
In: Leuschel, M., Podelski, A. (eds.) 9th International Conference on Principles and
Practice of Declarative Programming, Wroc�law, Poland, pp. 25–36. ACM Press,
New York (2007)

4. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press, Cambridge
(2009)

5. Turing, A.M.: On computable numbers, with an application to the Entscheidung-
sproblem. Proc. London Mathematical Society 2(42), 230–265 (1936)

6. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Englewood
Cliffs (1967)

7. Di Giusto, C., Gabbrielli, M., Meo, M.C.: Expressiveness of multiple heads in CHR.
CoRR abs/0804.3351 (2008)

8. Betz, H.: Relating coloured Petri nets to Constraint Handling Rules. In: Djelloul,
K., Duck, G.J., Sulzmann, M. (eds.) 4th Workshop on Constraint Handling Rules,
Porto, Portugal, pp. 33–47 (2007)

9. Jantzen, M., Valk, R.: Formal properties of place/transition nets. In: Brauer, W.
(ed.) Net Theory and Applications. LNCS, vol. 84. Springer, Heidelberg (1980)

A Soft Approach to Multi-objective Optimization�

Stefano Bistarelli1,2, Fabio Gadducci3, Javier Larrosa4, and Emma Rollon4

1 Department of Science, University “G. d’Annunzio” of Chieti-Pescara, Italy
2 Institute of Informatics and Telematics (IIT), CNR Pisa, Italy

3 Department of Informatics, University of Pisa, Polo “G. Marconi” (La Spezia), Italy
4 Department of Software, Technical University of Catalonia, Barcelona, Spain

Abstract. Many combinatorial optimization problems require the assignment of
a set of variables in such a way that an objective function is optimized. Often, the
objective function involves different criteria, and it may happen that the require-
ments are in conflict: assignments that are good wrt. one objective may behave
badly wrt. another. An optimal solution wrt. all criteria may not exist, and either
the efficient frontier (the set of best incomparable solutions, all equally relevant
in the absence of further information) or an approximation has to be looked af-
ter. The paper shows how the soft constraints formalism based on semirings, so
far exploited for finding approximations, can embed also the computation of the
efficient frontier in multi-objective optimization problems. The main result is the
proof that the efficient frontier of a multi-objective problem can be obtained as
the best level of consistency distilled from a suitable soft constraint problem.

1 Introduction

Many real world problems involve multiple measures of performance, or objectives,
that should be optimized simultaneously: see e.g. [1] and the references therein. In such
a situation a unique, perfect solution may not exist, while a set of solutions can be
found that should be considered equivalent in the absence of information concerning
the relevance of each objective wrt. the others. Hence, two solutions are equivalent if
one of them is better than the other for some criteria, but worse for others; while one
solution dominates the other if the former is better than the latter for all criteria.

The set of best solutions is the set of efficient (pareto-optimal) solutions. The task in
a multi-objective problem is to compute the set of costs associated to efficient solutions
(the efficient frontier) and, possibly, one efficient solution for any of its elements.

The main goal of the paper is to prove that the computation of the efficient frontier of
multi-objective optimization problems can be modeled using soft CSP. More precisely,
our main contribution is to show, given a (possibly partially ordered) semiring K, how
to compute a new semiring L(K) such that its elements corresponds to sets of elements
of the original semiring; and such that the set of optimal costs of the original problem.

When applied to the multi-objective context, our work is summarized as follows:
consider a problem where K1 . . .Kp are the semirings associated to each objective. If
we use their cartesian product KC = K1 × . . . × Kp to model the multi-objective
problem, the solution corresponds to the lowest vector dominating the efficient frontier;
if we use L(KC) to model the problem, the solution coincides with the efficient frontier.
� Research partially supported by the EU IST-2004-16004 SENSORIA.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 764–768, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Soft Approach to Multi-objective Optimization 765

2 On Semiring-Based Frameworks

Semirings provide an algebraic framework for the specification of a general class of
combinatorial optimization problems. Outcomes associated to variable instantiations
are modeled as elements of a set A, equipped with a sum and a product operator. These
operators are used for combining constraints: the intuition is that the sum operator in-
duces a partial order a ≤ b, meaning that b is a better outcome than a; whilst the product
operator denotes the aggregation of outcomes coming from different soft constraints.

More in detail, a (commutative) semiring is a tuple K = 〈A,+,×,0,1〉 such that
A is a set, 1,0 ∈ A, and +,× : A × A → A are binary operators making the triples
〈A,+,0〉 and 〈A,×,1〉 commutative monoids, satisfying distributiveness (∀a, b, c ∈
A.a× (b+ c) = (a× b) + (a× c)) and absorptiveness wrt. × (∀a ∈ A.a× 0 = 0). A
semiring is tropical [2] if the sum operator + is idempotent (∀a ∈ A.a + a = a); it is
absorptive if it satisfies absorptiveness wrt. + (∀a ∈ A.a + 1 = 1).

Let K = 〈A,+,×,0,1〉 be a tropical semiring. Then, the relation 〈A,≤〉 such that
∀a, b ∈ A.a ≤ b iff a + b = b is a partial order. Moreover, if K is absorptive, then 1 is
the top element of the partial order. If additionally K is absorptive and idempotent (that
is, the product operator × is idempotent: ∀a ∈ A.a × a = a), then the partial order is
actually a lattice, since a× b corresponds to the greatest lower bound of a and b.

2.1 Soft Constraints Based on Semirings

Let K = 〈A,+,×,0,1〉 be an absorptive semiring; let V be a set of variables; and let
D be a finite domain of interpretation for V . Then, a constraint (V → D) → A is a
function associating a value in A to each assignment η : V → D of the variables.1

Note that even if a constraint involves all the variables in V , it must depend on
the assignment of a finite subset of them. For instance, a binary constraint cx,y over
variables x, y is a function cx,y : (V → D) → Awhich depends only on the assignment
of variables {x, y} ⊆ V . This subset is the support of the constraint [3] and correspond
to the classical notion of scope of a constraint. Most often, whenever V is ordered, an
assignment (over a support of cardinality k) is concisely presented by a tuple in Dk.

The combination operator⊗ : C×C → C is defined as (c1⊗c2)η = c1η×c2η. Thus,
combining two constraints means building a new constraint whose support involves all
the variables of the original ones (i.e., supp(c1⊗c2) ⊆ supp(c1)∪supp(c2)), and which
associates to each tuple for such variables a semiring element, obtained by multiplying
the elements associated by the original constraints to the appropriate subtuples.

Let c ∈ C be a constraint and v ∈ V a variable. The projection of c over V − {v}
(denoted c ⇓(V −{v})), is the constraint c′ such that c′η =

∑
d∈D cη[v := d]. The

projection operator is inductively extended to a set of variables I ⊆ V by c ⇓(V −I)=
c ⇓(V −{v})⇓(V −{I−{v}}). Informally, projecting eliminates variables from the support.

A soft constraint satisfaction problem is a pair 〈C, con〉, where C is a set of con-
straints over variables con ⊆ V . The set con is the set of variables of interest for the
constraint set C, which may concern also variables not in con. The solution of a soft
CSP P = 〈C, con〉 is the constraint Sol(P) = (

⊗
C) ⇓con.

1 Alternatively, a constraint is a pair 〈sc, def〉: sc is the scope of a constraint, and def the
function associating a value in A to each assignment of the variables in con.

766 S. Bistarelli et al.

The solution of a soft CSP plays the role of the objective function in optimization
problems. Indeed, efficient solutions are referred to as abstract solutions in the soft CSP
literature. The best approximation may be neatly characterized by so-called best level.

Proposition 1. Let P = 〈C, con〉 be a soft CSP, and let blevel(P) = (
⊗

C) ⇓∅ be
denoted as the best level of consistency of P . Then, supη{Sol(P)(η)} = blevel(P).

The soft CSP framework may accomodate several soft constraint frameworks. For in-
stance, the semiring KCSP = 〈{false, true},∨,∧, false, true〉 allows for recasting
Classical CSPs; the semiring KWCSP = 〈R,min,+,∞, 0〉 for Weighted CSPs.

When the set A is totally ordered, as the examples above, blevel(P) is the optimum
of P , and thus, it uniquely characterizes the efficient frontier E(P) = {Sol(P)(η) |
∀η′.Sol(P)(η) �≥ Sol(P)(η′)}). That does not hold for partially ordered semirings, as
those naturally arising in multi-objective optimization, obtained as the cartesian product
of a family K1, . . . ,Kp of semirings, each one associated to an objective function.

Proposition 2. Let {Ki = 〈Ai,+i,×i,0i,1i〉}1≤i≤p be semirings. Then, the tuple
KC = 〈A1 × . . . × Ap,+,×, 〈01, . . . ,0p〉, 〈11, . . . ,1p〉〉 is a semiring: its set of ele-
ments is the cartesian product of Ais, and the operators are defined componentwise.

Moreover, if each Ki is tropical (absorptive, idempotent), then so is KC .

Proposition 1 tells us that the best level of consistency of a problemP over semiring KC

is the lowest vector dominating the efficient frontier E(P). In other words, calculating
blevel(P) gets only an approximation of E(P). Our solution is to consider basically the
same problem, and choosing an alternative semiring wrt. KC for solving it.

3 Semirings Based on Powersets

This section states the main theorem of the paper: for each soft CSP P over a semiring
K, a new semiring L(K) and a semiring morphism l : K → L(K) can be devised
such that the best level of consistency for the problem l(P) coincides with the efficient
frontier of P . For the sake of readability, we fix a semiring K = 〈A,+,×,0,1〉.

Definition 1 (downward closure). Let K be tropical. Then, for a set S ⊆ A we let ∆S
denote its downward closure, i.e., the set {a ∈ A | ∃s ∈ S.a ≤K s}.

A set S is downward closed if S = ∆S (and any downward closure is so, since
∆(∆S) = ∆S), and we denote by L(A) the family of downward closed subsets of A.

Proposition 3. Let K be absorptive. Then, the tuple L(K) = 〈L(A),∪,×, {0}, A〉 is
an absorptive semiring: its elements are the (not empty) downward-closed subsets of A,
S ∪ T is set (of subsets) union, and S × T = ∆({s× t | s ∈ S, t ∈ T }).

Note that the absorptiveness of K plays a pivotal role, since it means that A = ∆{1}.
The ordering states that ∆S ≤L(K) ∆T iff for each s ∈ S there exists t ∈ T such that
s ≤K t. Our construction of L(K) is thus reminiscent of the partial correctness (or
Hoare) power-domain, a well-known tool in denotational semantics.

A Soft Approach to Multi-objective Optimization 767

Theorem 1. Let P = 〈C, con〉 be a soft CSP over semiring K; and let L(P) =
〈Cl, con〉 be the soft CSP over semiring L(K) such that Cl = {l ◦ c | c ∈ C} (thus,
l ◦ c(η) = {c(η)} for any assignment η : V → D). Then, ∆(E(P)) = blevel(L(P)).

The closure ∆(E(P)) is necessary, since the sets in L(K) are downward-closed. How-
ever, note that each constraint of a soft CSP P is defined over a finite set of functions
V → D, since it is finitely supported and D is finite.Thus, the efficient frontier E(P) is
a finite set: such a remark could be exploited to improve on the previous presentation,
describing a downward-closed set S by the family of its irreducible elements, i.e., the
set IS such that for no pair s1, s2 the element s1 dominates s2, and ∆(IS) = S.

Proposition 4. Let K be absorptive. If K is idempotent, then also L(K) is so.

The result above ensures that the local consistency techniques [4] applied for the soft
CSPs over an idempotent semiring K can still be applied for problems over L(K).

4 Recasting Multi-criteria CSP

A multi-criteria CSP (MC-CSP) is a soft CSP problem composed by a family of p
soft CSPs. Each criterion can be defined over the semiring KCSP . Then, a MC-CSP
problem is defined over semiring L(KCSP 1 × . . .×KCSP p

).
Consider a problem with two variables {x, y}, two values in each domain {a, b},

and two criteria to be satisfied. For the first criteria, the assignments (x = a, y =
a), (x = b, y = a), and (x = a, y = b) are forbidden. For the second criteria, the
assignments (x = b, y = a), (x = a, y = b), and (x = b, y = b) are forbidden.
Let K2−CSP = 〈{f, t} × {f, t}, ∨̄, ∧̄, 〈f, f〉, 〈t, t〉〉 be the cartesian product of two
semirings KCSP (one for each criterion), where f and t are short-hands for false and
true, respectively. ∨̄ is the pairwise ∨ and ∧̄ is the pairwise ∧. Then, the problem is
represented as a soft CSP P = 〈C,X〉 over K2−CSP , where C = {Cx, Cy, Cxy} is
defined as Cx(a) = Cx(b) = Cy(a) = Cy(b) = 〈t, t〉, Cxy(a, a) = 〈f, t〉, Cxy(b, a) =
〈f, f〉, Cxy(a, b) = 〈f, f〉, and Cxy(b, b) = 〈t, f〉.

The solution of P is the constraint Sol(P) with support {x, y} given by Cx∧̄Cy

∧̄Cxy . Since the variables of the problem are the same as the ones in the support of
the constraints, there is no need to project any variable out. Moreover, since for all η,
Cx(η) = Cy(η) = 〈t, t〉 and 〈t, t〉 is the unit element with respect ∧̄, Sol(P) = Cxy .
The best level of consistency of P is blevel(P) = �η{Sol(P)(η)} = 〈t, t〉.

However, we want to obtain as the best level of consistency the set of semiring val-
ues representing the efficient frontier E(P) = {〈f, t〉, 〈t, f〉}. To that end, we map the
problem P to a new one, by changing the semiring K2−CSP using the partial correct-
ness transformation on finite representations. By applying the mapping, we obtain a
problem L(P) = 〈C′,X〉 over semiring L(K2−CSP), with the following constraint
definition Cx(a) = Cx(b) = Cy(a) = Cy(b) = {〈t, t〉}, Cxy(a, a) = {〈f, t〉},
Cxy(b, a) = {〈f, f〉}, Cxy(a, b) = {〈f, f〉}, Cxy(b, b) = {〈t, f〉}.

The solution of L(P) is the same as for P . However, its best level of consistency is
blevel(L(P)) = {〈0, 1〉, 〈1, 0〉}, which is the efficient frontier of P . The corresponding
pareto-optimal solutions are (x = a, y = a) and (x = b, y = b).

768 S. Bistarelli et al.

5 Conclusions, Related Works and Further Developments

Problems involving the optimization of more than one objective are ubiquitous in real
world domains. They are probably the most relevant optimization problems with a par-
tially ordered objective function. So far, nobody studied how to use the soft CSP frame-
work to model multi-objective problems. The only attempt is [5], where the least upper
bound is the used notion of solution, which is a relaxed one regarding pareto-optimality.

Our paper addresses exactly this issue. For the first time, we distill a semiring able
to define problems such that their best level of consistency is the efficient frontier of
a multi-objective problem. This formalization is important for two main reasons: we
gain some understanding of the nature of multi-objective optimization problems; and
we inherit some theoretical result from the soft CSP framework.

We are aware of few papers addressing the handling of preferences with structures
that are reminiscent of downward closures. Among others, we cite the work on prefer-
ence queries [6], where a winnow operator is introduced. The winnow operator selects
from a given relation the set of most preferred tuples, according to a given preference
relation. In the same context of relational databases a similar Skyline operator is investi-
gated in [7]. The Skyline operator filters out a set of interesting points from a potentially
large set of data points, where a point is interesting if it is not dominated by any other
point. Moreover, Pareto preference constructors are defined in [8] in the framework of
the so-called Best-Matches-Only (BMO) query model. In the paper, the author investi-
gates how complex preference queries can be decomposed into simpler ones.

We are currently investigating the semiring S(K) of saturated closures, i.e., whose
elements are both downward- and upward-closed sets. We are in general looking for
suitable constructions resulting in a division semiring, if K is so. This would allow for
the application of local consistency algorithm to a larger family of case studies [9].

References

1. Ehrgott, M., Gandibleux, X.: Multiple Criteria Optimization. State of the Art. Annotated Bib-
liographic Surveys. Kluwer, Dordrecht (2002)

2. Pin, J.E.: Tropical semirings. In: Idempotency, pp. 50–69. Cambridge University Press, Cam-
bridge (1998)

3. Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming. ACM Trans-
actions in Compututational Logic 7(3), 563–589 (2006)

4. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint solving and optimization.
Journal of ACM 44(2), 201–236 (1997)

5. Bistarelli, S., Montanari, U., Rossi, F.: Soft constraint logic programming and generalized
shortest path problems. Journal of Heuristics 8(1), 25–41 (2002)

6. Chomicki, J.: Semantic optimization techniques for preference queries. Information Sys-
tems 32(5), 670–684 (2007)

7. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. ICDE 2001, pp.
421–430. IEEE Computer Society, Los Alamitos (2001)

8. Kießling, W.: Foundations of preferences in database systems. In: Proc. VLDB 2002, pp. 311–
322. Morgan Kaufmann, San Francisco (2003)

9. Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based formalisms.
In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Proc. ECAI 2006, pp. 63–67. IOS
Press, Amsterdam (2006)

A Multi-theory Logic Language
for the World Wide Web

Giulio Piancastelli and Andrea Omicini

Alma Mater Studiorum—Università di Bologna
via Venezia 52, 47037 Cesena, FC, Italy

Abstract. Despite the recent formalization of the Web in terms of
Representational State Transfer (REST) architectural style and
Resource-Oriented Architecture (ROA), current tools for Web program-
ming generally misunderstand its design. Based on REST/ROA insights,
we claim that logic languages are suited for promoting the Web archi-
tecture and principles. The mapping of REST/ROA abstractions onto
elements of Contextual Logic Programming also permits runtime modifi-
cation of resource behavior. In this paper we present Web Logic Program-
ming as a Prolog-based language for the Web embedding REST/ROA
principles, meant to be the basis of an application framework for rapid
prototyping.

1 Introduction

In the latest years, substantial achievements have been obtained in the under-
standing of the Web architectural principles and design criteria, in terms of
the Representational State Transfer (REST) architectural style for distributed
hypermedia systems [1], and of a set of Web application guidelines and best
practices called Resource-Oriented Architecture (ROA) [2]. The resource is the
main REST/ROA data abstraction, defined as any conceptual target of a hy-
pertext reference identified by a unique name. Communication among resources,
and between the client- and server-side of a Web application, occurs through a
uniform interface by transferring a representation of a resource current state.

When confronted with REST/ROA insights, research on logic programming
and the Web shows significant shortcomings. API libraries such as PiLLoW [3]
only allow interfacing logic technologies with the Web instead of promoting a
deeper integration. Internet agents [4] lay the agent-oriented paradigm over the
resource-oriented Web architecture, without treating the relationship between
the two abstractions. Logic pages in systems such as LogicWeb [5] are conceptu-
ally narrower than resources, in the sense that they could be viewed as resources
with only one representation, and can be only exploited on the client side.

In this paper, we first show how to map Web concepts onto elements of Con-
textual Logic Programming (CtxLP) [6] according to REST/ROA; then, based
on that mapping, and on the programming model introduced in [7], we present
Web Logic Programming as a Prolog-based logic language specific to the Web,
intended to work as the fundamental brick of a logic framework for prototyping
Web applications while promoting REST/ROA principles and constraints.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 769–773, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

770 G. Piancastelli and A. Omicini

2 Resources and Contexts

The properties of Web resources can be immediately identified: a name defined
by the URI standard; data representing their state; and behavior, used e.g. to
manage interaction with other resources. According to ROA, a resource and its
URI ought to have an intuitive correspondence: identifiers should be descriptive,
and have a definite structure varying in predictable ways [2]. This addressability
property is accompanied by the connectedness property, that is the quality of
resources to be linked to each other in meaningful ways.

When resource names are designed following ROA guidelines, they feature
an interesting property on their own: any path can be interpreted as including
a set of resource names. More precisely, we say that resource names such as
http://example.com/sales/2004/Q4 encompass the names of other resources
and at last the name of the resource representing the domain at the URI root:

http://example.com/sales/2004
http://example.com/sales
http://example.com

This naming structure suggests that each resource lives in an information con-
text composed by the resources associated with the names encompassed by that
resource name. Since more than one name can identify the same resource, the
context of a resource is associated with its name. Thus, a resource may live in
different contexts at the same time, and feature different behaviors according to
the context where the interaction with other elements of the system takes place.

The properties of Web resources can be easily mapped onto elements of logic
languages such as Prolog: each resource R uses the atom containing the resource
URI as its N(R) name, and clauses in a logic theory T (R) as its data (facts)
and behavior (rules). For operations that may involve not only a single isolated
resource, we introduce the context C(R) as the locus of computation associated
with each resource. Following ROA guidelines on URIs, we define a resource
context as the composition of the theories associated with the resources linked
to names encompassed by the name of that resource, including the resource itself.
Given a resource R with a name N(R) so that N(R) ⊆ N(R1) ⊆ . . . ⊆ N(Rn),
where the inclusion operator follows the encompassment semantics previously
defined, then the associated context C(R) is generated by the composition T (R)·
T (R1) · . . . · T (Rn), where the theories T (Ri) could be imagined as occupying
the slots of a stack structure, with T (R) at the top and T (Rn) at the bottom.

Alongside resources with a URI, we have identified four implicit resources
corresponding to recurring concepts in Web development: (i) the session resource
RS (identified by the atom session) representing an interaction session with
the application; (ii) the user resource RU ; (iii) the application resource RA

containing knowledge that can be applied to every resource in the application;
(iv) the environment resourceRE entailing the Web server where the application
has been deployed. They are implicit because they are attached, in the presented
order, to the bottom of the context of any resource even if their names are not
encompassed by the name of that resource.

A Multi-theory Logic Language for the World Wide Web 771

3 Web Logic Programming

Web Logic Programming (WebLP) is a language to program Web resources and
their interaction in ROA-based systems. To define the WebLP computation
model, maintaining compatibility with REST constraints, we need to analyze
the Web computation model: it revolves around transactions in HTTP, a pro-
tocol aimed at transferring representations of a resource state. Each transaction
starts with a request, containing the method information (i.e. how the receiver
has to process the request) and the scope information (i.e. the data where the re-
ceiver should operate the method) [2]. Computations occur on the receiving side,
where the target resource performs the operation indicated by the method. The
result is a response carrying an optional representation of the target resource.

Adopting a logic programming view of the Web computation model, each
HTTP request is translated to represent a deduction: the scope information is
used to indicate the target theory, and the method information is mapped onto
a logic goal (e.g. get/3). The computation takes place in the context associated
with the target resource; then, the information resulting from goal solution is
translated to a suitable representation and sent back in the HTTP response.

To invoke a computation represented by a goal G on a resource R, we adopt
the syntax N(R):G, ultimately meaning C(R) � G. Let C(R) be the composition
of n theories, the query G is asked in turn to each theory, by exploiting context
navigation to locate the unifying predicate. The goal fails if no solution is found
in any theory, or succeeds when it is solved using the knowledge base of a theory
T (Ri). When the goal G is replaced by the subgoals of the matching rule in
T (Ri), the computation proceeds from C(Ri) instead of the original context.

As a code sketch example, imagine a bookshelf sharing application: the shelf of
the jdoe user is represented by the S resource, identified by the URI
http://example.com/jdoe/shelf; each book is filed under category subjects,
e.g. the resource B for biology books lives at /jdoe/shelf/biology. When B
receives a GET request, a predicate to pick the list of biology books is invoked:

pick_biology_books(B) :-
parent_id(Shelf), pick_books(B, category(biology), Shelf).

where parent id/1 is a predefined predicate returning the identifier of the parent
resource. The pick books/3 predicate is defined neither in B nor in S, since it
has a wider scope. As shown in Fig. 1, the theories in C(B) are traversed down
to the / resource, where a definition for pick books/3 is found:

pick_books(B, category(C), Shelf) :-
findall(Book, Shelf : book(Book), Books), filter(Books, C, B).

Definitions for predicates invoked by pick books/3 are then searched beginning
from the current context rather than C(B) where the computation started.

3.1 Dynamic Context Composition

The fixed structure of resource identifiers in the Web architecture simplifies
computations in that no need for a dynamic context augmentation is envisioned.

772 G. Piancastelli and A. Omicini

Fig. 1. The /jdoe/shelf/biology resource responds to a HTTP GET request by even-
tually invoking the pick biology books/1 predicate, which in turn calls pick books/3;
the context is traversed until a proper definition for it is found in the / resource

However, a computation may involve a group of different resources, e.g. in fil-
tering distinct sets of search results. We may express the invocation of a com-
putation on a composition of contexts by the syntax [N(R1), ..., N(Rn)]:G.
The semantics of this computation roughly corresponds to the union operator in
Modular Logic Programming [8]: the goal G succeeds as soon as it is solved on
at least one context, or it fails when no solution is found in any context. When
the goal is replaced by the subgoals of the matching rule in a theory of C(Ri),
the computation proceeds from the context union rather than from C(Ri).

3.2 Dynamic Resource Behavior

Another dynamic aspect of a resource comes from the ability to express behav-
ioral rules as first-class abstractions in a logic programming language: on one
hand, it is thus possible to exploit well-known stateful mechanisms to change
the knowledge base associated with a resource; on the other hand, the HTTP
protocol itself allows changing a resource by means of the PUT method, wherein
the content should be considered as a modified version of the target resource that
has to replace (or be merged with) the original version residing on the server.

As a code sketch example, imagine a reading wish list in a bookshelf sharing
application. When a book is added, the resource representing the wish list could
check local libraries for book availability, and possibly borrow it on user’s behalf;
if no book is found, the resource could check online bookstores, reporting prices
to the user for future purchase. This behavior may be codified by the rules:

check(Book) :- library(L), available(Book, L), borrow(Book, L), !.
check(Book) :- bookstore(S), available(S, Book, Price),

report_to_user(S, Book, Price).

When an online bookstore (e.g. Amazon) offers discounts, the wish list resource
should react to the insertion of new books so as to check that store first instead
of libraries, directly placing an order if the possibly discounted price is inferior
to a certain threshold. This behavior may be represented by the following rule:

check(Book) :- available(amazon, Book, Price),
threshold(T), Price < T, order(amazon, Book), !.

A Multi-theory Logic Language for the World Wide Web 773

The Web application could change the behavior of wish lists by sending HTTP
PUT requests that modify the computational representation of those resources
by carrying the new clause of the check/1 predicate. The application could
restore the old behavior at the end of the discount period by sending other PUT
requests with the previous check/1 rules.

3.3 Operational Semantics

The semantics is heavily indebted with CtxLP: however, WebLP does not feature
rules for context augmentation; its Explicit Up rule describes a shortcut to invoke
a goal derivation on the immediate ancestor of a resource by means of the parent
identifier; and it adds a Context Composition rule exploiting the union operator
from Modular Logic Programming. More details are provided in [9].

4 Conclusions and Future Work

WebLP tries to follow the principles and capture the abstractions of the Web
as described by REST/ROA: it maps resources to logic theories, and maintains
the addressability property by using URIs to identify theories and label queries;
it respects the uniform interface by using deductions to access and exchange
information; and it embraces the connectedness property by binding resources
along a single URI path in the notion of context. Future work will be devoted to
the construction of a logic programming Web framework based on WebLP.

References

1. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of California, Irvine (2000)

2. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly, Sebastopol (2007)
3. Cabeza, D., Hermenegildo, M.: Distributed WWW Programming using (Ciao–) Pro-

log and the PiLLoW Library. Theory and Practice of Logic Programming 1(3),
251–282 (2001)

4. Denti, E., Natali, A., Omicini, A.: Merging Logic Programming into Web-based
Technology: A Coordination-based Approach. In: 2nd International Workshop on
Logic Programming Tools for Internet Applications, Leuven (B), July 1997, pp.
117–128 (1997)

5. Loke, S.W.: Adding Logic Programming Behaviour to the World Wide Web. PhD
thesis, University of Melbourne, Australia (1998)

6. Monteiro, L., Porto, A.: A Language for Contextual Logic Programming. In: Logic
Programming Languages: Constraints, Functions, and Objects. MIT Press, Cam-
bridge (1993)

7. Piancastelli, G., Omicini, A.: A Logic Programming model for Web resources. In: 4th
International Conference on Web Information Systems and Technologies (WEBIST
2008), Funchal, Madeira (P), May 2008, pp. 158–164 (2008)

8. Brogi, A., Mancarella, P., Pedreschi, D., Turini, F.: Modular Logic Programming.
ACM Trans. on Programming Languages and Systems 16(3), 1361–1398 (1994)

9. Piancastelli, G., Omicini, A.: A multi-theory logic programming language for the
World Wide Web. Technical Report 2515, Alma Mater Studiorum—Università di
Bologna (August 2008), http://amsacta.cib.unibo.it/archive/00002515/

http://amsacta.cib.unibo.it/archive/00002515/

A Case Study in Engineering SQL Constraint Database
Systems (Extended Abstract)

Sebastien Siva1, James J. Lu1, and Hantao Zhang2

1 Mathematics and Computer Science, Emory University, Atlanta, GA 30322-1950, USA
2 Computer Science, University of Iowa, Iowa City, IA 52240, USA

1 Introduction

Practical contexts for constraint satisfaction problems (CSP) often involve large rela-
tional databases. The recent proposal by Cadoli and Mancini, CONSQL, shows that a
simple extension to SQL provides a viable basis for modeling CSP [1]. This enables the
transparent integration of CSP solvers with databases using SQL — the most widely
known and popular database language, and opens the possibility for making the power
of CSP technology accessible to SQL knowledgeable users.

To realize this potential, substantial engineering efforts, each with the goal of deliv-
ering increasingly sophisticated tools will be required. To that end, this extended ab-
stract describes a case study in the design and implementation of a SQL constraint data
engine (SCDE). SCDE manages the internal representation and solving of constraints
through a combination of ordinary SQL and a complete, high-performance satisfiabil-
ity (SAT) solver, SATO.1 This design complements the simulator described in [1] for
CONSQL, which exploits an incomplete constraint solver JLocal. Motivations for the
orthogonal design are as follows. First, many CSPs over relational databases involve
finite domains and can be represented and solved within the SAT paradigm. Second,
significant advances have occurred in the last decade in (DPLL-based) complete SAT
solvers, including systems that allow the process of partial model generation to be inter-
twined with problem-specific literal selections strategies [10]. Third, the completeness
property and the ability to enumerate solutions provides opportunities for interesting
post-processing of CSP solutions inside the database engine.

Lessons from our work to date include 1) techniques for representing SQL con-
straints as a combination of database relations and parse trees, and for modularizing
constraint compilation; 2) an understanding of several important constraint patterns and
associated algorithms for compilation to SAT clauses; 3) experience from applying the
SCDE to two case-studies bring into sharper focus important enhancements that will
be necessary to improve the usability of the SCDE. Due to space constraint, we briefly
mention related work here but without detailed comparisons.

Related Work. Early efforts to implement CSP techniques in database systems include
deductive and constraint databases that reuse important ideas from logic and constraint
logic programming [3,5,6,9]. While conceptually elegant, these techniques required
knowledge outside the scope of traditional relational database users and programmers.
Recent work on translating high-level specification languages to SAT include CModels

1 Version 4.2, http://www.cs.uiowa.edu/∼hzhang/sato/

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 774–778, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.cs.uiowa.edu/~hzhang/sato/

A Case Study in Engineering SQL Constraint Database Systems 775

[4] and NP-Spec [2]. Their source languages are logic-based, datalog-like rules. To our
knowledge, the current work is the first attempt at compiling SQL to SAT.

2 The SCDE System

The SCDE accepts problems in forms similar to CONSQL [1]. Some modifications and
extensions have been made to the syntax to facilitate the interactive development, incre-
mental editing and debugging of a problem specifications in either the commandline,
an input file, or the GUI. The key concept of CONSQL, the non-deterministic GUESS
operator that declares a relation to have an arbitrary extension, is adapted in the SCDE.
Given a guess relation Q, a set of constraints, written in ordinary SQL syntax over both
existing and other guess relations, specifies conditions that any valid extension of Q
must satisfy. The COMPUTE <Q> command directs SCDE to solve for an extension of
<Q> consistent with the currently applicable SQL constraints.

Consider the 1997-98 ACC Basketball Scheduling problem (ACCBP) [7].2 The basic
problem is to create a double round-robin schedule for the men’s basketball teams of the,
at that time, 9 ACC schools. We assume relations team(id:int,name:string)
and slot(id:int,date:date). The schema of the guess relation is

schedule(slot:ref slot.id,home:ref team.id,away:ref team.id).

Below are three simple examples.

-- C1: no team can play twice in the same slot.
CONSTRAINT C1 CHECK (NOT EXISTS

(SELECT * FROM schedule s1, schedule s2
WHERE diff(s1,s2) AND s1.slot = s2.slot AND

(s1.home = s2.home OR s1.away = s2.away OR
s1.home = s2.away OR s1.away = s2.home)))

-- C2: each team plays every other team, once home, once away
CONSTRAINT C2 CHECK (NOT EXISTS

(SELECT * FROM teams t1, teams t2
WHERE t1.id <> t2.id AND

1 <> (SELECT COUNT(*) FROM schedule
WHERE home = t1.id AND away = t2.id)))

-- C3: UNC and Duke must play each other in the final slot
CONSTRAINT C3 CHECK (EXISTS

(SELECT * FROM schedule s, teams t1, teams t2
WHERE s.slot = 17 AND s.home = t1.id AND s.away = t2.id
AND t1.name = ’Duke’ AND t2.name = ’UNC’))

Components of the SCDE system architecture include various modules for user and
application interfaces. The system kernel contains algorithms for parsing and construct-
ing problem representations, encoding problems as SAT instances, decoding solutions
produced by SATO, and analyzing problems for possible optimizations. Relational data-
base support is provided by Sqlite,3 compiled as part of the SCDE executable.

2 The ACC is a conference of universities along the east coast of the U.S.
3 Version 3.6.1, http://www.sqlite.org/

776 S. Siva, J.J. Lu, and H. Zhang

2.1 Problem Representation

Given a constraint problem with guess tabe Q, SCDE maintains a variable mapping re-
lation, vbmap, whose schema is the same as Q but with an additional integer attribute,
vbid. These unique integer identifiers are used to construct clauses according to the
DIMACS syntax for SAT solvers: positive and negative literals are represented as posi-
tive and negative integers, respectively.

For each guess relation, auxiliary relations are maintained for managing the original
text of each constraint and a set of computed solutions. Methods associated with the
parse tree representation of constraints, for extracting and modifying the sub-structures
have been implemented. An example, is nest(C, n) that returns, for the given con-
straint C, the set of queries nested at depth n (with respect to the keyword SELECT).

2.2 Constraint Compilation

Compiling SQL constraints into SAT is very different from traditional piecemeal,
syntax-directed compiling of programming languages. Moreover, the “virtual
machines” of SQL and SAT have very little resemblance. Indeed, compared to other
work on translating high-level specification languages possessing stricter structures
(e.g., disjunctive logic and answer set programming [4], NP-Spec [2]), the main diffi-
culty in our work is that a SQL constraint may be of an arbitrary structure. We approach
the problem by modularizing compilation around constraint patterns: a separate trans-
lation is provided for each possible outer structure of constraints. The advantage of this
organization is extensibility; useful new patterns may be incorporated easily when they
emerge. In addition, the set of patterns can serve as a useful “programming guide” to
assist SQL users learning to write constraints.

From experience applying SCDE, we have identified the three important constraint
patterns shown below. (Remarks: Q is the guess relation and does not appear in any sub-
query of conditions <c> and <d>; each Bi is a base relation; e evaluates to an integer
and @ is a comparison (e.g., <).)

* Not-Exist-m Constraint (NEMC):
CHECK (NOT EXISTS

(SELECT * FROM Q q1,...,Q qm, B1,...,Bk WHERE <c>))

* Count Constraint (CC):
CHECK (NOT EXISTS

(SELECT * FROM B1,...,Bk
WHERE <c> AND e @ (SELECT count(*) FROM Q WHERE <d>)))

* Exist-m Constraint (EMC):
CHECK (EXISTS

(SELECT * FROM Q q1,...,Q qm, B1,...,Bk WHERE <c>))

Although there exist other useful patterns currently unsupported, all constraints of
the ACCBP may be written naturally as instances of these three. An inspection of the
boolean constraints in the examples of [1] shows that they fall into these patterns as well.
In addition, all constraints for a recently completed case study to group incoming students
at the Emory Oxford campus are easily written as instances of CC. We briefly comment
on the algorithms for compiling the three constraint patterns but omit their details.

A Case Study in Engineering SQL Constraint Database Systems 777

An NEMC states no more than m - 1 copies of the Q may satisfy <c>. Given a join
of the m copies of Q that satisfies <c>, this implies that at least one of the copies must be
false. The corresponding clause may be obtained by querying the vbid associated each
copy of Q, and forming a negative clause over all the ids. Constraint C1 in Section 2 is
an instance of NEMC.

The most frequent uses of EMC contains a single copy of the guess table. That is,
m = 1. Compilation is similar to NEMC, but an interesting duality exists. While the
result of nest(C, 0) of a given NEMC C, read first by row and second by column, is
a CNF of negative clauses, it is a DNF of positive conjunctions in an EMC. Constraint
C3 in Section 2 is an instance of EMC.

CC often produces an explosive growth in the size of the clauses. Given a tuple of
the outer query that satisfies <c>, suppose T is the set of tuples returned from the
query obtained from the inner sub-query by replacing count(*) with vbid. When
the comparison operator @ is <, the constraint may be expressed equivalently as

(|T |
e
)

negative clauses, each of size e. When the comparison is >, the constraint is equiva-
lent to

(|T |
|T |−e

)
positive clauses, each of size |T | − e. To represent these potentially

large clause sets, we rely on SATO’s non-standard feature to succinctly represent count
constraints: Given a clause C in DIMACS format v1 ... vk, the expression C @ e
indicates that the number of literals true in C must satisfy @ e. Similar feature is sup-
ported by most modern solvers. Using this extended notation for CC, finding a model
that satisfies the required number of literals is passed to and handled within the solver.
Constraint C2 in Section 2 is an instance of CC.

3 A Case Study Application

For the ACCBP, we succeeded in computing a solution that satisfies various ”generic”
constraints including 1) each team plays every other team, once home, once away, 2)
each team is idle twice, 3) no 3 consecutive away or home games, and 4) rematches
occur exactly 9 games from the original match-up. When specialized constraints are
added, other constraints became more difficult to satisfy and had to be relaxed. In par-
ticular, tuning the value for the spacing between a match-up and its rematch turns out
to be key in the solvability and the runtime for many problem instances. The next table
summarizes the computing time for several tested instances. Problem P has the addi-
tional requirement that each team must play four weekends at home, four weekends
away and one weekend idle.

generic P(4) P(5) P(6) all(4) all(5) all(9)
clauses 179937 173052 174060 174996 175181 176189 182093
compile time 5s 4s 5s 5s 8s 7s 7s
solve time 0s 3s 177s 820s 403s 577s NA
solution found yes yes yes no yes no NA

The number in parenthesis indicates the minimum spacing required between a match
and its rematch. Problem all contains all the constraints of the original problem [7]. The
failure to produce an answer for all(9) is not surprising given that the same problem also
failed to produce a solution (after two days) using procedural programming and SATO

778 S. Siva, J.J. Lu, and H. Zhang

[11]. To succeed with SATO, the three-phase approach described by Nemhauser and
Trick [7] was necessary. The number of clauses reported is written over 1458 variables.
It is substantially lower than the true count of actual clauses, however, as many of the
clauses are written using the extended notation described earlier.

4 Discussion and Conclusion

The case studies show that storing CSPs in a database, compiling and post-processing
add a modest but predictable overhead to the performance of SAT solvers. Our expe-
rience using the SCDE is that it takes time (about 2 weeks in our case) to become
acquainted with writing SQL constraints, but once we are familiar with certain recur-
rent patterns, translating the English constraints into SQL is straightforward. Relative
to our user experience, perhaps the most important benefit of the SCDE is the ease of
modifying constraints, both as SQL statements and as data in base relations.

Our experience also highlights several missing features that would help to further
improve usability. An example is the ability to trace the effects of a single constraint
including the number of vbmap tuples that it satisfies, the number and size of clauses
that it generates, and so on. Another example is the ability for incremental and separate
compilation of constraints. Modification, addition and removal of constraints should
only locally affect the clause set, and recomputation of the entire set should be avoided.

Acknowledgement. This research was supported in part by the University Research
Committee of Emory University.

References

1. Cadoli, M., Mancini, T.: Combining Relational Algebra, SQL, Constraint Modelling, and
Local Search. Theory Pract. Log. Program. 7(1-2), 37–65 (2007)

2. Cadoli, M., Schaerf, A.: Compiling Problem Specification into SAT. Artificial Intelli-
gence 162(1-2), 89–120 (2005)

3. Chimenti, D., Gamboa, R., Krishnamurthy, R., Naqvi, S., Tsur, S., Zaniolo, C.: The LDL
System Prototype. IEEE Transactions on Knowledge and Data Engineering (1990)

4. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer Set Programming based on Propositional
Satisfiability. J. of Automated Reasoning 36(4), 345–377 (2006)

5. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A survey. Journal of Logic Program-
ming 19/20, 503–581 (1994)

6. Kanellakis, P.C., Goldin, D.Q.: Constraint Programming and Database Query Languages.
In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 96–120. Springer,
Heidelberg (1994)

7. Nemhauser, G., Trick, M.: Scheduling a Major College Basketball Conference. Operation
Research 46(1) (1998)

8. Siva, S.: Ph.D. Thesis (in progress)
9. Zaniolo, C.: Deductive Databases - Theory meets Practice. In: Bancilhon, F., Tsichritzis,

D.C., Thanos, C. (eds.) EDBT 1990. LNCS, vol. 416, pp. 1–15. Springer, Heidelberg (1990)
10. Zhang, H.: The Satbox Library (2006),

http://www.cs.uiowa.edu/∼hzhang/satbox/
11. Zhang, H.: Generating College Conference Basketball Schedules by a SAT Solver. In: Pro-

ceedings of the Fifth International Symposium on the Theory and Applications of Satisfia-
bility Testing, pp. 281–291 (2002)

http://www.cs.uiowa.edu/~hzhang/satbox/

Policy-Driven Negotiations and Explanations:
Exploiting Logic-Programming

for Trust Management, Privacy & Security

Piero A. Bonatti1,�, Juri L. De Coi2, Daniel Olmedilla2, and Luigi Sauro1

1 Università di Napoli Federico II
2 L3S Research Center & University of Hannover

Abstract. Traditional protection mechanisms rely on the characteriza-
tion of requesters by identity. This is adequate in a closed system with
a known set of users but it is not feasible in open environments such
as the Web, where parties may get in touch without being previously
known to each other. In such cases policy-driven negotiation protocols
have emerged as a possible solution to enforce security on future web
applications. Along with this setting, we illustrate Protune a system
for specifying and cooperatively enforcing security and privacy policies
(as well as other kinds of policies). Protune relies on logic programming
for representing policies and for reasoning with and about them.

1 Introduction

Open distributed environments such as the World Wide Web offer easy sharing of
information, but provide few options for the protection of sensitive information
and other sensitive resources. Even though latest developments such as the Web
2.0 have demonstrated that many users are willing to participate and therefore
share information publicly, recent experiences with Facebook’s “beacon” service1

and Virgin’s use of Flickr pictures2 have also shown that users are not willing
to accept every possible use (or abuse) of their data. Therefore, protection of
services and sensitive data may determine the success or failure of a new service.

Policies with well-defined meaning and their exchange between parties during
transactions allow for the dynamic enforcement of security and privacy. However,
such a policy-aware web would equally fail if administrators and users do not
understand such policies (their own and the ones from other parties they are
interacting with), nor are they well informed about the process of enforcing
them. Furthermore, in case a negotiation fails, receiving a simple “Transaction
failed” is not satisfactory for a common user as it does not provide any clue
about what has gone wrong.
� In alphabetical order.
1 http://www.washingtonpost.com/wp-dyn/content/article/2007/11/29/
AR2007112902503.html?hpid=topnews

2 http://www.smh.com.au/news/technology/virgin-sued-for-using-teens-
photo/2007/09/21/1189881735928.html

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 779–784, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.washingtonpost.com/wp-dyn/content/article/2007/11/29/AR2007112902503.html?hpid=topnews
http://www.washingtonpost.com/wp-dyn/content/article/2007/11/29/AR2007112902503.html?hpid=topnews
http://www.smh.com.au/news/technology/virgin-sued-for-using-teens-photo/2007/09/21/1189881735928.html
http://www.smh.com.au/news/technology/virgin-sued-for-using-teens-photo/2007/09/21/1189881735928.html

780 P.A. Bonatti et al.

In this paper, we present the PRovisional TrUst NEgotiation framework Pro-

tune [1] which aims at combining distributed trust management policies with
provisional-style business rules and access-control related actions. Protune’s
rule language extends two previous languages: PAPL [2] and PeerTrust [3],
that supports distributed credentials and a flexible policy protection mechanism.

Protune provides a framework with:

– a trust management language supporting (possibly user-defined) actions
– an extensible declarative metalanguage for driving decisions about informa-

tion disclosure
– a parameterized negotiation procedure, that gives a semantics to the meta-

language and provably satisfies some desirable properties for all possible
metapolicies

– general ontology-based techniques for smoothly integrating language
extensions

– advanced policy explanations in order to answer why, why-not, how-to, and
what-if queries [4]

Policies are basically sets of Horn rules (enhanced with some syntactic sugar) on
which the system has to perform several kinds of symbolic manipulations such
as deduction, abduction, and filtering (as described in Section 4).

We made use of both a tabled logic programming engine (XSB) and a Prolog
compiled on Java bytecode. These two technologies have complementary advan-
tages. Tabling significantly enhances performance in many cases, by factorizing
common subproofs; moreover, tabling makes it possible to process recursive poli-
cies without worrying about termination. A direct implementation of the same
features with procedural programming paradigms would raise implementation,
debugging, and maintenance costs enough to prevent the adoption of similar
enhancements. Java-based Prologs, on the other hand, facilitate deployment
and on-the-fly code download by means of technologies that nowadays are in-
stalled on every computer (and well integrated with the security facilities of their
browsers).

The following sections describe more in detail some of these features and how
logic programming plays a crucial role in their definition and/or implementation.

2 Policy Specification

The Protune rule language [1] is based on normal logic program rules “A ←
L1, . . . , Ln” where A is a standard logical atom (called the head of the rule)
and L1, . . . , Ln (the body of the rule) are literals, that is, Li equals either Bi

or ¬Bi, for some logical atom Bi. In addition, Protune is enhanced with a
FLORA-like object oriented syntax that, however, is only an abbreviation for
standard first-order syntax. One can express by X.attr : v the fact that X has an
attribute attr with value v. Actually, X.attr : v abbreviates the standard atom
attr(X, v). This representation allows multi-valued attributes. This attribute
semantics is compatible with semantic web standards such as RDF and OWL
(in particular X.attr : v corresponds to an RDF triple).

Policy-Driven Negotiations and Explanations 781

A policy is a set of rules, such that negation is applied neither to provisional
predicates (defined below), nor to any predicate occurring in a rule head. This
restriction ensures that policies are monotonic in the sense of [2], that is, as
more credentials are released and more actions executed, the set of permissions
does not decrease. Moreover, the restriction on negation makes policies stratified
programs ; therefore negation as failure has a clear, PTIME computable semantics
that can be equivalently formulated as the perfect model semantics, the well-
founded semantics or the stable model semantics [5].

The vocabulary of predicates occurring in the rules is partitioned into the
following categories.

– Decision Predicates: Currently supported are allow/1, which is queried for
access control decisions, and sign/1, which is used to issue statements signed
by the principal owning the policy.

– Logical Predicates: Comprise abbreviation and state-query predicates as de-
scribed in [6]

– Constraint Predicates:Comprise the usual equality and disequality predicates
– Provisional Predicates: May be made true by executing associated actions

that may modify the current state like e.g. sentCredential/1, logged/2,
sentDeclaration/1.

3 Metapolicies

Metapolicies consist of rules similar to object-level rules. They allow to inspect
terms, check groundness, call an object-level goalG against the current state (us-
ing a predicate holds(G)), etc. In addition, a set of reserved attributes associated
to predicates, literals and rules (e.g., whether a policy is public or sensitive) is
used to drive the negotiator’s decisions. For example, if p is a predicate, then
p.sensitivity : private means that the extension of the predicate is private
and should not be disclosed. An assertion p.type : provisional declares p to be
a provisional predicate; then p can be attached to the corresponding action α
by asserting p.action :α. If the action is to be executed locally, then we assert
p.actor : self, otherwise assert p.actor : peer.

As pointed out before, metarules and metaattributes may be used to attach
provisional predicates to the corresponding actions. The language for local ac-
tions should be flexible and powerful, to facilitate the integration of trust man-
agement in the surrounding environment. Script languages are good candidates;
multiple action languages may coexist in the same policy.

As an example, the predicate logged (which stores a message in a file) can
be associated to its action by a simple metafact or an ontology definition:

logged(Msg,File).action : ′echo′ + Msg + ′>′ + File .
logged(Msg,File).ontology :< www.L3S.de/policyFramework#Logged> .

The exit status of the action determines whether the corresponding provisional
atom is asserted.

782 P.A. Bonatti et al.

4 Negotiations, Policy Reasoning and Filtering

In open distributed environments like the World Wide Web parties may make
connections and interact without being previously known to each other. There-
fore, before any meaningful interaction starts, a certain level of trust must
be established from scratch. Generally, trust is established through exchange
of information between the two parties. Since neither party is known to the
other, this trust establishment process should be bi-directional: both parties
may have sensitive information that they are reluctant to disclose until the
other party has proved to be trustworthy at a certain level. This process is
called trust negotiation and, if every party defines its access control and re-
lease policies to control outsiders’ access to their sensitive resources, can be
automated.

Therefore, during a negotiation both a requester (client) and a server exchange
their policies and information with the goal of performing a transaction. The use
of set of horn rules for policies together with ontologies provide the advantage
of well-defined semantics and machine interoperability, hence allowing for auto-
mated negotiations. When a set of policy rules is disclosed by a server in response
to a client’s request, the client—roughly speaking—works back from the request
(goal) looking for the provisional predicates such as credentials and declarations
in its portfolio that match the conditions listed in the rules’ bodies. In logical
terms, the selected credentials and declarations (represented as logical atoms)
plus the policy rules should entail the goal: this is called an abduction prob-
lem. After receiving credential and declarations from a client, a server checks
whether its policy is fulfilled by trying to prove the goal using its own rules
and the new atoms received from the client, as in a standard deduction prob-
lem. When a client enforces a privacy policy and issues a counter-request, the
roles of the two peers are inverted: the client plays the role of the server and
viceversa.

However, policies (or parts thereof) may be sensitive as well, and therefore
they should not be exchanged unless there exists enough level of trust on the
other party. Protune provides a filtering mechanism [1] which taking into ac-
count specified metapolicies (e.g., sensitivity, actor and execution) as well as
the information received from the other party may partially hide the “filtered”
policy to be sent to the other party.

5 Explanations

The frameworks for protecting security and privacy can be effective only if
common users—with no training in computer science or logic—increase their
awareness and control over the policy applied by the systems they interact with.
Towards this end, Protune introduces a mechanism for answering why, why-
not, how-to, and what-if queries on rule-based policies [4], using simple generic
explanation strategies based on the intended meaning of a few core predicates
with a special role in negotiations. Protune is lightweight and scalable. The

Policy-Driven Negotiations and Explanations 783

only extra workload needed during the framework instantiation phase to sup-
port explanations consists in writing literal verbalization patterns. Moreover,
the extra computational burden on the server can be limited to adding a few
more rules to the filtered policies (the literal verbalization rules) because the
explanations can be independently produced on the clients. Despite its sim-
plicity, our explanation mechanism supports most of the advanced features of
second generation explanation systems. Moreover, it adopts a novel tabled ex-
planation structure, that simultaneously shows local and global (intra-proof and
inter-proof) information, thereby facilitating navigation. To focus answers in the
trust negotiation domain, suitable heuristics are introduced in order to remove
the irrelevant parts of the derivations. There are several novel aspects in such an
approach:

– We adopt a tabled explanation structure as opposed to more traditional ap-
proaches based on single proof trees. The tabled approach makes it possible
to describe infinite failures (which is essential for why not queries).

– Our explanations show the outcome of different possible proof attempts and
let users see both local and global proof details at the same time. Such com-
bination of intra-proof and inter-proof information is expected to facilitate
navigation across the explanation structures.

– We introduce suitable heuristics for focussing explanations by removing ir-
relevant parts of the proof attempts. Anyway, we provide a second level of
explanations where all the missing details can be recovered, if desired.

– Our heuristics are generic, i.e. domain independent. This means that they
require no manual configuration.

6 Implementation: The Protune Framework

In Protune policies are basically sets of Horn rules (enhanced with some syn-
tactic sugar) on which the system has to perform several kinds of symbolic
manipulations such as deduction, abduction, and filtering. All these forms of
reasoning can be implemented with suitable metainterpreters; logic program-
ming languages are perfect for these purposes. Features such as tabling (when
available) lead to significant performance improvements with no extra imple-
mentation costs—this would not be conceivable with any other programming
paradigms. Moreover, we make extensive use of a logic programming language
compiled onto Java bytecode as part of a strategy for simplifying the deployment
of our user agents, that can be even downoladed dynamically as applets. The
rest of the framework and extensible interfaces are provided in Java in order
to improve portability. A live demo of Protune in a Web scenario is publicly
available3 as well as a screencast4. For a demo of the explanation facility and
extensive documentation see http://people.na.infn.it/rewerse/

3 http://policy.l3s.uni-hannover.de/
4 http://www.viddler.com/olmedilla/videos/1/. Recommended in full screen.

http://people.na.infn.it/rewerse/
http://policy.l3s.uni-hannover.de/
http://www.viddler.com/olmedilla/videos/1/

784 P.A. Bonatti et al.

References

1. Bonatti, P.A., Olmedilla, D.: Driving and monitoring provisional trust negotiation
with metapolicies. In: IEEE POLICY, Stockholm, Sweden (2005)

2. Seamons, K., Winslett, M., Yu, T., Smith, B., Child, E., Jacobsen, J., Mills, H., Yu,
L.: Requirements for Policy Languages for Trust Negotiation. In: IEEE POLICY,
Monterey, CA (2002)

3. Gavriloaie, R., Nejdl, W., Olmedilla, D., Seamons, K.E., Winslett, M.: No regis-
tration needed: How to use declarative policies and negotiation to access sensitive
resources on the semantic web. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R.
(eds.) ESWS 2004. LNCS, vol. 3053. Springer, Heidelberg (2004)

4. Bonatti, P.A., Olmedilla, D., Peer, J.: Advanced policy explanations on the web. In:
17th European Conference on Artificial Intelligence (ECAI 2006), Riva del Garda,
Italy (2006)

5. Baral, C.: Knowledge representation, reasoning and declarative problem solving.
Cambridge University Press, Cambridge (2003)

6. Bonatti, P., Samarati, P.: Regulating Service Access and Information Release on
the Web. In: ACM Conference on Computer and Communications Security, Athens
(2000)

An Algorithm for Sophisticated Code Matching
in Logic Programs

Wim Vanhoof and François Degrave

University of Namur
Faculty of Computer Science

Rue Grandgagnage 21
B-5000 Namur, Belgium

Abstract. In this work in progress, we develop a program analysis capa-
ble of efficiently detecting duplicated functionality within a logic program
or a set of logic programs. Our main motivation is to provide an analysis
that allows to automatically spot those locations in a program where a
transformation could be applied that removes the duplication from the
source code.

1 Introduction

Automatically identifying duplicated functionality within the source code of a
given program or a set of programs can be of interest for a number of different
reasons. One major application is in program refactoring where one applies pro-
gram transformations – so-called refactorings – to improve the design and hence
the maintainability of the source code after it has been written [1,2]. Although
different classes of refactorings exist, removing duplication from the source code
is recognised as one of the main incentives to perform refactoring [1].

Duplication can be present in different forms and can be due to different
causes. For example, when working on a substantially large code base, one might
be tempted to rapidly re-implement a frequently needed procedure rather than
searching through the source code to check whether and how this procedure
was already implemented before. More importantly, new functionality is often
introduced by copy/pasting an existing part of the source code adapting it to
the new needs. While the latter does not lead to multiple occurrences of exactly
the same procedure, it does create procedures whose source code is similar in
structure and whose core functionality is often identical. Let us consider the
somewhat contrived example depicted in Figure 1. The predicate getBest/2
represented on the left takes as first argument a list of grades (numerical values
between 0 and 20), and computes in its second argument the median value of
the “best” grades among them. The predicate first computes the mean value
of all the grades (variable M), then it takes the maximum of this value and 12
(variable WM) and it filters from the list of grades those being greater than WM.
Next, it computes the median value from the resulting list (by sorting and taking
the element in the middle of the resulting list). The predicate getBestAdj/2 on

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 785–789, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

786 W. Vanhoof and F. Degrave

getBest(Grades ,Best):-
sum(Grades ,S)1,
length(Grades ,N)2,
M is S / N3,
max(M, 12, WM)4,
filter(Grades ,WM,BGrades)5,
sort(BGrades ,Sorted)6,
length(Sorted ,SN)7,
Pos is SN div 28,
nth1(Pos ,Sorted ,Best)9.

getBestAdj (Grades ,Best):-
adjust(Grades ,AGrades)1,
sum(AGrades ,S)2,
length(AGrades ,N)3,
M is S / N4,
filter(AGrades ,M,BGrades)5,
sort(BGrades ,Sorted)6,
length(Sorted ,SN)7,
Pos is SN div 28,
nth1(Pos ,Sorted ,Best)9.

Fig. 1. An example of copy/paste programming

the right is a variant of the former predicate as it might have been obtained
by copy/paste programming. It largely performs the same operations, except
that initial grades are in some way adjusted before being processed (this is what
adjust is meant to do) and the computed mean is used as is to filter grades.
One way of refactoring the above code is to extract each functionality shared by
both definitions into a new predicate, a so-called predicate extraction [2]. For
the example above this would mean introducing a predicate that computes the
mean value of a list of grades and a predicate that filters a grade list according
to a given value and returns the median value of the filtered list.

Another interesting refactoring, studied in [3], is the generalisation of two
predicate definitions by extracting those code parts that are not shared by the
definitions. Consider the following example, taken from [3]:
rev all(K,L):- K = []1, L = []2.
rev all(K,L):- K = [X|Xs],3 L = [Y|Ys]4, reverse(X,Y)5, rev all(Xs,Ys)6.

add and square(A,B):- A = []1, B = []2.
add and square(A,B):- A = [X|Xs]3, B = [Y|Ys]4, N is X+X5, Y is N*N6,

add and square(Xs,Ys)7.

The definitions above implement two different relations: rev all can be used to
reverse all the elements of an input list (a list of lists), while add and square
transforms each element x of an input list into 4x2. Although different, both def-
initions have a common core which consists of traversing a list and transforming
each of its elements. As such, both definitions can be generalised into a single
new definition – namely the well-known map/3 predicate – and calls to rev all
and add and square can be replaced by calls to map with the higher-order ar-
gument instantiated to, respectively, reverse and a lambda expression of the
form lambda(X,Y) :- N=X+X,Y=N*N.

The aim of the current work is to devise a program analysis that can auto-
matically find those spots in a program where functionality is duplicated in the
sense outlined above. The work is a natural follow-up to [3] where we define a set
of sufficient conditions under which each of the abovely illustrated refactorings
can be applied. While [3] provide a theoretical framework for the study of refac-
toring opportunities based on the presence of duplicated code in logic programs,

An Algorithm for Sophisticated Code Matching in Logic Programs 787

it fails to provide a viable and efficient algorithm for computing those parts of
the source code that represent duplicated functionality.

2 Efficiently Computing Code Matches

Identifying parts of the source code that contain duplicated functionality clearly
is an undecidable problem that nevertheless can be approximated by program
analysis. The basic idea in this work, as it was in [3], is to use a very simple
syntactic criterion to identify duplication, namely we consider two goals as im-
plementing the same relation if one is a renaming of the other. The following
definition introduces the notion of a code mapping identifying, between two given
conjunctions, parts that are equal modulo renaming and that represent as such
a match between two (sub)conjunctions. For a conjunction C = B1, . . . , Bn and
a set of natural numbers S, C|S denotes the conjunction obtained by restricting
C to the atoms Bi with i ∈ S.

Definition 1. Let C = B1, . . . , Bn and C′ = B′
1, . . . , B

′
m be two conjunctions. A

code mapping from C to C′ is an injective and monotonically increasing partial
function µ : N → N such that1 C|dom(µ)

≈ C′
|img(µ)

. A code mapping µ is called
a basic block mapping iff it represents a mapping between sets of consecutive
literals in both conjunctions.

When reconsidering the clauses for the getBest/2 and getBestAdj/2 predi-
cates from before, one can easily see that the mapping µ = {(1, 2), (2, 3), (3, 4)}
is a basic block mapping between these clauses whereas the mapping µ′ =
{(1, 2), (2, 3), (3, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9)} is a code mapping but no ba-
sic block mapping as 4 �∈ dom(µ). Likewise, for the definitions of rev all and
add and square one can observe the basic block mapping {(1, 1), (2, 2)} and
code mapping {(3, 3), (4, 4), (6, 7)}.2 Note that a code mapping can always be
decomposed into a set of basic block mappings. The decomposition is maximal
if no two basic block mappings can be re-joined into a basic block mapping.

Searching for duplicated functionality now boils down to computing all code
mappings that exist between predicate definitions. Computing a “maximal” or
“longest” code mapping between two conjunctions is related to the problem of
finding the longest common subsequence (LCS) of two input strings, see e.g. [4].
There are, however, some important complications that make adapting an LCS
algorithm not straightforward:

1. Contrary to the problem of computing the longest common subsequence of
two input strings, which can be done in a time O(nm) (with n and m being
the lengths of the two input strings), the search process involved in com-
puting a good match between two source code fragments has an exponential
flavour to it. The additional complexity stems from the fact that renamings

1 We use ≈ to denote the fact that two conjunctions are equal modulo a renaming.
2 When comparing recursive predicates, we assume that the predicate symbol of a

recursive call is consistently renamed to some predefined symbol such as res call.

788 W. Vanhoof and F. Degrave

need to be taken into account. Indeed, when searching for a longest code
mapping, the combination of two code mappings µ1 and µ2 does not nec-
essarily result in a valid code mapping since the renamings associated to
µ1 and µ2 may be incompatible – that is, it may be impossible to compose
them into a new single renaming. However, it may be possible to combine
a submapping of µ1 (or µ2) with µ2 (respectively µ1) into a longer code
mapping. Consequently, at any point during the search, all potential code
mappings must be explored, rather than retaining and extending only a cur-
rent longest one, as is the case in most LCS algorithms.

2. In source code matching for refactoring, other characteristics than the sheer
size of the code mapping play a role in determining a “best” match between
two conjunctions. These characteristics include the size of the individual
basic block mappings the code mapping is composed of and the number of
gaps – subconjunctions that do not take part in the code mapping. Moreover,
the precise characteristics of the “best” match may depend on the particular
refactoring one wishes to achieve. For predicate extraction, one is typically
interested in large basic block mappings whereas for predicate generalisation,
the size of the individual basic block mappings is less important than the
number and the position of the gaps.

Our algorithm comprises two phases. First, all basic block mappings are com-
puted. Then in a second phase, the previously computed basic block mappings
are combined to construct larger code mappings. The algorithm is developed
around two parameters, that allow to steer the search process. A first para-
meter, Bmin denotes the minimal desired size of each basic block mapping in
the maximal decomposition of the code mappings under construction. Like-
wise, the second parameter Gmax denotes the maximal number of gaps one
desires to have in the maximal decomposition of the code mappings under
construction.

The first phase of this algorithm has a worst-case complexity O(nm) with
n and m the length of the conjunctions being matched. It basically constructs
a set of basic block mappings that contain, for each pair of atoms Bi and B′

j

all basic block mappings extending to the right of (i, j). This set of mappings
can be computed in a bottom-up way and the operations involved are basically
unification and composition of renamings. The hard part of the algorithm is its
second phase, which is basically exponential in the number of basic block map-
pings computed during the first phase. However, this exponential behaviour is
exposed in rare cases only. In fact, the execution time of the second phase grows
in function of the most complicated code mapping that can be constructed be-
tween the conjunctions (typically involving multiple overlapping and interfearing
basic block mappings). In most common cases (no match or a match compris-
ing a few non-interfearing basic block mappings, as in the examples given in
the introduction) the second phase is only linear in the number of basic block
mappings found during the first phase!

An Algorithm for Sophisticated Code Matching in Logic Programs 789

3 Discussion

In this work, which is a report on work in progress, we develop an efficient
algorithm for finding duplicated functionality in a logic program. A substantial
amount of work has been done on the subject, most notably in the context
of imperative languages. Known techniques are based on parametrised string
matching [5] or can include more involved analysis on a graph representation
of a program [6,7]. Most of these latter works, including the more recent [8],
however concentrate on finding behavioural differences between programs that
are known to be strongly related, which makes them more suited for applications
such as plagiarism detection rather than for program refactoring.

The algorithm is being implemented, and first test results are promising. One
key element that made the approach feasible was to limit the notion of a code map-
ping to a monotonically increasing function. This means that the algorithm will not
detect duplication if atoms are permuted within a conjunction. We believe this is
justified, as for most logic languages either the order within a conjunction is rele-
vant, or conjunctions can be reordered accorded to some predefined scheme [9].

Acknowledgements

The authors would like to thank Alexander Serebrenik for interesting discussions
on the subject. We also thank anonymous referees for their feedback that helped
to improve this abstract.

References

1. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Objet Technology Series. Addison-Wesley, Reading
(1999)

2. Serebrenik, A., Schrijvers, T., Demoen, B.: Improving Prolog programs: Refactoring
for Prolog. Theory and Practice of Logic Programming 8(2), 201–215 (2008)

3. Vanhoof, W.: Searching semantically equivalent code fragments in logic programs.
In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573, pp. 1–18. Springer, Heidelberg
(2005)

4. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence
algorithms. In: String Processing and Information Retrieval, pp. 39–48. IEEE, Los
Alamitos (2000)

5. Schleimer, S., Wilkerson, D., Aiken, A.: Winnowing: Local algorithms for document
fingerprinting. In: Proceedings of the 2003 ACM SIGMOD international conference
on Management of Data, San Diego, CA (2003)

6. Horwitz, S.: Identifying the semantic and textual differences between two versions
of a program. ACM SIGPLAN Notices 25(6), 234–245 (1990)

7. Yang, W.: Identifying syntactic differences between two programs. Software Practice
and Experience 21(7), 739–755 (1991)

8. Winstead, J., Evans, D.: Towards differential program analysis. In: Proceedings of
the 2003 Workshop on Dynamic Analysis (2003)

9. Degrave, F., Vanhoof, W.: Towards a normal form for Mercury programs. In: King,
A. (ed.) LOPSTR 2007. LNCS, vol. 4915, pp. 43–58. Springer, Heidelberg (2008)

Trace Analysis for Predicting the Effectiveness
of Partial Evaluation�

Germán Vidal

Technical University of Valencia, Spain
gvidal@dsic.upv.es

1 Introduction

The main goal of partial evaluation [1] is program specialization. Essentially,
given a program and part of its input data—the so called static data—a par-
tial evaluator returns a new, residual program which is specialized for the given
data. An appropriate residual program for executing the remaining computa-
tions—those that depend on the so called dynamic data—is thus the output of
the partial evaluator. Despite the fact that the main goal of partial evaluation
is improving program efficiency (i.e., producing faster programs), there are very
few approaches devoted to formally analyze the effects of partial evaluation, ei-
ther a priori (prediction) or a posteriori. Recent approaches (e.g., [2,3]) have
considered experimental frameworks for estimating the best division (roughly
speaking, a classification of program parameters into static or dynamic), so that
the optimal choice is followed when specializing the source program.

Here, we introduce an alternative, symbolic approach for predicting the poten-
tial effects of partial evaluation (which is, in principle, computationally less ex-
pensive). Basically, we first generate a finite representation that safely describes
all possible call traces (i.e., sequences of predicate calls) for a given program.
Then, we analyze how this finite representation would change by a particular
partial evaluation. By comparing the original and the transformed representa-
tions, one may in some cases predict the effects of running the partial evaluator.
A more detailed description of our approach can be found in [4].

2 Trace Analysis for Logic Programs

We consider a fixed domain of predicate symbols Π . We assume that Π do not
contain occurrences of the same predicate name with different arities. Further-
more, we consider a fixed computation rule for call traces, namely Prolog’s left-
most computation rule, which we denote by Rleft . We label SLD resolution steps
with the predicate symbol of the selected atom, i.e., we write Q0

p0
� Q1

p1
� . . .

with pred(Rleft (Qi)) = pi ∈ Π , i ≥ 0, where pred(A) returns the predicate
symbol of atom A.
� This work is partially supported by the EU (FEDER) and the Spanish Ministry

MEC/MICINN under grants TIN2005-09207-C03-02, TIN2008-06622-C03-02, and
Acción Integrada HA2006-0008.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 790–794, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Trace Analysis for Predicting the Effectiveness of Partial Evaluation 791

Definition 1 (call trace). Let P be a program and Q0 a query. We say that
τ = p0 p1 . . . pn−1 ∈ Π∗, n ≥ 1, is a call trace for Q0 with P iff there exists a
successful SLD derivation Q0

p0
� Q1

p1
� . . .

pn−1
� Qn.

The first step of our trace analysis consists in producing a context-free grammar
(CFG) associated to the considered program. A CFG is a tuple G = 〈Σ,N,R, S〉,
where Σ and N are two disjoint sets of terminals and non-terminals, respec-
tively, S ∈ N is the start symbol, and R is a set of rules. In the following,
given a predicate symbol p ∈ Π , we denote by p �∈ Π a fresh symbol repre-
senting the non-terminal associated to p. Furthermore, we let pred(A) = p if
A = p(t1, . . . , tn). Also, we let Π denote the set {p | p ∈ Π} of non-terminals
associated to predicate symbols. In contrast, we directly use predicate symbols
from Π as terminals. We let start be a fresh symbol not in Π ∪Π which we
use as a generic start symbol for CFGs.

Definition 2 (trace CFG, cfg
P
q). Let P be a program and q ∈ Π a predicate

symbol. The associated trace CFG is cfg
P
q = 〈Π,Π∪{start}, R, start〉, where

R = {start → q}
∪ {pred(A0)→pred(A0)pred(B1) . . . pred(Bn) | A0←B1, . . . , Bn ∈ P, n ≥ 0}

Roughly speaking, the trace CFG associated to a logic program mimics the
execution of the original program by replacing queries (sequences of atoms)
by sequences of non-terminals and by producing a terminal with the predicate
symbol of the selected atom at each SLD-resolution step.

Example 1. Consider the following program P which defines a procedure for
multiplying all elements of a list by a given value:1

(c1) mlist([], I, []).
(c2) mlist([X |R], I, L) ← ml(X,R, I, L).

(c3) ml(X,R, I, [XI|RI])← mult(X, I,XI), mlist(R, I,RI).

(c4) mult(0, Y, 0). (c5) mult(s(X), Y, Z) ← mult(X,Y, Z1), add(Z1, Y, Z).
(c6) add(X, 0, X). (c7) add(X, s(Y), s(Z)) ← add(X,Y, Z).

where natural numbers are built from 0 and s(·). The associated trace CFG is
cfg

P
mlist = 〈{mlist ,ml ,mult , add}, {start,mlist,ml,mult,add}, R, start〉,

where the set of rules R is as follows:

start → mlist ml → ml mult mlist

mlist → mlist mult → mult add → add
mlist → mlist ml mult → mult mult add add → add add

In [4], we prove that cfg
P
q is indeed a correct approximation of the call traces

for P w.r.t. the leftmost computation rule Rleft .

1 In the examples, we write non-terminals associated to predicates using capital letters.

792 G. Vidal

Unfortunately, trace CFGs do not always allow us to produce a simple and
compact representation of the call traces of a program (e.g., when the associated
language is not regular). To overcome this drawback, we use the transformation
from [5] to approximate a trace CFG with a strongly regular grammar (SRG).
The relevance of SRGs is that they can be mapped to equivalent finite-state
automata using an efficient algorithm. Moreover, the transformation of [5] guar-
antees that the result remains readable and mainly preserves the structure of
the original CFG, which is particularly useful in our context.

A grammar is left-linear if every rule has either the form (A→ t) or (A→ tB),
where t is a finite sequence of terminals and A,B are non-terminals.

Definition 3 (trace SRG, srg
P
q). Let P be a program and q ∈ Π a predicate

symbol. The associated trace SRG, srg
P
q , is obtained from cfg

P
q as follows.

First, we compute the sets of mutually recursive non-terminals of cfg
P
q . Then,

for each set M of mutually recursive non-terminals such that their rules are
not all left-linear w.r.t. the non-terminals of M (i.e., considering non-terminals
from (Π \M) as terminals), we apply a grammar transformation as follows:

1. For each non-terminal A ∈ M , we introduce a fresh non-terminal A′ and
add the rule A′ → ε to the grammar (we denote by ε the empty sequence).

2. For each non-terminal A ∈M and each rule A→ t0 B1 t1 B2 t2 . . . Bm tm of
cfg

P
q with m ≥ 0, B1, . . . , Bm ∈M , t0, . . . , tm ∈ (Π ∪ (Π \M))∗, we replace

this rule by the following set of rules:

A→ t0 B1 B′
1 → t1 B1 . . . B′

m−1 → tm−1 Bm B′
m → tm A′

(Note that this set reduces to A→ t0 A
′ when m = 0.)

We let srg
P
q = 〈Π,Π ∪N ∪ start, R′, start〉, where R′ are the rules obtained

as described above and N are the fresh non-terminals added during this process.

Example 2. Consider the cfg
P
q of Example 1. The sets of mutually recursive non-

terminals are {{mlist,ml}, {mult}, {add}}. Here, the rules for both mlist and
ml are left-linear w.r.t. {mlist,ml}. The rules for add are clearly left-linear too.
However, the second rule of mult is not left-linear because, even if add is treated
as a terminal, it appears to the right of the non-terminal mult. Therefore, in
srg

P
mlist we replace the original rules for mult by the following ones:

{mult
′→ε, mult→mult mult

′, mult→mult mult, mult
′→add mult

′}

Once we have an SRG that safely approximates the call traces of a program, there
are several possibilities for representing the language generated by this SRG in
a compact and intuitive way. Here, we consider the generation of a finite-state
automaton (FA) that accepts the language generated by the SRG; an alternative
approach that produces regular expressions can be found in [4].

A finite-state automaton (FA) is specified by a tuple 〈Q,Σ, δ, s0, F 〉, where Q
is a set of states, Σ is an input alphabet, δ ⊆ Q×Σ ×Q is a set of transitions,
s0 ∈ Q is the start state and F ⊆ Q is a set of final states. For constructing a

Trace Analysis for Predicting the Effectiveness of Partial Evaluation 793

s0 = start, s1 = mlist, s2 = ε, s3 = ml, s4 = mult mlist, s5 = mult
′
mlist, s6 = add mult

′
mlist

��������s0

ε����������s1
mlist

��

 mlist

����
��

���������������s2 ��������s3

ml����������s4mult

��

mult

��

��������s6

add

��
add

�� ��������s5

ε

��

ε

��

(a)

��������s0

ε����������s1
mlist

��

 mlist

����
��

���������������s2 ��������s3

ε����������s4mult

��

mult

��

��������s6

add

��
add

�� ��������s5

ε

��

ε

��

(b)

��������s0

ε����������s1
mlist

��

 mlist

����
��

���������������s2 ��������s3

ε����������s4mult

��

mult

��

��������s6

ε

��
ε

�� ��������s5

ε

��

ε

��

(c)

Fig. 1. Transformation of trace FAs

finite automaton FA(G) from an SRG G, called trace FA, we follow the classical
approach: there is a start state associated to the start symbol of the SRG; for
each reduction w → w′ with a rule A → t B of the SRG, we have a transition
(s, α, s′) in the FA, where states s, s′ are associated with the sequence of non-
terminals in w,w′ and character α is set to the sequence t in the applied rule.

Example 3. Consider the SRG srg
P
mlist of Example 2. The associated FA is

shown in Fig. 1 (a), where the final state s2 is denoted with a double circle.

3 Towards Predicting the Speedup of Partial Evaluation

The trace analysis gives us the context where every predicate call appears. Now,
we informally describe two transformations (a more formal definition can be
found in [4]) that modify the computed traces to account for the potential effects
of a partial evaluation. By analyzing the traces before/after partial evaluation,
one can extract useful conclusions on its effectiveness.

The first transformation is used to eliminate intermediate predicates. Basi-
cally, for every state with exactly one input transition and one output transition,
we replace the label of the output transition by ε (i.e., we delete calls to pred-
icates which are called from a single program point). Consider the trace FA of
the program of Ex. 1 which is shown in Fig. 1 (a). After the elimination of
intermediate states (the case of s3), we get the trace FA shown in Fig. 1 (b).

Our second transformation is parameterized by the output of a binding-time
analysis (BTA), which annotates each predicate with either unfold or memo,
where unfold means that the predicate can be safely unfolded (i.e., without
entering an infinite loop), and memo means that it should be specialized (i.e.,
a residual predicate is produced). Basically, our second transformation replaces
the labels of unfoldable predicates with ε. Consider, e.g., that the output of a
BTA annotates mlist , ml , and mult as memo and add as unfold—this is the case
when the second argument of the initial call to mlist is static. We then get the

794 G. Vidal

trace FA of Fig. 1 (c). Here, we achieve a significant improvement since, in every
iteration for mlist , we save the (recursive) evaluation of the calls to add .

Clearly, we could eliminate those states whose transitions are all labeled with
ε. However, we think that keeping the structure of the original trace FA may
help the user—and automated analysis tools—to formally compare the original
and transformed trace FAs.

4 Discussion

The closest approach to our trace analysis is that of [6], though we offer a
different trade-off between analysis cost and accuracy. Basically, they generate
trace terms abstracting computation trees independently of a computation rule,
while we generate sequences of predicate calls for a specific computation rule;
also, they do not include a technique for enumerating the (possibly infinite) set of
trace terms of a program, while this is a key ingredient of our approach (though
one could also apply the transformation from [5] to the CFG associated to the
trace terms of [6] to obtain a finite representation). A deeper comparison with
the approach of [6] is an interesting topic for further research.

A proof-of-concept implementation of our technique, called Pepe, is publicly
available from http://german.dsic.upv.es/pepe.html. Our approach can be
seen as a first step for the development of automated techniques and tools for
predicting the potential speedup of partial evaluation, thus it opens a number
of interesting lines for further research.

Acknowledgments. We would like to thank ElviraAlbert, SergioAntoy,Manuel
Hermenegildo, Michael Leuschel, Claudio Ochoa, and Germán Puebla for many
interesting discussions on the topic of this paper.

References

1. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs (1993)

2. Craig, S.-J., Leuschel, M.: Self-tuning resource aware specialisation for Prolog. In:
Barahona, P., Felty, A.P. (eds.) PPDP, pp. 23–34. ACM, New York (2005)

3. Ochoa, C., Puebla, G.: Poly-controlled partial evaluation in practice. In: Rama-
lingam, G., Visser, E. (eds.) PEPM, pp. 164–173. ACM, New York (2007)

4. Vidal, G.: Predicting the Speedup of Partial Evaluation. Technical report, DSIC,
UPV (2008), http://www.dsic.upv.es/∼gvidal/german/papers.html

5. Mohri, M., Nederhof, M.-J.: Regular Approximation of Context-Free Grammars
through Transformation, ch. 9, pp. 153–163. Kluwer Academic Publishers, The
Netherlands (2001)

6. Gallagher, J.P., Lafave, L.: Regular approximation of computation paths in logic
and functional languages. In: Danvy, O., Glück, R., Thiemann, P. (eds.) Dagstuhl
Seminar 1996. LNCS, vol. 1110, pp. 115–136. Springer, Heidelberg (1996)

http://www.dsic.upv.es/~gvidal/german/papers.html

A Sketch of a Complete Scheme for Tabled
Execution Based on Program Transformation

Pablo Chico de Guzmán1, Manuel Carro1, and Manuel V. Hermenegildo1,2

1 School of Computer Science, Univ. Politécnica de Madrid, Spain
2 IMDEA Software, Spain

pchico@clip.dia.fi.upm.es, {mcarro,herme}@fi.upm.es

Abstract. Tabled evaluation has proved to be an effective method to
improve several aspects of goal-oriented query evaluation, including ter-
mination and complexity. “Native” implementations of tabled evaluation
offer good performance, but also require significant implementation ef-
fort, affecting compiler and abstract machine. Alternatively, program
transformation-based implementations, such as the original continuation
call (CCall) technique, offer lower implementation burden at some effi-
ciency cost. A limitation of the original CCall proposal is that it limits
the interleaving of tabled and non-tabled predicates and thus cannot be
used for arbitrary programs. In this work we present an extension of the
CCall technique that allows the execution of arbitrary tabled programs,
as well as some performance results. Our approach offers a useful trade-
off that can be competitive with state-of-the-art implementations, while
keeping implementation effort relatively low.

Keywords: Tabled logic programming, Continuation-call tabling, Im-
plementation, Performance, Program transformation.

1 Introduction

Tabling [1,2,3] is a strategy for executing logic programs which remembers al-
ready processed calls and their answers to overcome several limitations of SLD
resolution: non-termination due to repeated subgoals can sometimes be avoided
(tabling ensures termination of bounded term-size programs) and some cases of
recomputation can also be automatically optimized. The first occurrence (the
generator) of a call to a predicate marked as tabled and subsequent calls which
are identical up to variable renaming (the consumers) are recognized. The gen-
erator applies resolution using program clauses to derive answers for the goal.
Conceptually, consumers suspend their current execution path and take on a dif-
ferent branch; this can be repeated several times. When some alternative branch
eventually succeeds the answer generated for the initial query is inserted in a
table associated with the original goal. This makes it possible to reactivate sus-
pended calls and to continue execution at the point where they were stopped.

Implementing tabling is a complex task. In suspension-based tabling (e.g.,
XSB [4] and CHAT [5], among others) the execution state of suspended tabled
subgoals is preserved to avoid unnecessary recomputations, but they usually re-
quire deep changes to the underlying implementation. Linear tabling schemes (as

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 795–800, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

796 P.C. de Guzmán, M. Carro, and M.V. Hermenegildo

exemplified by B-Prolog [6,7] and the DRA scheme [8]) does not require suspen-
sion and resumption of sub-computations, and then, they can usually be imple-
mented on top of existing sequential engines with relatively simple modifications.
However, their efficiency is affected by subgoal recomputation.

2 The Continuation Call Technique

The CCall approach to tabling [9,10] is a suspension-based mechanism which
requires much simpler modifications to the Prolog implementation or compiler
than other suspension-based techniques. A number of low-level optimizations to
existing implementations of the CCall approach were proposed in [11] and it was
shown that performance could be competitive with other implementations.

The CCall technique implements tabling by a combination of program trans-
formation and side effects in the form of insertions into and retrievals from a
table which relates calls, answers, and the continuation code to be executed after
consumers read answers from the table. Consumer suspension and resumption
is performed by operations which are visible at Prolog level.

Roughly speaking, the original CCall approach calls tabled predicates through
the slgcall primitive, which receives a goal and analyzes if it is a generator or a
consumer call. When it is a consumer, suspension has to be performed by saving
the current environment and program counter in order to resume execution later
on. The body goals after the tabled call are associated with a new predicate
symbol, which takes the role of the program counter at that particular place.
The bindings performed before the tabled call make up the environment of the
consumer. Consequently, slgcall takes the name of the auxiliary predicate and
a list of bindings as arguments, in order to be able to perform resumption at
Prolog level. Answers are inserted in the table by answer/2 primitive, which is
added at the end of each clause of the original tabled predicate.

The original transformation is not general because the environments are only
correctly saved when tabled calls are themselves in the body of a tabled predicate
(except for the first one). If there are non-tabled, SLD predicates between the
generator and some consumer, the code after that consumer is not associated
with any predicate symbol, and it is not considered for tabled execution (see [12]
for more details and examples). Tabling all predicates between generators and
consumers works around this problem, but it can seriously impact efficiency.

3 A Complete Tabling Translation for General Programs

We have extended the translation to work around the issue presented in the
previous section by bringing into the scene a new kind of predicates – bridge
predicates. Predicate B is a bridge if for some tabled predicate T, T depends on B
(i.e., B is called in the subtree rooted at T) and B depends on T. Figure 1, which
uses a sugared Prolog-like language,1 shows the rules for the new translation.

1 Functional syntax is implicitly assumed where needed. The ‘◦’ operator is a general
append function which can either join (linear) structures or concatenates atoms.

A Sketch of a Complete Scheme for Tabled Execution 797

tr((:- table P/N),
(P(X1..Xn) :- !,slg(P(X1..Xn)))).

tr((H :- B),LC) :- !,
table(H),
H_tr =.. [’slg_’ ◦ H, H, Id],
End = answer(Id, H),
tr_B(H_tr, B, Id, [], End, LC).

tr((H :- B), (H :- B ◦ LC)) :- !,
bridge(H),
H_tr =.. [H ◦ ’_bridge’, H, Id, Cont],
End = (arg(3, Cont, H), call(Cont)),
tr_Body(H_tr, B, Id, Cont, End, LC).

tr(C, C).

tr_Body([], [], _, _, [], []).
tr_Body(H, B, Id, CCPrev, End,

(H :- B_tr ◦ RestB_tr)) :-
following(B, Pref, Pred, Suff),
getLBinds(Pref, Suff, LBinds),
up_Body(Pred, End, Id, Pref, LBinds,

CCPrev, Cont, B_tr),
tr_Body(Cont, Suff, Id, CCPrev, End, RestB_tr).

following(B, Pref, Pred, Suff) :-
member(B, Pred),
(table(Pred); bridge(Pred)), !,
B = Pref ◦ Pred ◦ Suff.

up_Body([], End, _Id, Pref, _LBinds,
_CCPrev, [], Pref ◦ End).

up_Body(Pred, _End, Id, Pref, LBinds,
CCPrev, Cont, Pref ◦ slgcall(Cont)) :-

table(Pred),
getNameCont(NameCont),
Cont = NameCont(Id, LBinds, Pred, CCPrev).

up_Body(Pred, _End, Id, Pref, LBinds,
CCPrev, Cont, Pref ◦ Bridge_call) :-

bridge(Pred),
getNameCont(NameCont),
Cont = NameCont(Id, LBinds, Pred, CCPrev),
Bridge_call =.. [Pred ◦ ’_bridge’, Cont].

Fig. 1. The Prolog code of the translation rules

The tr/2 predicate takes a clause to be translated and returns the list of
clauses resulting from the translation. Its last clause ensures that predicates
which are non-tabled and non-bridge are not transformed. The first one generates
the interface with the rest of the code for each tabled predicate. The second and
third cases translate clauses of tabled and bridge predicates, respectively.2 They
generate the new head of the clause, H tr, and the code which has to be appended
at the end of the body, End, before calling tr Body/6 with these arguments. The
original clauses are maintained in case bridge predicates are called outside a
tabled call.

tr Body/6 generates, in its last argument, the translation of the body of a
clause by taking care, in each iteration, of the code until the next tabled or
bridge call, or until the end the clause, and appending the translation of the rest
of the clause to this partial translation.

following/4 splits a clause body in three parts: a prefix, until the first time
a tabled or bridge call appears, the tabled or bridge call itself, and a suffix from
this call until the end of the clause. getLBinds/3 obtains the list of variables
which have to be saved to recover the environment of the consumer.

:- table t/1.
t(A):-

p(B), A is B + 1.
t(0).
p(B):- t(B), B < 1.

Fig. 2. A program which
needs bridge predicates

The up Body/8 predicate completes the body prefix
until the next tabled or bridge call. Its first sixth ar-
guments are inputs, the seventh one is the head of the
continuation for the suffix of the body, and the last
argument is the new translation for the prefix. The
first clause takes care of the base case, when there are
no calls to bridge or tabled predicates left, the second
clause generates code for a call to a tabled predicate,

2 Predicates table/1 and bridge/1 check if their argument corresponds to a tabled
or bridge predicate, respectively.

798 P.C. de Guzmán, M. Carro, and M.V. Hermenegildo

t(A) :- slg(t(A)).
slg_t(t(A), Id) :-

p_bridge(Id,
slg_t0(Id,[A],p(B),[])).

slg_t0(Id, [A], p(B), []) :-
A is B + 1,
answer(Id, t(A)).

slg_t(t(0),Id) :- answer(Id, t(0)).

p(B) :- t(B), B < 1.
p_bridge(Id, Cont) :-

slgcall(
p_bridge0(Id,[],t(B),Cont)).

p_bridge0(Id, [], t(B), Cont) :-
B < 1,
arg(3, Cont, p(B)),
call(Cont).

Fig. 3. The program in Figure 3 after being transformed for tabled execution

and the last one does the same with a bridge predicate. getNameCont/1 generates
a unique name for the continuation.

An example of a tabled program which needs our extended translation is
presented in the figure right above this paragraph (and, at more length, in [12]).
If the query ?- t(A). is issued, t(B) is called in a consumer position inside
p/1. This simple combination would incorrectly be dealt by [9]. However, the
translation proposed in Figure 1 generates the code in Figure 3, which transforms
p/1 so that the information necessary to resume t/1 is available where needed,
at the cost of some duplicated code and an extra argument when p/1 is called
from inside a tabled execution.

4 Performance Evaluation

We have implemented the proposed technique as an extension of the Ciao sys-
tem [13] with the efficiency improvements presented in [11] and the new trans-
lation for general programs explained in this poster.

Table 1 aims at determining how the proposed implementation of tabling
compares with state-of-the-art systems —namely, the available versions of XSB,
YapTab, and B-Prolog at the time of writing. We provide the raw time (in mil-
liseconds) taken to execute several tabling benchmarks. Measurements have been
made with Ciao-1.13, using the standard, unoptimized bytecode-based compi-
lation, and with the CCall extensions loaded, as well as in XSB 3.0.1, YapTab
5.1.1, and B-Prolog 7.0. All the executions were performed using local scheduling
and disabling garbage collection; in the end this did not impact execution times
very much. We used gcc 4.1.1 to compile all the systems (except B-Prolog,
which is available as a binary), and we executed them on a machine with Fedora
Core Linux, kernel 2.6.9, and an Intel Xeon Deschutes processor.

While the performance of CCall is clearly affected by the fragment of the
execution performed at Prolog level, its efficiency is in general not too far away
from than XSB’s, whose abstract machine is about half the speed of Ciao’s for
SLD execution. The relationship with B-Prolog is not so clear, as it features a
fast abstract machine, but its tabling implementation sometimes suffers from
recomputation. Last, Yap, which has a fast abstract machine which implements
SLG resolution, easily beats the rest of the systems. We plan to improve the
performance of our implementation by making the CCall primitives closer to

A Sketch of a Complete Scheme for Tabled Execution 799

Table 1. Comparing Ciao+CCall with XSB, YapTab, and B-Prolog

Prog. Ciao+CCall XSB YapTab BProl.
path 517.92 231.4 151.12 206.26
tcl 96.93 59.91 39.16 51.60
tcr 315.44 106.91 90.13 96.21
tcn 485.77 123.21 85.87 117.70
sgm 3151.8 1733.1 1110.1 1474.0
atr2 689.86 602.03 262.44 320.07
pg 15.240 13.435 8.5482 36.448

Prog. Ciao+CCall XSB YapTab BProl.
kalah 23.152 19.187 13.156 28.333
gabriel 23.500 19.633 12.384 40.753
disj 18.095 15.762 9.2131 29.095
cs o 34.176 27.644 18.169 85.719
cs r 66.699 55.087 34.873 170.25
peep 68.757 58.161 37.124 150.14

the abstract machine. More details about the execution times and a comparison
of the CCall time execution complexity with CHAT can be found in [12].

Acknowledgments. This work was funded in part by EU FP6 FET project IST-
15905MOBIUS, FP7 grant 215483S-Cube, Spanish MEC projectTIN2005-09207-
C03 MERIT-COMVERS, ITEA2/PROFIT FIT-340005-2007-14 ES PASS, and
by Madrid Regional Government project S-0505/TIC/0407 PROMESAS.
M. Hermenegildo was also funded in part by the Prince of Asturias Chair in IST
at UNM. Pablo Chico de Guzmán was also funded by a UPM doctoral grant.

References

1. Tamaki, H., Sato, M.: OLD resolution with tabulation. In: Shapiro, E. (ed.) ICLP
1986. LNCS, vol. 225, pp. 84–98. Springer, Heidelberg (1986)

2. Warren, D.: Memoing for logic programs. Communications of the ACM 35(3), 93–
111 (1992)

3. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1), 20–74 (1996)

4. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and
Systems 20(3), 586–634 (1998)

5. Demoen, B., Sagonas, K.F.: Chat: The copy-hybrid approach to tabling. In: Prac-
tical Applications of Declarative Languages, pp. 106–121 (1999)

6. Zhou, N.F., Shen, Y.D., Yuan, L.Y., You, J.H.: Implementation of a linear tabling
mechanism. Journal of Functional and Logic Programming 2001(10) (October
2001)

7. Zhou, N.F., Sato, T., Shen, Y.D.: Linear Tabling Strategies and Optimizations.
Theory and Practice of Logic Programming 8(1), 81–109 (2008)

8. Guo, H.F., Gupta, G.: A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In: Codognet, P. (ed.)
ICLP 2001. LNCS, vol. 2237, pp. 181–196. Springer, Heidelberg (2001)

9. Ramesh, R., Chen, W.: A Portable Method for Integrating SLG Resolution into
Prolog Systems. In: Bruynooghe, M. (ed.) International Symposium on Logic Pro-
gramming, pp. 618–632. MIT Press, Cambridge (1994)

10. Rocha, R., Silva, C., Lopes, R.: On Applying Program Transformation to Imple-
ment Suspension-Based Tabling in Prolog. In: Dahl, V., Niemelä, I. (eds.) ICLP
2007. LNCS, vol. 4670, pp. 444–445. Springer, Heidelberg (2007)

800 P.C. de Guzmán, M. Carro, and M.V. Hermenegildo

11. de Guzmán, P.C., Carro, M., Hermenegildo, M., Silva, C., Rocha, R.: An Improved
Continuation Call-Based Implementation of Tabling. In: Warren, D., Hudak, P.
(eds.) PADL 2008. LNCS, vol. 4902, pp. 198–213. Springer, Heidelberg (2008)

12. de Guzmán, P.C., Carro, M., Hermenegildo, M.V.: Bridge Program Transformation
for the CCall Tabling Scheme. Technical Report CLIP6/2008.0, Technical Univer-
sity of Madrid (UPM), Computer Science School, UPM (September 2008)

13. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-Garćıa, P. (eds.): The
Ciao System. Ref. Manual (v1.13). Technical report, C.S. School (UPM) (2006),
http://www.ciaohome.org

http://www.ciaohome.org

Probabilistic and Concurrent Models for
Security

Romain Beauxis

INRIA Futurs and LIX, École Polytechnique

1 Introduction

Recent research in security and protocol verification has shown an important
need for probabilistic formal concurrent models. Indeed, the use of probabili-
ties in formal models allows to define and check quantitative properties which
are usefull for a lot of applications, such as probabilistic anonymity, failures
or information leakage. Several recent research showed very interesting situa-
tions for these properties [1]. Research on probabilistic models is also a topic
of interest from the mathematical point of view. Topics include relations be-
tween probability and non-determinism, expressivity, processus equivalence and
denotational semantics. Research domains for these topics include probabilistic
process algebras, concurrent constraint programming and domain theory. Inter-
esting references can be found in [2,3].

2 Background of My Research Topic

A particular language for security and communication is the Concurrent Con-
straint Programming (CCP). In this language, each process is equiped with a
constraint store which is used for adding new constraints and testing if a given
constraint can be entailed by the current store. This a very interesting framework
for defining and analysing security properties in terms of logical constraints. In
particular, it can be used to check reachability properties against a given pro-
gram. A denotational semantics have been defined for the CCP that allows to
represent a program in this language as an input/output function on the con-
straints [4]. This semantics has also been proved fully abstract, meaning that
it carries as much informations as the original process. Using this semantics,
mathematic tools and properties can then be used to reason about the programs
of the language and their properties.

Probabilistic extensions for the CCP have been proposed in the litterature
[5,6]. However, in [5] the denotational semantics of the programs can be argued
to be not so natural, leading to complicated probability distributions, such as
fractal distributions, whereas in [6], the constraint system is limited to finite
spaces.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 801–802, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

802 R. Beauxis

3 Goals and Achievements of My Research

I am interested in extending the CCP to a probabilistic language which would
fix the limitations explained above. In particular, I want to extends the original
CCP with a operational and denotational semantics which would be as similar
as possible to the original semantics. I am looking for an application of the
research results in the topic of valuations and probabilistic power domain [3]. The
probabilistic power domain is a very good model for denotational semantics since
it takes into account much of the issues that need to be adressed, in particular
the fix point properties needed to define the semantics.

Before defining a probabilistic CCP, I have studied the possibility to assume
that all valuations on the constraints can be decomposed into an infinite count-
able sum of elementary valuations. This allows to define an operational semantics
on the probabilistic language on the elementary valuations and then extends this
by linearity. I have proved that under some conditions, a valuation could be de-
composed that way. This has lead to the definition of finitely branching algebraic
lattices (FBL). Any valuation on such a lattice is then a simple valuation, and
the similary for the pointwise limit of a directed sequence of bounded valuations.

Using this result, I have defined a language which extends the original CCP
by adding a probabilistic non-guarded choice operator. The usual definitions are
then lifted from the constrainst system to a vector cone space of simple valua-
tions. I have then defined a denotational semantics for this language, which is the
lifted original denotational semantics. As for the original CCP, this semantics
have been proved to be fully abstract.

I plan on applying this language to several probabilistic problems, including
the dinning cryptographers and the crows routing protocol. I would also like
to implement the language in an automated tool, and prove some expressivity
result.

References

1. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy
channels. Inf. Comput. 206(2-4), 378–401 (2008)

2. Pradalier, S., Palamidessi, C.: Expressiveness of probabilistic pi. Electr. Notes
Theor. Comput. Sci. 164(3), 119–136 (2006)

3. Jones, C.: Probabilistic non-determinism. PhD thesis, University of Edinburgh
(1990)

4. Saraswat, V.A., Rinard, M., Panangaden, P.: Semantic foundations of concurrent
constraint programming. In: Conference Record of the Eighteenth Annual ACM
Symposium on Principles of Programming Languages, ACM SIGACT-SIGPLAN,
Orlando, Florida, pp. 333–352. ACM Press, New York (1991) Preliminary report

5. Gupta, V., Jagadeesan, R., Saraswat, V.: Probabilistic concurrent constraint pro-
gramming. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS,
vol. 1243, pp. 243–257. Springer, Heidelberg (1997)

6. Pierro, A.D., Wiklicky, H.: A Banach space based semantics for probabilistic con-
current constraint programming (1998)

On the Hybridization of Constraint Programming and
Local Search Techniques: Models and Software Tools

Raffaele Cipriano

Dipartimento di Matematica e Informatica
Università di Udine, via delle Scienze 208, 33100, Udine, Italy

raffaele.cipriano@dimi.uniud.it

1 Problem Description and State of the Art

Resource management problems are generally modeled as Constraint Satisfaction / Op-
timization Problems (CSPs or COPs). The solution methods for CSPs and COPs can be
split into: complete methods, which systematically explore the whole solution space; in-
complete methods, which rely on heuristics and focus on interesting areas of the solution
space. Our focus is manly in Constrain Programming (CP) and Local Search (LS) tech-
niques. CP languages are usually based on complete methods that analyze the search
space alternating constraint propagation phases and variable assignment phases. Their
main advantage is flexibility. LS methods, instead, rely on the definition of “proximity”
and explore only specific areas of the search space. Their main advantage is efficiency.

We know two main approaches for combining CP and LS [1,2]: 1) a systematic-
search algorithm based on CP can be improved by inserting LS at some point of the
search procedure; 2) a LS algorithm can benefit of the support of CP. In [3] CP and LS
are combined more freely and in [4] they are embedded in a programming language.

There are several languages commonly used for modeling CSPs and COPs.CLP (D)
is a declarative programming paradigm, first presented in 1986 (e.g., [5]), where com-
binatorial problems are usually encoded using constraints over finite domains (namely,
D = FD). The library clpfd of SICStus Prolog (www.sics.se/sicstus) is the
state of the art CLP (FD) implementation. MiniZinc (www.g12.cs.mu.oz.au/
minizinc) is a high-level modeling language: it allows to express most CP problems
easily, but it is also low-level enough to be easily mapped onto existing solvers. Gecode
is an environment for developing constraint-based applications (www.gecode.org);
its language style is C++ like (low-level), but it offers very competitive performances.
EasyLocal++ (tabu.diegm.uniud.it/EasyLocal++) is a C++ object-oriented
framework that allows to easily design, implement and test LS algorithms.

2 Research Summary

The first goal is to study and apply the hybridization of CP and LS on several prob-
lems, interfacing different tools, to obtain flexible and efficient hybrid methods. This is
the starting point to define a meta-modeling language (MiniZinc like) that allows the
user to easily model CSPs and COPs and define algorithms that combines cleverly con-
straint propagation phases, neighborhood exploration and other procedures. This meta-
modeling language will be part of a programming framework made of three parts: the

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 803–804, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

www.sics.se/sicstus
www.g12.cs.mu.oz.au/
minizinc
www.gecode.org
tabu.diegm.uniud.it/EasyLocal++

804 R. Cipriano

modeling part, where the user defines in a high-level style the problem to solve and the
algorithm to use (e.g., CP search, eventually interleaved with LS); the translating part,
where the model and the meta-algorithm are automatically compiled into the solver lan-
guages (e.g., Gecode and EasyLocal++); the solving part, where the overall compiled
program runs and the various solvers interacts, to find the solution. As a side effect, this
programming framework represents a new way to run declarative models: the user can
encode the problems with well-known declarative languages (e.g., Prolog), and then
make use of new low-level implementations (e.g., Gecode) for efficient executions.

We applied hybrid CP-LS techniques to a real hospital rostering problem [6] and to
the protein structure prediction problem [7]. In [6] LS improve solutions obtained by a
first CP phase: hybrid approach leads to better results w.r.t. the single use of CP or LS.
In [7] we alternate CSP solving phases to LS phases, using a CP model to explore the
neighborhood of a LS move: even without developing particular strategies, the solutions
of hybrid method improve those of the pure CP approach.

Moreover we developed two compilers: from SICStus Prolog CLP(FD) to Gecode
and from MiniZinc to Gecode. In [8] we compared the running times of the executions
of codes directly written in the three languages and of the compiled codes for some
classical problems, showing that performances of the compiled codes to Gecode im-
prove those in the original languages and are comparable with running time of native
Gecode code. This work ensures the feasibility of our three-phases programming tool.

Now we are going to follow two main research lines. Hybridization: we want to
improve the hybrid algorithms already developed, refining the integration of the two
paradigms and trying new hybrid ideas; we also want to test the algorithms on other in-
teresting problems. Software tools: we want to extend the functionalities of our Prolog-
Gecode and MiniZinc-Gecode compilers, and develop the modeling-translating-solving
framework; we are going to define a meta-modeling language for this framework (e.g.,
starting from MiniZinc) and interfacing the tools in a consistent and homogenous way.

References

1. Focacci, F., Laburthe, F., Lodi, A.: Local Search and Constraint Programming. Handbook of
Metaheuristics, 369–403 (2003)

2. Jussien, N., Lhomme, O.: Local search with constraint propagation and conflict-based heuris-
tic. Artificial Intelligence 139(1), 21–45 (2002)

3. Monfroy, E., Frédéric, S., Lambert, T.: On hybridization of local search and constraint prop-
agation. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 299–313.
Springer, Heidelberg (2004)

4. Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cambridge (2005)
5. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A Survey. Journal of Logic Program-

ming 19/20, 503–581 (1994)
6. Cipriano, R., Di Gaspero, L., Dovier, A.: Hybrid Approaches for Rostering: A Case Study

in the Integration of Constraint Programming and Local Search. In: Blesa Aguilera, M.J.,
Blum, C., Roli, A., Sampels, M. (eds.) HM 2006. LNCS, vol. 4030, pp. 110–123. Springer,
Heidelberg (2006)

7. Cipriano, R., Dal Palù, A., Dovier, A.: A hybrid approach mixing local search and constraint
programming applied to the protein structure prediction problem. In: WCB 2008, Paris (2008)

8. Cipriano, R., Dovier, A., Mauro, J.: Compiling and executing declarative modeling languages
in gecode. In: Andrea, F. (ed.) Proceedings of CILC 2008, Perugia (2008)

Development of an Automatic Testing
Environment for Mercury

François Degrave

Faculty of Computer Science, University of Namur, Belgium

1 Introduction and Problem Description

Testing refers to the activity of running a software component with respect to
a well-chosen set of inputs and comparing the outputs that are produced with
the expected results in order to find errors. To make testing less repetitive and
quicker, a so-called test automation framework can be used to automatically ex-
ecute a (previously written) test suite1 without user intervention. An automatic
tool runs the software component that is being tested once for each test input,
compares the actual result with the expected result and reports those test cases
that failed during the test; a well-known example of such a tool being JUnit for
Java [1]. However, the construction of test suites remains a mostly manual and
thus time-consuming activity [2]. The need of adequacy criteria [3,4] renders the
construction of (large) test suites complex and error-prone [5]. The objective
of this work is to develop an analysis that automatically creates a set of test
inputs that satisfies a particular coverage criterion for a given program written
in Mercury.

The problem of test input generation lends itself very well to automation
and some research effort has been devoted to automate the generation of test
inputs for unit testing. Most of the efforts have concentrated on generating test
inputs for programs written in imperative programming languages using simple
data like integer and floating point values, e.g. [6]. Recent approaches handle
object-oriented programming and some more complex data structures, e.g. [7].

2 Goal of the Research

Obviously, developing an automatic test input generator for Mercury is a chal-
lenging research topic. Firstly, the control flow of a logic program component is
less obvious than it is in an algorithmic language. This makes porting the ex-
isting notions and analysis techniques for imperative/object-oriented languages
non-straightforward. Secondly, Mercury uses a symbolic data representation for
all but the simplest data. The fact that all complex data is represented in a
uniform and symbolic way makes it easier to handle by well-known analysis
techniques like abstract interpretation and symbolic execution. Therefore it is
1 In testing terminology, a test suite for a software component refers to a collection

of individual test cases whereas a test case refers to the combination of a single test
input and the expected result.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 805–806, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

806 F. Degrave

actually easier to obtain more coverage for Mercury with a single analysis than
it is the case in conventional languages where the diversity and complexity of
dynamic data structures make program analysis notoriously difficult.

3 Current Status of the Research and Open Issues

We have currently developed a basic analysis, loosely based on [6] and reported
in [8] and [9], for a subset of Mercury. We have defined the notion of a control-
flow graph for a Mercury program and how one could derive a set of execution
paths from such a graph. Moreover we have shown how an execution path can be
translated into a corresponding set of constraints, the solutions of which are the
input values such that when the predicate is called with respect to those values,
its execution will follow the derivation represented by the given path. In order
to solve the constraints, we have written a custom constraints solver in CHR.

In order to prove the feasability of the method, we implemented a prototype
in Mercury and tested it with different small-size programs with satisfying re-
sults. However, our approach computes a finite set of execution paths and the
associated test inputs but makes no effort whatsoever to guarantee a certain
degree of coverage. This is an important topic for further research, in particular
since one usually wants to focus the test cases generation to so called interesting
paths – paths that are likely to be followed during a real-life use of the program.
Moreover, in order to limit the generation of “useless” paths, one could possibly
integrate the constraint solving phase with the execution path generation.

Other topics for further work include exploiting the Mercury module system
to perform test case generation in a modular way, and incorporating I/O in the
generated test cases.

References

1. Hunt, A., Thomas, D.: Pragmatic unit testing in java with junit. Pragmatic Book-
shelf (2003)

2. Artho, C., et al.: Combining test case generation and runtime verification. Theoret-
ical Computer Science 336(2-3) (2005)

3. Zhu, H., Hall, P., May, J.: Software unit test coverage and adequacy. ACM Com-
puting Surveys 29(4) (1997)

4. Weyuker, E.J.: Axiomatizing software test data adequacy. IEEE Trans. Softw.
Eng. 12(12), 1128–1138 (1986)

5. Li, K., Wu, M.: Effective software test automation, Sybex (2004)
6. Sy, N., Deville, Y.: Automatic test data generation for programs with integer and

float variables. In: 16th IEEE International Conference on Automated Software
Engineering (ASE 2001) (2001)

7. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with java
pathfinder. SIGSOFT Softw. Eng. Notes 29(4), 97–107 (2004)

8. Degrave, F., Vanhoof, W.: A control flow graph for Mercury. In: Proceedings of
CICLOPS 2007 (2007)

9. Degrave, F., Schrijvers, T., Vanhoof, W.: Automatic generation of test inputs for
Mercury. In: LOPSTR 2008. LNCS. Springer, Heidelberg (2009)

Resolving CSP with Naming Games

Giorgio Gosti

Univ. degli Studi di Perugia, Dept. of Mathematics and Computer Science
giorgio.gosti@dipmat.unipg.it

1 The DCSP and the Naming Game Background

In constraint satisfaction problems (CSP) we consider N variables x1, x2, . . . xN ,
their definition domains D1, D2, . . . , DN and a set of constraints on the values of
these variables; solving the CSP means finding a particular value for the variables
that satisfies the constraints. In the distributed CSP (DCSP) as defined by
Makoto Yokoo [1], the variables of the CSP are distributed among the agents.
These agents are able to communicate between themselves and know all the
constraint predicates relevant to their variable. The agents through interaction
find the appropriate values to solve the CSP.

The naming game describes a set of problems in which a number N of agents
bootstrap a commonly agreed name for an object. Each naming game is defined
by an interaction protocol/algorithm. An important aspect of the naming game
is the hierarchy-free agent architecture. For other references on the naming game
see the work of Steels [3] and Baronchelli et al. [2].

2 Research Summary

In the naming game, the agents want to agree on the name given to an object.
This can be represented as a DCSP, where the name proposed by each agent is
the assignment of the variable controlled by the agent, and an equality constraint
connects all the variables. On the other hand, we can generalize the naming game
to solve DCSPs.

We attribute an agent to each variable of the CSP (see [1]). Each agent i =
1, ..N names his own variable xi. in respect of the variable domain Di. We
restrict the constraints to binary relation xRy. We define two agents’ neighbors
if their variables are connected by a constraint. The agents have a list, which is
a continuously updated subset of the variable domain. The elements of this list
are the possible assignments of the variable proposed by the agent.

At each successive turn t = 1, 2, . . . an agent is randomly extracted to cover
the role of the speaker and he communicates, one by one, with all his neigh-
bors his variable assignment preference. The speaker assignment, the elements
on the hearer neighbors list, and the relation xRy determine the communication
outcome. At the end of the turn the hearers communicate to the speaker the
success, or the failure of the communication, thus the communication outcome
establishes the agents list update. At each successive turn the system evolves

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 807–808, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

808 G. Gosti

through interaction between the agents in a global equilibrium state. In the
equilibrium state all the agents have only one element for their variable and this
element must satisfy the relation xRy with the element chosen by the neigh-
boring agents. We call this the state of global consensus. Once in this state the
interactions are always successful and the system will not change any more. We
call the turn at which the system finds global consensus convergence turn tconv.

This research is currently at the very beginning. We have tested the algorithm
previously described in the following classical CSP problems: graph coloring and
n-queens puzzle. We plotted the graph of the convergence turn tconv scaling with
the number N of the CSP variables, each point was measured by ten runs of the
CSP naming game. We considered three types of graph for the graph coloring:
the path graph, the cycle graph, and the completely connected graph.

In the study of the path graph and the cycle graph we have restricted ourselves
to the 2 − chromatic cases, all the path graphs and only the even number of
nodes cycle graphs. Thus imposed the agent variable domain to two colors. In
this context the tconv of the path graph and the cycle graph exhibit a power law
behavior tconv ∝ N3.0. The cycle graph exhibits a faster convergence.

The graph coloring in the case of a completely connected graph always needs
N colors: in this case we find that the time of convergence is tconv ∝ N1.3.

In the case of the N -queens puzzle with N variables, we see the scaling pro-
portion tconv ∝ N4.2 for the time convergence.

We expect the following achievements from our research: the first, an improved
algorithm that can perform better on different kinds of problems; the second,
development of a dynamic representation of negotiation in human behavior as
a real world DCSP problem. Moreover our aim is to develop a probabilistic
approach to analytically describe the evolution of the system and its equilibrium.
In the study of this method we are trying to fully exploit the power of distributed
calculation. To do this we generalize the naming game algorithm, letting the
CSP solution emerge, rather than being the conclusion of a imperative sequence
of statements. This is achieved through the union of new topics addressed in
statistical physics (the naming game), and the general frame posed by artificial
intelligence.

References

1. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed Constraint Satisfac-
tion for Formalizing Distributed Problem Solving. In: 12th International Conference
on Distributed Computing Systems (ICDCS 1992), pp. 614–621 (1992)

2. Baronchelli, A., Felici, M., Caglioti, E., Loreto, V., Steels, L.: Sharp transition To-
ward Shared Vocabularies in Multi-Agent Systems. Journal of Statistical Mechanics,
P06014 (2006)

3. Steels, L.: Self-Organizing Vocabularies. In: Langton, C., Shimohara, K. (eds.) Ar-
tificial Life V: Proceeding of the Fifth International Workshop on the Synthesis and
Simulation of Living Systems, pp. 179–184 (1997)

4. Nowak, M.A., Plotkin, J.B., Krakauer, J.D.: The evolutionary language game. Jour-
nal of Theoretical Biology 200, 147 (1999)

Biosequence Analysis in PRISM

Ole Torp Lassen

Research group PLIS: Programming, Logic and Intelligent Systems
Department of Communication, Business and Information Technologies

Roskilde University, P.O.Box 260, DK-4000 Roskilde, Denmark
otl@ruc.dk

In this work, we consider probabilistic models that can infer biological informa-
tion solely from biological sequences such as DNA. Traditionally, computational
models for biological sequence analysis have been implemented in a wide vari-
ety of procedural and object oriented programming languages [1]. Models im-
plemented using stochastic logic programming (SLP [2,3,4]) instead, may draw
upon the benefits of increased expressive power, conciseness and compositional-
ity. It does, however, pose a big challenge to design efficient SLP models.

We are currently experimenting with the optimization of a simple model for
gene finders written in PRISM [4]. This model plays the role of a canonical
model, supposed to hold the best knowledge available about genes, non genes
and their respective distributions in DNA. We assume that the canonical model
is not computationally practical per se.

As a scheme of preprocessing, we propose to divide the sequence to be an-
alyzed into shorter subsequences that can be analyzed individually by distinct
components of the canonical model. We achieve this through decomposition of
the canonical model M canon into three distinct components:

C1, a canonical model for distribution of genes and non genes in DNA,
C2, a canonical model for genes and
C3, a canonical model for non genes.

We then define a partitioning model M chop consisting of components:
C1
A2, a simplified generalization of C2
A3, a simplified generalization of C3.

Given a DNA sequence S, canonical model M canon, and partitioning model
M chop, the approximating algorithm can be defined as follows:

1. Apply Mchop to S to get the most likely approximate partitioning of S into subse-
quences, (s1, t1), . . . , (sn, tn), where ti is the supposed type of subsequence si ,(i.e.:
gene or non gene).

2. For each approximate subsequence (si, ti), apply the canonical component corre-
sponding to ti, (i.e.: C1 or C2), to get an ordered list of most likely canonical
subsequence explanations, Esub = {(t1, e1), . . . , (tn, en)}.

3. Apply C1 to Esub to combine subsequence explanations into an approximated most
likely explanation of the entire sequence S.

An experimental setup of models was implemented using stochastic context
free grammars (SCFGs) to allow for sufficient expressive power. In this setup,

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 809–810, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

810 O.T. Lassen

explanations can be represented by their corresponding parse trees. For the pur-
pose of evaluation, a good approximation of the canonical analysis of a sequence
S is a parse tree similar or equal to the one produced by the canonical model.
Assuming that similar parse trees have similar canonical probabilities, a way to
avoid explicit comparison of parse trees is to compare their respective proba-
bilities instead. This is not possible for any realistic S because of the assumed
complexity of the canonical model. Instead we have been experimenting with
an evaluation scheme that compares the probability of a sampled parse of a se-
quence S with the probability of the best approximating parse of that sequence.
This scheme of evaluation by sampling assumes:

i) that randomly sampling the canonical distribution produces sequences with
high probability canonical explanations with high frequency, only occasion-
ally producing an atypically sequence and

ii) that high probability in the canonical model indicates high quality and vice
versa and thus that similar explanations have similar probabilities

Experimental results suggest, however, that assumption i) is not satisfied by the
canonical model that we have been experimenting with. In fact, when sampled, it
very rarely produces a sequence with a better canonical explanation than the one
provided by the approximating algorithm. Because we have so far refrained from
specifying the distribution of the model, the PRISM system defaults to symmet-
ric distributions and this likely blurs the distinction between typical and atypical
sequences. While assumption i) clearly depends on the proper specification of
the canonical distribution, one way to repair the experimental distribution is to
restrict the outcomes to sequences with good canonical explanations.

Despite the difficulties of evaluation, the compositional approach to proba-
bilistic modeling described here offers an alternative way of implementing well-
known bioinformatical models in a concise and flexible declarative framework
while keeping complexity in check. It also has the potential of providing a rig-
orous generic framework for combining separately developed models and spe-
cialized modules. Finally, the framework may generalize to a wide spectrum of
applications, both in bioinformatics and beyond.

References

1. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis. Cam-
bridge University Press, Cambridge (1998)

2. Cussens, J.: Loglinear models for first-order probabilistic reasoning. In: Laskey, K.B.,
Prade, H. (eds.), pp. 126–133. Morgan Kaufmann, San Francisco (1999)

3. Muggleton, S.: Learning from positive data. In: Muggleton, S. (ed.) ILP 1996. LNCS,
vol. 1314, pp. 358–376. Springer, Heidelberg (1997)

4. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. J. Artif. Intell. Res (JAIR) 15, 391–454 (2001)

Bi-dimensional Domains for the Non-overlapping
Rectangles Constraint

Fabio Parisini

DEIS, University of Bologna
V.le Risorgimento 2, 40136, Bologna, Italy

Given a set of rectangles and a bi-dimensional container, the non-overlapping rectangles
constraint aims to obtain consistency such that all the rectangles can be placed without
intersection inside the box. So, the nonOverlapping([R1, . . . , Rn], Box) holds iff all
rectangles are placed inside the Box and no two rectangles Ri and Rj overlap.

The n dimensional version of this constraint, called diffn [1], has been used in many
applications. In the context of two dimensions, it has an obviously prominent role in
various flavors of placement problems (such as 2-dim packing and cutting problems)
and scheduling problems to model resource constraints [2].

Many propagation algorithms have been proposed in the literature for the bi-dimen-
sional version of the constraint: to handle its decomposition (pairwise non-overlapping
constraints), constructive disjunction or the cardinality operator can be used [3]; the most
effective algorithm so far is the specialization of the general sweep pruning technique [4].

Much effort has been recently spent on optimal rectangle packing problem, which
is strictly related to the non-overlapping rectangles constraint. Korf [5] exploited relax-
ations inherited from the bin-packing area and, more recently, a meta-CSP approach
has been proposed [6]. Much interest has arisen for techniques using global constraints
[7], such as the cumulative and the sweep constraint, in conjunction with interval-based
heuristics to solve the problem.

The traditional way of modeling the non-overlapping rectangles constraint involves
the definition of a pair of variables per rectangle, standing for the coordinates of the
left-bottom corner of the rectangle itself. However, in this way, the non-overlapping
rectangles constraint is expressed through a disjunction of inequality constraints, which
cannot perform propagation even when one of the rectangles’ position is fixed. Instead,
using a bi-dimensional representation of domains, it would be possible to store more
precise information about occupied/free surface patches.

Following this idea, I have identified two main issues to face in my research activity:

– The choice of the data structure to be used to represent bi-dimensional domains,
which has to be simple to mantain during search.

– The exploitation of the data structure to implement efficient and effective propa-
gation algorithms on its top; the new available information can be used to perform
innovative reasoning about rectangles which have already been placed and sum of
areas globally available for rectangles still to be placed.

As for the first issue, the region quad-tree [8] seems to suite best to the need of repre-
senting rectangular domains; in the current constraint implementation a single quad-tree

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 811–812, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

812 F. Parisini

is used for storing all rectangles domains by labeling its nodes with different “colors”,
representing free or occupied surfaces patches.

Whenever any rectangle placement decision is taken, the quad-tree data structure
is updated, i.e. the relevant surface patches are set as occupied. As a consequence,
addressing the second issue, ad hoc routines are triggered to check if the remaining area
is wide and tall enough to host uninstantiated rectangles.

In addition to that, the whole area remainder is exploited to perform global propaga-
tion. Using a graph structure which is similar to the one defined for the global cardinal-
ity constraint [9], together with its filtering algorithm, a connection is created between
rectangles still to be placed, corresponding to GCC variables, and the available surface
patches, corresponding to GCC domain values.

The constraint implementation is being tested on a set of rectangle packing instances,
in SICStus Prolog, and its perfomances are compared to the sweep algorithm [4]. The
first results show that the pruning algorithms included into our implementation of the non-
overlapping rectanglesconstraint areeffective; ahighernumberofbacktracks is requested
to the competitor [4]. In spite of that the algorithm which employs the non-overlapping
rectangles constraint needs more time per backtrack, and more total time to solve the
problem instances. Preliminary results show that search strategies tailored on the data
structure could lead to important performance improvements, so the development of such
strategies is one of the main directions in which the research work is heading to.

In general, we can say that the current implementation is still prototipal; we aim to
improve its efficiency by defining smart search strategies and combining the copious
sub-routines which compose the filtering algorithm in a more clever way. The fact that
the number of backtracks is less than the one of the sweep algorithm is a good starting
point; the integration of external constraints and related propagation algorithms, such
as the sweep and cumulative constraint, could lead to even better resuts.

References

1. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathl. Comput. Mod-
elling 20(12), 97–123 (1994)

2. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and place-
ment problems. Mathl. Comput. Modelling 17(7), 57–73 (1993)

3. Hentenryck, P.V., Saraswat, V., Deville, Y.: Design, implementation and evaluation of the con-
straint language cc(fd). Constraints: Basic and Trends 910 (1995)

4. Beldiceanu, N., Carlsson, M.: Sweep as a generic pruning technique applied to the non-
overlapping rectangles constraint. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 377–391.
Springer, Heidelberg (2001)

5. Korf, R.E.: Optimal rectangle packing: New results. In: ICAPS 2004, pp. 142–149 (2004)
6. Moffitt, M.D., Pollack, M.E.: Optimal rectangle packing: A meta-csp approach. In: ICAPS

2006, pp. 93–102 (2006)
7. Simonis, H., Sullivan, B.O.: Using global constraints for rectangle packing. In: CP-AIOR

(2008)
8. Samet, H.: The design and analisys of Spatial Data Structures. Addison-Wesley, Reading

(1989)
9. Regin, J.: Global constraints and filtering algorithms. In: Milano, M. (ed.) Constraint and

Integer Programming. Kluwer Academic Publisher, Dordrecht (2004)

Extracting and Reasoning about Web Data

Giovanni Pirrotta

Graduate School in Mathematics, CS curriculum. Univ. of Messina
Sal. Sperone 31. S. Agata di Messina, I-98166 Italy

gpirrotta@unime.it

1 Introduction and Problem Description

The Web contains an enormous quantity of information, virtually supporting
all types of reasoning and decision-making. Unfortunately, most of the times
automated access to Web data and tracking updates turns out to be hard. Several
technological, standardization and research efforts are now under way to make,
among other things, Web data easily accessed and properly manipulated by
machines. Indeed, for several years now, the W3C consortium has released useful
recommendations on RDF(s)[1] and OWL[2], which are used to assign semantic
to Web data. In particular, making existing Web data available to machine
consumption can be a challenging task. Obviously, it is impossible to re-write
the whole Web using advanced semantic Web languages; hence, various new
technologies are currently being proposed for translating existing Web data, into
RDF document, as GRDDL[3]. In this manner, it is now possible to transform
plain-HTML Web pages into RDF documents, and then apply inferential engines
to deduce new knowledge.

2 Goal of the Research

The goal of the research is to test the latest technologies, also finding new strate-
gies, to extract information from “dirty” Web pages, link them other RDF-data,
implies new knowledge and distribute them to the user.

3 Current Status of the Research

A framework for scraping data from a large community Web site, the Rete Civica
Milano[4] has been developed. This instance of data extraction is challenging be-
cause that Web site is large (almost 400 forums, some of them active since 1994),
diverse, and run on top of a legacy platform that does not support any form of,
so to put it, data parceling an dispatching akin to RSS feeds. In the current ver-
sion, important posts appearing on flat Web pages are routinely extracted and
stored it in a RDBMS. The data is then mapped with the D2RQ framework[5]
and transformed into a SIOC ontology[6] that allows, to some extent, to express
information while preserving the meaning of concepts typical of online commu-
nity sites. A SPARQL[7] endpoint, provided by a JOSEKI server[8], does the

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 813–814, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

814 G. Pirrotta

invocation that makes data available for various forms of selection and delivery.
At that point, the frameworks are intended to offer different services to user;
for instance, we could define rules to make explicit relationship among users or
classify users by number of posts.

4 Open Issues and Expected Achievements

In order to obtain new knowledge our pilot application needs to combine non-
monotonic rules with RDF data. In this context, the latest developments of
dl-program[9], an extension of Answer Set Programming toward an interface to
Description Logic, and dlvhex[10], a prototype application for computing the
models of so-called HEX-program, could be useful for our target. As mentioned
in SPARQL example present in [11], we could consider, for example, a simple
agreement relationship between two users participating in an on-line thread can
be formulated in HEX-program as follows:

agreesWith(A2, A1):- triple(P1, "rdf:type", "sioc:Post"),
triple(P2, "rdf:type", "sioc:Post"),
triple(P1, "sioc:has_creator", A1),
triple(P2, "sioc:has_creator", A2),
triple(P1, "sioc:has_reply", P2),
triple(P2, "sioc:content", C),
&strstr[C,"I agree"].

We could add the produced statements in our KB and use these new facts to
state acquaintance of users on community. The framework development follows
this direction, towards an implementation of a module to manage definition rules
in order to make new knowledge and offer new services to users.

References

1. RDF Schema, http://www.w3.org/TR/rdf-schema/
2. OWL Web Ontology Language Guide, http://www.w3.org/TR/owl-guide/
3. Gleaning Resource Descr. from Dialects of Lang., http://www.w3.org/TR/grddl/
4. Milano, R.C.: http://www.retecivica.milano.it/
5. The D2RQ Platform, http://www4.wiwiss.fu-berlin.de/bizer/d2rq/
6. SIOC Core Ontology Specification, http://www.w3.org/Submission/sioc-spec/
7. SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/
8. Joseki - A SPARQL Server for Jena, http://www.joseki.org/
9. Either, E., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set

Programming with Description Logics for the Semantic Web. In: KR, pp. 141–151
(2004)

10. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: dlvhex: A System for Integrating
Multiple Semantics in an Answer-Set Programming Framework. In: WLP, pp. 206–
210 (2006)

11. Baroglio, C., Bonatti, P.A., Maluszynski, J., Marchiori, M., Polleres, A., Schaffert,
S. (eds.): Reasoning Web. LNCS, vol. 5224, pp. 190–192. Springer, Heidelberg
(2008)

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/grddl/
http://www.retecivica.milano.it/
http://www4.wiwiss.fu-berlin.de/bizer/d2rq/
http://www.w3.org/Submission/sioc-spec/
http://www.w3.org/TR/rdf-sparql-query/
http://www.joseki.org/

Managing Quality of Service with Soft
Constraints

Francesco Santini1,2

1 IMT - Scuola di Studi Avanzati, Lucca, Italy
f.santini@imtlucca.it

2 Istituto di Informatica e Telematica (CNR), Pisa, Italy
francesco.santini@iit.cnr.it

The term Quality of Service (QoS) is “something” by which a user of the service
(in a very large meaning) will judge how good the service is. In this research
project we mainly focus our attention to three areas related with QoS: i) Net-
works, ii) Web Services and iii) Trust Management (TM).

We would like to provide expressive means in order to model and solve these
frameworks with the help of Soft Constraints [1], benefiting from Artificial In-
telligence background to tackle this kind of optimization problems. Soft con-
straints will represent the needs of the parties on the traded resources and the
consistency value of the store represents a feedback on the current agreement.
Using soft constraints gives to the service provider and the clients more flex-
ibility in expressing their requests w.r.t. crisp constraints, and therefore there
are more chances to reach a shared agreement. Moreover, the cost model is
very adaptable to the specific problem, since it is parametric with the chosen
semiring.

In the work so far, we suggested a formal model to represent and solve the
multicast routing problem in multicast networks with QoS requirements (e.g.
bandwidth and delay) [2,3]. In this model we describe how to represent a net-
work configuration in its corresponding and-or graph, mapping network nodes
to and-or graph nodes and links to graph connectors. Afterwards, we propose
the Soft Constraint Logic Programming (SCLP) [4] framework as a convenient
declarative programming environment in which to specify and solve such prob-
lem. In particular, we show how to represent an and-or graph as an SCLP
program, and how the semantics of such a program computes the best tree
in the corresponding weighted and-or graph. This best tree can be used to
shape the optimized multicast tree that ensures QoS requirements on the cor-
responding network. Qos features can be represented with c-semirings algebraic
structures.

We suggested the new concept of multitrust [5,6]: multitrust extends the usual
trust relationship from couples of individuals to one trustor and multiple trustees
in a correlated way. The correlation can be expressed in terms of time (i.e. at the
same time), modalities (i.e. with the same behavior) or collaboration among the
trustees. Some everyday examples can be found when downloading a file from
multiple sources in peer-to-peer networks, or, in general, when a task must/can
be accomplished with the help of many individuals acting together and a trust

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 815–817, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

816 F. Santini

feedback must be found for the whole process. We propose SCLP as a mean to
quickly represent and evaluate trust propagation for this scenario.

Moreover, we extended the Datalog language (we call it DatalogW) in order to
deal with weights on ground facts and to consequently compute a feedback result
for the goal satisfaction [7,8]. The weights are chosen from a proper c-semiring.
As a second step, we use DatalogW as the basis to give a uniform semantics to
declarative RTW (TM) language family, in order to represent trust levels based
on c-semirings. In this way it is possible to manage a score corresponding to a
preference or cost associated to the revealed credentials, instead of a plain “yes
or no” authorization result. The approach is rather generic and could be applied
to other trust management languages based on Datalog.

We extended the Soft Concurrent Constraint (SCC) language to allow the
non-monotonic evolution of the constraint store [9]. The novelty mainly consists
in the possibility of removing soft constraints from the store and to consequently
deal with open and reactive systems. To accomplish this, we will introduce
some new operations (e.g. a retract(c), where c is the constraint to remove). We
present this framework as a possible solution to the management of resources
(e.g. web services and network resource allocation) that need a given Quality
of Service, which for us is related to all the possible non-functional character-
istics associated to the resource, e.g. availability, interoperability and execution
time. Our intention is also to further extend the SCC language in order to join
together the expressive capabilities of soft constraints and timing mechanisms
[10]. Mechanisms as timeout and interrupt can be very useful to force the release
of the resources dedicated to a client, or to alert the client if new resources are
available.

References

1. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. LNCS,
vol. 2962. Springer, Heidelberg (2004)

2. Bistarelli, S., Montanari, U., Rossi, F., Santini, F.: Modelling multicast QoS routing
by using best-tree search in and-or graphs and soft constraint logic programming.
ENTCS 190(3), 111–127 (2007)

3. Bistarelli, S., Santini, F.: A formal and practical framework for constraint-based
routing. In: ICN (best paper award), pp. 162–167. IEEE Computer Society, Los
Alamitos (2008)

4. Bistarelli, S., Rossi, F.: Semiring-based constraint logic programming: syntax and
semantics. ACM Trans. Program. Lang. Syst. 23(1), 1–29 (2001)

5. Bistarelli, S., Santini, F.: Propagating multitrust within trust networks. In: Sym-
posium on Applied Computing, pp. 1990–1994. ACM, New York (2008)

6. Bistarelli, S., Santini, F.: SCLP for trust propagation in small-world networks. In:
Fages, F., Rossi, F., Soliman, S. (eds.) CSCLP 2007. LNCS(LNAI), vol. 5129, pp.
32–46. Springer, Heidelberg (2008)

7. Bistarelli, S., Martinelli, F., Santini, F.: Weighted datalog and levels of trust. In:
ARES, pp. 1128–1134. IEEE Computer Society, Los Alamitos (2008)

Managing Quality of Service with Soft Constraints 817

8. Bistarelli, S., Martinelli, F., Santini, F.: A semantic foundation for trust man-
agement languages with weights: An application to the RT family. In: Rong, C.,
Jaatun, M.G., Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060,
pp. 481–495. Springer, Heidelberg (2008)

9. Bistarelli, S., Santini, F.: A nonmonotonic soft concurrent constraint language for
SLA negotiation. In: VODCA 2008, ENTCS (to appear, 2008)

10. Bistarelli, S., Gabbrielli, M., Meo, M.C., Santini, F.: Timed soft concurrent con-
straint programs. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS,
vol. 5052, pp. 50–66. Springer, Heidelberg (2008)

TopLog: ILP Using a Logic Program Declarative
Bias

José Carlos Almeida Santos

Department of Computing, Imperial College, London
jcs06@doc.ic.ac.uk

1 Introduction, Background and Problem Description

Although Inductive Logic Programming can have other usages such as program
synthesis, it is normally used as a logic based supervised machine learning al-
gorithm. The usual setting for its application is, given: 1) a set of background
knowledge facts B, 2) a set of examples E, find: a set of hypotheses H , such
that B,H |= E. H , the induced model, is a set of Horn rules thus being easily
comprehensible by a human.

Inductive Logic Programming has had several successful practical applications
specially in the biology domain (e.g. [1], [2]). However, a major practical problem
for widespread use is its lack of efficiency. Current ILP systems (e.g. [3], [4]) take
too long to build models for many interesting real world datasets.

The main reason for the significant amount of computational time required
is the size of the hypotheses search space. For any non trivial dataset, the hy-
potheses search space is well beyond what can be searched, even incompletely
and with heuristics, in a reasonable time.

2 Research Goals and Literature Overview

Our Ph.D. thesis contribution proposes to alleviate this problem in two ways.
Firstly, we change the way the hypotheses search space is defined. In current
ILP systems the hypotheses search space is defined through mode declarations,
specifying the literals that may appear in the body of any valid hypothesis. This
mode declarations are meta-logical and it is purpose is to list the predicates
allowed in an hypothesis.

In our setting, the mode declarations are replaced by first-order logic� theory.
The � theory can be viewed as a form of first-order declarative bias which defines
the hypothesis space, since each hypothesized clause must be derivable from
�. The use of the � theory in TopLog is also comparable to grammar-based
declarative biases [5]. However, compared with a grammar-based declarative
bias, � has all the expressive power of a logic program, and can be efficiently
reasoned with using standard logic programming techniques.

The SPECTRE system [6] employs an approach related to the use of �.
SPECTRE also relies on an overly general logic program as a starting point.
However, unlike the TopLog system described in this paper, SPECTRE proceeds
by successively unfolding clauses in the initial theory. TDHD is also related to

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 818–819, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

TopLog: ILP Using a Logic Program Declarative Bias 819

Explanation-Based Generalization (EBG) [7]. However, like SPECTRE, EBG
does not make the key MDHD distinction between the � theory and background
knowledge. Moreover, EBG is viewed as a form of deductive learning, while the
clauses generated by TDHD represent inductive hypotheses.

Having the hypothesis space defined through a first-order logic� theory allows
for an elegant and more specific way of defining the hypotheses search space.
This, just by itself, helps decrease the hypotheses search space because the format
of an hypothesis can now be more precisely described.

The second way in which we alleviate the hypotheses search space problem is
to upgrade the � theory definition from a logic program to a Stochastic Logic
Program (SLP)[8]. Having the � theory as a Stochastic Logic Program allows
for a stochastic derivation of hypotheses thus providing a natural way for sam-
pling the hypotheses search space. Furthermore, this setting makes it possible
to dynamically change the sampling bias by updating the SLP probabilities.

3 Preliminary Results and Expectations

We have created a prototype ILP system, TopLog, which already allows the
hypotheses search space to be described through a logic program. Upgrading
this to an SLP will be implemented in the near future.

We have submitted a short paper to ICLP which describes in detail the pre-
liminary results of TopLog and compares them with an existing state of the
art ILP system like Aleph. The results are promising showing that TopLog is
competitive with Aleph in terms of predictive accuracy (no statistical significant
difference) and in some datasets is already faster.

By the end of the Ph.D. I expect to have a robust ILP system proving the
advantages of having a first order � theory represented by a SLP. I expect to
provide a theoretical analysis together with empirical evidence resulting from
applying TopLog to several new problems.

References
1. Srinivasan, A., King, R.D., Muggleton, S.H., Sternberg, M.: Carcinogenesis pre-

dictions using ILP. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS (LNAI),
vol. 1297, pp. 273–287. Springer, Heidelberg (1997)

2. King, R.D., Srinivasan, A., Sternberg, M.J.E.: Relating chemical activity to struc-
ture: an examination of ILP successes. New Gen. Comp. 13, 411–433 (1995)

3. Muggleton, S.H.: Inverse entailment and Progol. NGC 13, 245–286 (1995)
4. Srinivasan, A.: The Aleph Manual. University of Oxford (2007)
5. Cohen, W.: Grammatically biased learning: Learning logic programs using an ex-

plicit antecedent description language. Artificial Intelligence 68, 303–366 (1994)
6. Boström, H., Idestam-Almquist, P.: Specialisation of logic programs by pruning

SLD-trees. In: Proc. Fourth ILP Workshop (ILP 1994), Bonn, pp. 31–48 (1994)
7. Kedar-Cabelli, S.T., McCarty, L.T.: Explanation-based generalization as resolution

theorem proving. In: Langley, P. (ed.) Proc. of the Fourth Int. Workshop on Machine
Learning, Los Altos, pp. 383–389. Morgan Kaufmann, San Francisco (1987)

8. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Proceedings of
the 5th International Workshop on Inductive Logic Programming, Department of
Computer Science, Katholieke, Universiteit Leuven (1995)

Generalising Constraint Solving over Finite
Domains

Markus Triska

Technische Universität Wien
markus.triska@tuwien.ac.at
http://www.logic.at/prolog/

1 Introduction

Finite domain constraint solvers are typically applied to problems with only
quite small values. This is the case in many tasks for which constraint-based
approaches are well suited. A well-known benchmark library for constraints,
CSPLib ([1]), consists almost exclusively of such examples.

On the other hand, the need for arbitrary precision integer arithmetic is widely
recognised, and many common Prolog systems provide transparent built-in sup-
port for arbitrarily large integers.

It thus seems natural to enhance a constraint solver over finite domains with
the ability to reason over arbitrarily large integers. SICStus Prolog ([2]) already
goes in that direction, using the symbolic constants inf and sup to denote default
domain limits, but internally, they still correspond to quite small integers: The
system yields a representation errors when these limits are exceeded.

2 Background and Applications

The issue of inherent limits in finite domain constraint solvers has so far not
been given much attention. A notable exception is [3], where Apt and Zoeteweij
remark for one of their examples: “the cost of using arbitrary length integers is
roughly a factor four”. However, they did not implement a complete constraint
solver with large integers, but tested the impact of bignums only on a specialised
hand-coded example.

While support for arbitrarily large values has long been taken for granted in
solvers over rational numbers, such as Holzbaur’s CLP(Q) implementation ([4]),
it is new in the context of constraint solvers over finite domains.

Quite a number of theoretically and practically relevant tasks require integer
variables with large ranges. Software verification is an important example ([5]):
To verify a property for all integers, so-called “small-domain” properties can
sometimes be used to reduce the problem to finite bounds. For example, in [6],
it is shown that when we have m satisfiable linear constraints over n integer
variables with unrestricted domains, then a solution can also be found if all
domains are restricted to the range [0, n(ma)2m+1], where a is the maximum
of the absolute values of all coefficients. Clearly, this upper bound can be quite

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 820–821, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Generalising Constraint Solving over Finite Domains 821

large even for very modest tasks that arise in the area of software verification.
Recently, these bounds could be refined ([7]), but they are typically still well
beyond the current abilities of existing CLP(FD) solvers, and in general require
a constraint solver with arbitrarily large domains.

Other examples include non-linear problems that are beyond the abilities
of common CLP(Q) solvers. For example, consider the so-called “7-11 prob-
lem” ([8]), which already surpasses the limits of the finite domain constraint
solver of SICStus Prolog on 32-bit systems.

Finally, a generalised finite domain constraint solver can be openly advertised
as a more declarative alternative for built-in integer arithmetic, yielding more
general programs that are often also easier to understand.

3 Research Goals and Open Issues

Major goals of this research include the design and implementation of a con-
straint solver with arbitrarily large domains, an investigation of its theoreti-
cal properties such as termination and correctness, a comparison with existing
solvers via benchmarks of practical relevance, and an evaluation of new applica-
tion opportunities which are beyond the scope of current solvers.

The current version of the solver is available as library(clpfd) in SWI-
Prolog ([9]) since version 5.6.40.

In the future, in addition to more extensive testing of the solver, portions
of the solver should ideally be generated from a declarative description of the
implemented relations to ensure correctness of constraint propagation.

Once correctness is ensured, efficiency is of great importance. The current
implementation is written in Prolog, and lags behind other solvers in efficiency.

References

1. Gent, I.P., Walsh, T.: CSPLib: A Benchmark Library for Constraints. In: Proceed-
ings of the 5th Int. Conf. PPCP (1999)

2. Carlsson, M., Ottosson, G., Carlson, B.: An Open-Ended Finite Domain Constraint
Solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292. Springer,
Heidelberg (1997)

3. Apt, K.R., Zoeteweij, P.: An Analysis of Arithmetic Constraints on Integer Intervals.
Constraints 4 (2007)

4. Holzbaur, C.: OFAI CLP(Q,R) Manual. TR (1995)
5. Bordeaux, L., Hamadi, Y., Vardi, M.Y.: An Analysis of Slow Convergence in Interval

Propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 790–797. Springer,
Heidelberg (2007)

6. Papadimitriou, C.: On the complexity of integer programming. Journal of the
ACM 28(4) (1981)

7. Seshia, S.A., Bryant, R.A.: Deciding quantifier-free Presburger formulas using para-
metrized solution bounds. Logical Methods in Computers Science 1(2) (2005)

8. Pritchard, P., Gries, D.: The Seven-Eleven Problem. TR (1983)
9. Wielemaker, J.: An Overview of the SWI-Prolog Programming Environment. In:

Proceedings of the 13th International Workshop on LP Environments (2003)

Detection of Security Vulnerabilities Using
Guided Model Checking

Aliaksei Tsitovich

University of Lugano, Switzerland
aliaksei.tsitovich@lu.unisi.ch

1 Introduction

Software security problems are good candidates for application of verification
techniques. Usually it is not a complex task to represent certain security-related
property in a particular verification framework. For instance in any software
model checking environment (MC)[1] it is possible to state buffer overflow de-
tection as a reachability problem. The approach works in theory and in practice,
but has a major scalability drawback: the state-space, which represents all possi-
ble behaviors of the system, might grow exponentially in the size of the product
of a model and a property. From the other side MC has an important advantage
- a counter-example is produced automatically when the bug is found.

In contrast, several static analysis techniques [2,3] use abstract interpretation [4]
to address security problems. They attempt to represent the nature of the vulner-
ability in the values from some abstract domain and to calculate such an abstract
value for each location of the program. Carefully selected abstract domains allow
both scalable computation and fairly precise results [2]. The algorithm is sound (no
bugs are missed) but, 1) abstraction leads to detection of false bugs (so called false
positives) and 2) no counter-example can be produced. Reported comparisons of
tools, based on abstract interpretation, state that they are inapplicable in a wide
industrial practice because of the unacceptably high number of false positives [5].

Dealing with program’s loops is Achilles heel of the most existing static analy-
sis techniques. In order to reason about programs with (possibly infinite) loops
one has to unwind all loop iterations or to build an approximation of a program.
The first variant is a direct way to countless refinements and/or the state explo-
sion, the second one leads to false positives or even to the loss of soundness (if
under-approximation of the loop is used). In this research I particularly tackle
loops as a main source of both scalability and precision problems. I want to
explore how the existing techniques can be combined in a way that minimizes
the effect of their drawbacks in analysis of the program loops.

2 Goals and Achieved Results

The goal of my research is the development of automated methods to detect
security vulnerabilities in a large-scale software. I would like to come up with a
problem-driven algorithm, which combines model checking and abstract inter-
pretation in application to the reachability analysis. I see a following possible
way to achieve the goal:

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 822–823, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Detection of Security Vulnerabilities Using Guided Model Checking 823

1. Develop an algorithm, which creates an over-approximated model of a pro-
gram by summarization of the code fragments with a possibly infinite be-
haviors, i.e., loops.

2. Build reachability analysis using MC algorithms to verify “loop-less” models.
In particular bounded model checking (BMC) [6] is a promising candidate
because: 1) it targets bug detection but not a bug-absence proof; 2) it re-
moves loops, the main limitation of BMC.

3. Develop a strategy to refine the summarized program.
The first part of the work, dedicated to loop summarization, has been accom-

plished and presented in [7]. The summarization algorithm was implemented in
a tool called LoopFrog

1. It targets verification of ANSI-C programs for string-
related properties, e.g. buffer overflows. In [7] each loop is summarized with a
help of localized abstract domain tailored to the verified property. Abstract do-
main suggests invariant candidates which are checked to be inductive invariants
of a given loop. Repeating this procedure in a bottom-up manner gives an al-
gorithm to over-approximate every loop instance by its summary. A summary
is a combination of loop’s variants (i.e. nondeterministically assigned variables)
and discovered invariants. At the end of this summarization one obtains an over-
approximated loop-less model of the program. The important property of this
model is that any path in it is finite and, thus, is easily analyzable by BMC.

There are still a lot of ideas to explore such as abstract domains incremen-
tal strengthening, abstract counter-examples analysis, effective abstract trans-
formers computation or incremental BMC. Finally, I want to obtain “a guided
model-checker” - algorithm that delivers property-tailored and incremental ab-
straction/refinement scheme, which is applicable to a large-scale software.

References
1. Edmund, M., Clarke, J., Grumberg, O., Peled, D.A.: Model checking. MIT Press,

Cambridge (1999)
2. Ganapathy, V., Jha, S., Chandler, D., Melski, D., Vitek, D.: Buffer overrun detection

using linear programming and static analysis. In: Proceedings of CCS 2003, pp. 345–
354. ACM, New York (2003)

3. Evans, D., Larochelle, D.: Improving security using extensible lightweight static
analysis. IEEE Software 19, 42–51 (2002)

4. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

5. Zitser, M., Lippmann, R., Leek, T.: Testing static analysis tools using exploitable
buffer overflows from open source code. In: SIGSOFT FSE, pp. 97–106 (2004)

6. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model check-
ing. Advances in Computers 58, 118–149 (2003)

7. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.: Loop
summarization using abstract transformers. In: Cha, S(S.), Choi, J.-Y., Kim, M.,
Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311. Springer, Heidelberg
(to appear, 2008)

1 Loopfrog binaries, benchmarks results and examples are available at http://www.
verify.inf.unisi.ch/loopfrog

http://www.
verify.inf.unisi.ch/loopfrog

Author Index

Ackley, Elena S. 301
Alberti, Marco 440
Alpuente, Maŕıa 317
Anh, Han The 739
Aranda, Jesús 682

Baral, Chitta 69
Baselice, Sabrina 425
Beauxis, Romain 801
Belhaouari, Hakim 754
Benini, Luca 470
Bertozzi, Davide 470
Bisiani, Roberto 145
Bistarelli, Stefano 764
Boenn, Georg 160
Bonatti, Piero A. 425, 779
Brain, Martin 160, 724
Buccafurri, Francesco 718
Byrd, William E. 238

Cabalar, Pedro 392
Calimeri, Francesco 407
Caminiti, Gianluca 718
Caroprese, Luciano 269
Carro, Manuel 651, 795
Casas, Amadeo 651
Chesani, Federico 440
Cipriano, Raffaele 744, 803
Cliffe, Owen 724
Codish, Michael 749
Cohen, Shay B. 114
Costa, Jorge 708
Cozza, Susanna 407

Damásio, Carlos Viegas 739
De Cock, Martine 362
De Coi, Juri L. 779
Degrave, François 785, 805
de Guzmán, Pablo Chico 795
De Koninck, Leslie 531
Demoen, Bart 7, 175, 621, 693, 698
Denecker, Marc 71
De Raedt, Luc 175
De Schreye, Danny 501
De Vos, Marina 160, 724

Dovier, Agostino 744
Duck, Gregory J. 531

Egly, Uwe 734
Eiter, Thomas 77
Escobar, Santiago 317

Faber, Wolfgang 53
ffitch, John 160
Fink, Michael 99
Forrest, Stephanie 301
Friedman, Daniel P. 238

Gadducci, Fabio 764
Gaggl, Sarah Alice 734
Gavanelli, Marco 440
Gebser, Martin 130, 190
Gelfond, Michael 22
Gosti, Giorgio 807

Hermenegildo, Manuel V. 301, 651, 795
Heymans, Stijn 362

Ianni, Giovambattista 407
Iborra, José 317

Janhunen, Tomi 729
Janssen, Jeroen 362

Kádár, Balázs 455
Kaminski, Roland 190
Kaufmann, Benjamin 190
Kencana Ramli, Carroline D.P. 739
Kimmig, Angelika 175

Lagoon, Vitaly 749
Lamma, Evelina 440
Larrosa, Javier 764
Lassen, Ole Torp 809
Laurendi, Rosario 718
Lecoutre, Christophe 636
Lee, Joohyung 672
Leone, Nicola 53, 407
Li, Chendong 606
Lierler, Yuliya 377

826 Author Index

Lifschitz, Vladimir 37, 672
Liu, Guohua 347
Lobo, Jorge 22
Lu, James J. 774
Lukácsy, Gergely 455

Madeira, Sara C. 713
Marek, V.W. 83, 223
Marisetti, Satyanarayana 606
Marques, Rui 206
Mauro, Jacopo 744
Mello, Paola 440
Merico, Davide 145
Milano, Michela 470
Mileo, Alessandra 145
Montali, Marco 440
Montanari, Angelo 11
Moura, Paulo 713
Muggleton, Stephen H. 687

Navas, Jorge 301
Near, Joseph P. 238
Nguyen, Phuong-Lan 621, 698
Niemelä, Ilkka 88

O’Hearn, Peter 15
Oetsch, Johannes 591
Olmedilla, Daniel 779
Omicini, Andrea 769
Ostrowski, Max 190

Padget, Julian 724
Palla, Ravi 672
Parisini, Fabio 811
Pearce, David 52, 546
Pérez, Jorge A. 677, 682
Peschanski, Frédéric 754
Pettorossi, Alberto 284
Piancastelli, Giulio 769
Piazza, Carla 14
Pilozzi, Paolo 501
Pirrotta, Giovanni 813
Policriti, Alberto 14
Proietti, Maurizio 284
Pührer, Jörg 561

Remmel, J.B. 223
Riguzzi, Fabrizio 667
Rocha, Ricardo 175, 708, 713
Rollon, Emma 764
Rueda, Camilo 677, 682

Santini, Francesco 815
Santos, José Carlos Almeida 687, 818
Santos Costa, Vı́tor 1, 175, 693
Saurin, Alexis 253
Sauro, Luigi 779
Schaub, Torsten 93, 130, 190
Schrijvers, Tom 7, 9, 516, 693
Schulte, Christian 332
Senni, Valerio 284
Simmons, Robert J. 114
Siva, Sebastien 774
Smith, Noah A. 114
Sneyers, Jon 759
Stuckey, Peter J. 332, 531, 749
Sulzmann, Martin 516
Swift, Terrance 206
Szeredi, Péter 455
Szymanek, Radoslaw 636

Tamaddoni-Nezhad, Alireza 687
Tarau, Paul 703
Thiele, Sven 130, 190
Tompits, Hans 561, 591
Torroni, Paolo 440
Trias, Eric 301
Triska, Markus 820
Truszczyński, Miros�law 269, 576
Tsitovich, Aliaksei 822

Usadel, Björn 130

Valencia, Frank D. 682
Valverde, Agust́ın 546
Vanhoof, Wim 785
Van Weert, Peter 485
Veber, Philippe 130
Vennekens, Joost 71
Vermeir, Dirk 362
Vidal, Germán 790

Wielemaker, Jan 693
Woltran, Stefan 561, 576, 734

Yap, Roland H.C. 606
You, Jia-Huai 347

Zhang, Hantao 774
Zhang, Yuanlin 606

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talk
	The Life of a Logic Programming System
	Introduction
	A Little Bit of History
	Challenges
	Conclusions
	References

	Special Session
	Uniting the Prolog Community

	Invited Tutorials
	Constraint Handling Rules
	References

	Back to Interval Temporal Logics
	References

	Systems Biology: Models and Logics
	Separation Logic Tutorial
	Basics
	Model Theory and Proof Theory
	References

	20 Years of Stable Models Semantics Celebration
	Invited Presentations
	Authorization and Obligation Policies in Dynamic Systems
	Introduction
	Authorization Policy
	Syntax
	Semantics
	Checking Compliance

	Obligation Policy
	Syntax
	Semantics

	Related Work
	Conclusion
	References

	Twelve Definitions of a Stable Model
	Introduction
	Minimal Models, Completion, and Stratified Programs
	Minimal Models vs. Completion
	The Challenge

	Nonmonotonic Reasoning
	Circumscription
	Default Logic
	Autoepistemic Logic
	Relations between Nonmonotonic Formalisms

	Definitions A and B, in Terms of Translations into Nonmonotonic Logic
	Definition C, in Terms of the Reduct
	Definitions D and E, in Terms of Unfounded Sets and Loop Formulas
	Definition F, in Terms of Circumscription
	Definitions G and H, in Terms of Tightening and the Situation Calculus
	Definition I, in Terms of Equilibrium Logic
	Definitions J and K, in Terms of Modified Reducts
	Definition L, in Terms of Modified Circumscription
	Conclusion
	References

	Sixty Years of Stable Models
	The DLV Project: A Tour from Theory and Research to Applications and Market
	Introduction
	Ancestry
	Implementing the Core System
	Language Extensions and Their Optimization
	Frontends, Backends and Research-Applications
	Spin-Off Projects
	Industry-Level Applications and Commerce
	References

	Invited Position Presentations
	Using Answer Set Programming for Knowledge Representation and Reasoning: Future Directions
	References

	Building a Knowledge Base System for an Integration of Logic Programming and Classical Logic
	Introduction
	The KB-language FO(ID)
	Reasoning in FO(ID)
	Conclusion
	References

	SMS and ASP: Hype or TST?
	Introduction
	Questions about ASP
	SMS and ASP: A Historical Account
	Conclusion
	References

	Quo Vadis Answer Set Programming?
	How Did It Happen, or Prehistory
	What DoWe Have Now
	Where to from Here
	References

	Answer Set Programming without Unstratified Negation
	Introduction
	SCI Programs
	Semantics of SCI Programs
	Capturing Unstratified Negation
	Extending SCI Programs
	References

	Here’s the Beef: Answer Set Programming!
	References

	Best Paper Awardees
	Equivalences in Answer-Set Programming by Countermodels in the Logic of Here-and-There
	Introduction
	Preliminaries
	Propositional Here-and-There
	Propositional Logic Programming
	Notions of Equivalence

	Equivalence of Propositional Theories by HT-Countermodels
	HT-Countermodels
	Characterizing Equivalence by means of Equivalence Interpretations

	Generalization to First-Order Theories
	Static Quantified Logic of Here-and-There
	Characterizing Equivalence by QHT-countermodels

	Non-ground Logic Programs
	Uniform Equivalence under Herbrand Interpretations

	Conclusion
	References

	Dynamic Programming Algorithms as Products of Weighted Logic Programs
	Introduction
	Weighted Logic Programming
	Non-boolean Programs
	Formal Definition

	Products of Experts
	Products ofWeighted Logic Programs
	The PRODUCT Transformation
	Constraining the Product of Experts

	Examples
	Edit Distance
	Finite-State Algorithms
	Context-Free Parsing

	Conclusion
	References

	Regular Papers
	Applications I
	Detecting Inconsistencies in Large Biological Networks with Answer Set Programming
	Introduction
	Influence Graphs and Sign Consistency Constraints
	Answer Set Programming
	Checking Consistency
	Problem Instance
	Generating Solution Candidates
	Testing Solution Candidates

	Identifying Minimal Inconsistent Cores
	Testing for Inconsistency
	Testing forMinimality

	Empirical Evaluation and Application
	Checking Consistency
	Identifying Minimal Inconsistent Cores
	Biological Case Study

	Discussion
	References

	A Logic Programming Approach to Home Monitoring for Risk Prevention in Assisted Living
	Background and Motivations
	Home Monitoring: Context Aggregation and Interpretation
	The Logic-Based Model of Health
	Preliminary Notions
	Hierarchical Model of Health Care: Knowledge Representation

	The Reasoning Capabilities
	Preliminary Evaluation
	Conclusions and Future Work
	References

	Automatic Composition of Melodic and Harmonic Music by Answer Set Programming
	Introduction
	Music
	Automatic Composition
	Melodic Composition
	Harmonic Composition

	Answer Set Programming
	The \sc{Anton} System
	Evaluation of \sc{Anton}
	Practical Use
	Music Quality
	ASP as the Knowledge Representation Language

	Conclusions and Directions for Future Work
	Music Research
	Systems Development

	References

	Algorithms, Systems, and Implementations I
	On the Efficient Execution of ProbLog Programs
	Introduction
	ProbLog
	Inference in ProbLog
	Exact Inference
	Approximative Inference

	Implementation
	Experiments
	Conclusions
	References

	Engineering an Incremental ASP Solver
	Introduction
	Background
	Semantic Underpinnings through Incremental Modularity
	Incremental ASP Solving
	Experiments with the Incremental ASP System $iclingo$
	Discussion
	References

	Concurrent and Local Evaluation of Normal Programs
	SLG Evaluation
	Local SLG Evaluations
	Sharing Completed Tables in a Concurrent Evaluation
	Concurrent Local Evaluations

	Implementing SLGC in the SLG-WAM
	Discussion
	References

	Semantics and Foundations I
	On the Continuity of Gelfond-Lifschitz Operator and Other Applications of Proof-Theory in ASP
	Introduction
	Preliminaries
	Proof Schemes and Reduced Defining Equations
	Continuity Properties of Operators and Proof Schemes
	Continuity Properties of Monotone and Antimonotone Operators
	Gelfond-Lifschitz Operator GL$_P$ and Proof-Schemes
	Continuity Properties of the Operator GL$_P$

	Computing Stable Models Via Satisfiability, but without Loop Formulas or Defining Equations
	Extensions to CC-Programs
	Conclusions
	References

	αleanTAP : A Declarative Theorem Prover for First-Order Classical Logic
	Introduction
	Preliminaries
	αKanren Refresher
	Tableau Theorem Proving

	Introducing αleanTAP
	Running Forwards
	Running Backwards

	Implementation
	Translation to αKanren
	Eliminating copy-term0
	Eliminating conda

	Performance
	Related Work
	Conclusion
	References

	Towards Ludics Programming: Interactive Proof Search
	Introduction
	Logic Programming, Interactivity and Ludics
	Searching for Proofs Interactively
	Motivations and Intuitions for Ludics
	Searching for Proofs Interactively in MALL

	Introduction to Ludics
	Interactive Proof Search Algorithm
	SLAM-1
	Properties of SLAM-1
	SLAM-n
	Backtracking
	A Concrete Example

	Conclusion
	References

	Declarative Semantics for Active Integrity Constraints
	Introduction
	Integrity Constraints and Database Repairs —Basic Concepts
	Active Integrity Constraints
	Justified Repairs
	Normal Active Integrity Constraints and Normalization
	Shifting Theorem
	Complexity and Computation
	Discussion
	Conclusion
	References

	Analysis and Transformations
	A Folding Algorithm for Eliminating Existential Variables from Constraint Logic Programs
	Introduction
	Preliminary Definitions
	The Folding Rule
	An Algorithm for Applying the Folding Rule
	Goal Matching
	Constraint Matching
	The Folding Algorithm

	Complexity of the Algorithm and Experimental Results
	Related Work and Conclusions
	References

	Negative Ternary Set-Sharing
	Introduction
	Set-Sharing Encoded by Binary Strings
	Ternary Set-Sharing
	Negative Ternary Set-Sharing
	Experimental Results
	Conclusions
	References

	Termination of Narrowing Using Dependency Pairs
	Introduction
	Preliminaries
	The $echoing$ Problem
	Narrowing Dependency Pairs
	Automating the Method
	Extending the DP Framework to Narrowing

	Conclusion
	References

	Dynamic Analysis of Bounds Versus Domain Propagation
	Introduction
	Propagation-Based Constraint Solving
	An Abstraction of Propagation
	MainResult
	Finding Which Propagators to Replace
	Experimental Evaluation
	Conclusion and Related Work
	References

	Semantics and Foundations II
	Lparse Programs Revisited: Semantics and Representation of Aggregates
	Introduction
	Preliminaries
	Lparse Semantics
	Semantics of Logic Programs with Constraint Atoms

	Coincidence between Semantics
	When the Semantics Disagree
	Transformation to Strongly Satisfiable Programs
	Logic Programs with Aggregates
	Experiments
	Conclusions and Future Work
	References

	Compiling Fuzzy Answer Set Programs to Fuzzy Propositional Theories
	Introduction
	Preliminaries
	Fuzzy Answer Set Programming
	Fuzzy Propositional Logic
	Fuzzy Completion
	Solving the Loop Problem
	Conclusions and Future Work
	References

	Abstract Answer Set Solvers
	Introduction
	Review: Abstract DPLL
	Background: Logic Programs
	Generating Supported Models
	Smodels
	Sup
	Tight Programs
	Generate and Test
	Related Work
	Proofs
	Conclusions
	References

	Semantics and Foundations III
	Partial Functions and Equality in Answer Set Programming
	Introduction
	A Motivating Example
	Quantified Equilibrium Logic with Partial Functions
	Useful Derived Operators
	Logic Programs with Partial Functions
	Related Work
	Conclusions
	References

	Computable Functions in ASP: Theory and Implementation
	Introduction
	DLP with Functions
	Finitely-Ground Programs
	Properties of Finitely-Ground Programs
	Finite-Domain Programs
	An ASP System with Functions, Sets, and Lists
	Related Works
	Conclusions
	References

	Composing Normal Programs with Function Symbols
	Introduction
	Preliminaries
	Persistency of the Finitely Recursiveness Property
	Programs with Finite Semantics
	Program Module Composition
	Decidability and Undecidability Results
	Conclusions and Future Work
	References

	Applications II
	Verification from Declarative Specifications Using Logic Programming
	Introduction
	Declarative Business Processes: Specification and Verification
	A ConDec Example
	Static Verification of ConDec Models

	The SCIFF Framework
	The SCIFF Language
	Static Verification Using g-SCIFF

	Experimental Evaluation
	Verifying ConDec Models with g-SCIFF and Model Checking Techniques
	Experimental Results

	Related Work
	Discussion and Conclusion
	References

	Prolog Based Description Logic Reasoning
	Introduction
	Preliminaries and Related Work
	An Overview of the DLog Approach
	Unfolding
	Motivation and Goals
	An Example
	The Process of Transformation

	DLog Server Architecture
	Evaluation
	Conclusions
	References

	Resource Management Policy Handling Multiple Use-Cases in MPSoC Platforms Using Constraint Programming
	Introduction
	Logic Based Benders Decomposition
	Migration-Enabled MPSoC Architecture and Use-Cases
	Handling Multiple Use-Cases
	CP Logic Based Benders Decomposition
	Advantages of the Approach
	Flexibility
	Scalability

	Related Work
	Conclusion
	References

	CHRs and Extensions
	Optimization of CHR Propagation Rules
	Introduction
	Preliminaries
	CHR Syntax
	CHR’s Refined Operational Semantics

	Non-reactive Propagation Rules
	Introduction: From Fixed to Non-reactive CHR
	Propagation History Elimination
	Optimized Reapplication Avoidance

	Idempotence
	Deriving Idempotence

	Evaluation
	Conclusions
	References

	Termination Analysis of CHR Revisited
	Introduction
	Preliminaries
	CHR Semantics
	Propagation in CHR
	Motivation
	Propagation Safe CHR Programs
	Full Propagation
	The Propagation Store

	Termination of CHR
	CHR State Ordering
	The Ranking Condition on Propagation Rules
	The Ranking Condition on Simplification Rules

	Discussion and Conclusions
	References

	Transactions in Constraint Handling Rules
	Introduction
	Overview
	Bounded Transaction: Bank Transfer
	Unbounded Transaction: Shared Linked List

	Preliminaries: Concurrent CHR
	The CHR$^{\text{\Radioactivity}}$ Language
	Properties of CHR$^{\text{\Radioactivity}}$

	CHR$^{\text{\Radioactivity}}$ Execution Schemes
	Optimistic Concurrency in CHR$^{\text{\Radioactivity}}$ and Its Problem
	A Simple CHR$^{\text{\Radioactivity}}$ Execution Scheme

	From CHR$^{\text{\Radioactivity}}$ to CHR by Transformation
	Bounded Transactions as Multi-headed CHR Rules
	From CHR$^{\text{\Radioactivity}}$ to CHR Via Confluence Analysis
	Relaxing Confluence
	Completion for Stuck Transactions

	Related Work
	Conclusion and Future Work
	References

	Cadmium: An Implementation of ACD Term Rewriting
	Introduction
	Preliminaries
	Basic Normalisation with Conjunctive Context

	Improved Normalisation
	Implementation
	Compiling Conjunction in the Body
	Generating Wake-Up Conditions

	Experiments
	Related Work and Conclusions
	References

	Semantics and Foundations IV
	Quantified Equilibrium Logic and Foundations for Answer Set Programs
	Introduction
	Review of Quantified Equilibrium Logic and Answer Sets
	Strong Equivalence and Normal Forms

	Rule Redundancy and θ-Subsumption
	Reduction of QHT to Classical Logic
	Classical Encodings of Stable Models and Strong Equivalence
	Conclusions
	References

	Elimination of Disjunction and Negation in Answer-Set Programs under Hyperequivalence
	Introduction
	Preliminaries
	Setting the Stage: Casting under Strong Equivalence
	Main Results
	Completeness for HyperequivalenceModels
	Elimination of Disjunction
	Elimination of Negation
	Joint Elimination of Disjunction and Negation
	Special Cases

	Computational Aspects of Program Casting
	Discussion
	References

	Relativized Hyperequivalence of Logic Programs for Modular Programming
	Introduction
	Motivation
	Technical Preliminaries
	Supp-Equivalence
	Suppmin-Equivalence
	Stable-Equivalence
	Discussion
	References

	Program Correspondence under the Answer-Set Semantics: The Non-ground Case
	Introduction
	Preliminaries
	Logic Programs
	Second-Order Logic

	A Unifying Correspondence-Framework
	The Basic Framework and Its Instances
	Model-Based Characterisations of GQIPs and GQEPs
	Computability Issues

	Translations into Second-Order Logic
	A Case for Second-Order Logic
	Translating GQIPs and GQEPs

	Conclusion
	References

	Algorithms, Systems, and Implementations II
	Efficient Algorithms for Functional Constraints
	Introduction
	Preliminaries
	Variable Substitution and Elimination Using Binary Functional Constraints
	Elimination Algorithms for CSPs with Functional Constraints and Non-functional Constraints
	Experimental Results
	Variable Elimination and Non-binary Constraints
	Related Work
	Conclusion
	References

	Two WAM Implementations of Action Rules
	Introduction
	Action Rules Terminology
	How Action Rules Work
	Transforming Action Rules to Prolog: An Example
	General Transformation from Action Rules to Prolog
	Registering and Dealing with Events

	Suspension Frames on the WAM Heap
	Using Heap Suspension Frames for Implementing Action Rules
	The Example
	Registering and Dealing with Events

	Making It Work
	Evaluating the WAM Implementation of Action Rules
	Original Benchmarks
	Artificial Benchmarks for ins/1 and event/2

	Discussion
	Conclusion
	References

	Constraint-Level Advice for Shaving
	Introduction
	Preliminaries
	Framework for Constraint-Guided Shaving
	Principles
	Algorithm
	Extensions

	Constraint Guidance
	Alldifferent
	Sum

	Experimental Results
	Nontransitive Dice Problems
	Quasigroup Completion Problems
	MagicSquares Problems

	Conclusions
	References

	A High-Level Implementation of Non-deterministic, Unrestricted, Independent And-Parallelism
	Introduction
	Decomposing And-Parallelism
	Shared-Memory Implementation
	Goal Stacks vs. Goal Lists
	Parcall Frames vs. Handlers
	Markers vs. (Prolog) Choice Points
	Implementation

	Performance Evaluation
	Conclusions
	References

	Short Papers
	Semantics and Foundations
	Inference with Logic Programs with Annotated Disjunctions under the Well Founded Semantics
	Introduction
	Preliminaries
	SLGAD Resolution Algorithm
	Experiments
	References

	Safe Formulas in the General Theory of Stable Models (Preliminary Report)
	Introduction
	Review: Safe Sentences
	Properties of Safe Sentences
	Conclusion
	References

	Non-determinism and Probabilities in Timed Concurrent Constraint Programming
	References

	Stochastic Behavior and Explicit Discrete Time in Concurrent Constraint Programming
	References

	TopLog: ILP Using a Logic Program Declarative Bias
	Introduction
	Theoretical Framework
	System Description
	From Mode Declarations to \top Theory
	TopLog Learning Algorithm

	Experimental Evaluation
	Conclusions and Future Work
	References

	Implementations and Systems
	Towards Typed Prolog
	Introduction
	The Hindley-Milner Type System
	Support for Prolog Features
	Interfacing Typed and Untyped Code
	Conclusion
	References

	Environment Reuse in the WAM
	Introduction
	Tak/4 and Its Abstract Machine Code
	The Dynamics of Tak/4
	Artificial Benchmarks
	Conclusion
	References

	Logic Engines as Interactors
	Introduction
	First Class Logic Engines
	From Fluents to Interactors
	Conclusion
	References

	Global Storing Mechanisms for Tabled Evaluation
	Introduction
	Table Space
	GlobalTrie
	Preliminary Experimental Results
	Conclusions
	References

	Thread-Based Competitive Or-Parallelism
	Introduction
	Thread-Based Competitive Or-Parallelism
	Implementation
	Experimental Results
	Conclusions and Future Work
	References

	Answer Set Programming and Extensions
	A Logic Language with Stable Model Semantics for Social Reasoning
	An Overview of the Language
	References

	ASPVIZ: Declarative Visualisation and Animation Using Answer Set Programming
	Introduction
	Declarative Visualisation with ASP
	Related and Future Work
	References

	Removing Redundancy from Answer Set Programs
	Introduction
	Logic Program Modules in Brief
	Translation-Based Method for Redundancy Checking
	Experiments
	Discussion and Conclusions
	References

	ASPARTIX: Implementing Argumentation Frameworks Using Answer-Set Programming
	Motivation
	Background and System Specifics
	Applying ASPARTIX
	References

	An Implementation of Extended P-Log Using XASP
	Introduction
	Extended P-Log
	Implementation of Extended P-Log System
	Examples and System Evaluation
	Conclusions and Future Work
	References

	Constraints, Optimizations, and Applications
	Compiling and Executing Declarative Modeling Languages to Gecode
	Introduction
	The Languages Used
	Translation
	Experimental Results
	Conclusion and Future Work
	References

	Telecommunications Feature Subscription as a Partial Order Constraint Problem
	Introduction
	Problem Statement
	Partial Order Constraints
	The Encoding
	Experimental Results
	Conclusions
	References

	A Constraint Logic Programming Approach to Automated Testing
	Introduction
	Automated Testing: Contract Animation
	Test Data Generation
	The CSP Architecture
	Case Study: The String Builder

	Related Works
	References

	Turing-Complete Subclasses of CHR
	Introduction
	Only One Kind of Rules
	Only One Rule
	Only Single-Headed Rules and Propositional CHR
	Future Work
	References

	A Soft Approach to Multi-objective Optimization
	Introduction
	On Semiring-Based Frameworks
	Soft Constraints Based on Semirings

	Semirings Based on Powersets
	Recasting Multi-criteria CSP
	Conclusions, RelatedWorks and Further Developments
	References

	Applications
	A Multi-theory Logic Language for the World Wide Web
	Introduction
	Resources and Contexts
	Web Logic Programming
	Dynamic Context Composition
	Dynamic Resource Behavior
	Operational Semantics

	Conclusions and Future Work
	References

	A Case Study in Engineering SQL Constraint Database Systems
	Introduction
	The SCDE System
	Problem Representation
	Constraint Compilation

	A Case Study Application
	Discussion and Conclusion
	References

	Policy-Driven Negotiations and Explanations: Exploiting Logic-Programming for Trust Management, Privacy & Security
	Introduction
	Policy Specification
	Metapolicies
	Negotiations, Policy Reasoning and Filtering
	Explanations
	Implementation: The Protune Framework
	References

	Analysis, Transformations, and Implementations
	An Algorithm for Sophisticated Code Matching in Logic Programs
	Introduction
	Efficiently Computing Code Matches
	Discussion
	References

	Trace Analysis for Predicting the Effectiveness of Partial Evaluation
	Introduction
	Trace Analysis for Logic Programs
	Towards Predicting the Speedup of Partial Evaluation
	Discussion
	References

	A Sketch of a Complete Scheme for Tabled Execution Based on Program Transformation
	Introduction
	The Continuation Call Technique
	A Complete Tabling Translation for General Programs
	Performance Evaluation
	References

	Doctoral Consortium Presentations
	Probabilistic and Concurrent Models for Security
	Introduction
	Background of My Research Topic
	Goals and Achievements of My Research
	References

	On the Hybridization of Constraint Programming and Local Search Techniques: Models and Software Tools
	Problem Description and State of the Art
	Research Summary
	References

	Development of an Automatic Testing Environment for Mercury
	Introduction and Problem Description
	GoaloftheResearch
	Current Status of the Research and Open Issues
	References

	Resolving CSP with Naming Games
	The DCSP and the Naming Game Background
	Research Summary
	References

	Biosequence Analysis in PRISM
	References

	Bi-dimensional Domains for the Non-overlapping Rectangles Constraint
	References

	Extracting and Reasoning about Web Data
	Introduction and Problem Description
	GoaloftheResearch
	Current Status of the Research
	Open Issues and Expected Achievements
	References

	Managing Quality of Service with Soft Constraints
	References

	TopLog: ILP Using a Logic Program Declarative Bias
	Introduction, Background and Problem Description
	Research Goals and Literature Overview
	Preliminary Results and Expectations
	References

	Generalising Constraint Solving over Finite Domains
	Introduction
	Background and Applications
	Research Goals and Open Issues
	References

	Detection of Security Vulnerabilities Using Guided Model Checking
	Introduction
	Goals and Achieved Results
	References

	Author Index

